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Abstract

Application of Machine Learning Techniques to Delay Tolerant

Network Routing

Abstract

by

RACHEL DUDUKOVICH

This dissertation discusses several machine learning techniques to improve

routing in delay tolerant networks (DTNs). These are networks in which there

may be long one-way trip times, asymmetric links, high error rates, and deter-

ministic as well as non-deterministic loss of contact between network nodes,

such as interplanetary satellite networks, mobile ad hoc networks and wireless

sensor networks. This work uses historical network statistics to train a multi-

label classifier to predict reliable paths through the network. In addition, a

clustering technique is used to predict future mobile node locations. Both of

these techniques are used to reduce the consumption of resources such as net-

work bandwidth, memory and data storage that is required by replication rout-

ing methods often used in opportunistic DTN environments. Thesis contribu-

tions include: an emulation tool chain developed to create a DTN test bed for

machine learning, the network and software architecture for a machine learn-

ing based routing method, the development and implementation of classifica-

tion and clustering techniques and performance evaluation in terms of machine

learning and routing metrics.

xv
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1 Introduction

1.1 Objective and Description

The purpose of this dissertation is to apply machine learning techniques such

as classification, clustering and reinforcement learning to address the various

challenges throughout the space and deep space networks to improve overall

networking performance for future mission applications. As the basis of this

work, the delay tolerant networking (DTN) architecture and protocols are con-

sidered in order to build upon an established technology which addresses some

of the issues which complicate interplanetary networks. The pairing of delay tol-

erant networking with learning capabilities may be considered a subset of the

cognitive networking field of research, with which this dissertation shares many

of the same goals. Software and network architecture considerations relative to a

particular environment and algorithm are discussed including a survey of popu-

lar DTN routing methods. Challenges addressed are the heterogeneous nature

of space networks, long round trip times, limited bandwidth, processing and

memory resources, potential congestion within local networks and the need to

operate within human scheduled constraints while simplifying the necessity of
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operator supplied input. The problem formulation for the application of ma-

chine learning techniques for DTN routing, simulation and emulation, and per-

formance metrics are discussed.

This work focuses on the aspects of scheduling and routing in DTNs. The

term scheduling can be taken two ways within this context, on one hand mean-

ing the scheduling of communication between assets such as science mission

communication systems, relay satellites and ground stations or the scheduling

of messages (packets, bundles, etc.) for transmission and deletion within a single

system. Routing focuses on the selection of nodes to form a path from a message

source to the destination in the network. These three considerations ( sched-

uling of communication assets, scheduling of message queues within the com-

munication system, and route selection) are all interrelated and impact one an-

other. The scheduling of assets imposes constraints on what nodes are available

for communication at a given time. The scheduling and processing of messages

(queuing, re-queuing, expiration, deletion, transmission) impact the traffic in

the network, the waiting time for new messages to be sent and received, and the

buffer availability on communication assets. Routing impacts the utilization of

specific nodes, may cause duplicate messages to exist within the network (based

on protocol used) and will influence the overall end-to-end delay of message de-

livery based on paths selected. This work focused primarily on scheduling of

message transmission and routing.
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1.2 Motivation

In particular, this dissertation focuses on DTNs in the space networking en-

vironment, although techniques are discussed which are widely applicable to

other types of DTNs. At this time, the NASA system of communication satellites

consists of three separate networks, the Near Earth Network (NEN), the Space

Network (SN) and the Deep Space Network (DSN), all of which are managed by

NASA’s SCaN (Space Communications and Navigation) program [3]. While these

networks currently function largely as separate entities, it is a future vision for

NASA that there will be greater interoperability, flexibility and autonomy among

network nodes. Efforts such as cognitive networking and delay tolerant network-

ing are two areas which show great promise to advance these goals. This disser-

tation aims to apply both of these techniques to the areas of communication

scheduling and routing.

1.2.1 Goals of Cognitive Networking for the NASA SCaN Network

This section briefly discusses the high level goals for cognitive networking,

as outlined by Ivancic, et al. [3] and how they serve as the inspiration for the

research focus of this dissertation.

• Reducing operations cost: Operations costs are related to the amount

of human labor required to support systems operations. The more au-

tonomously the network performs as a whole will reduce labor costs.

Automated scheduling of network assets, automated detection of failed

nodes and replacement by rerouting or redundancy, and nodes which
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self organize through discovery processes are ways in which cognitive

networks could accomplish this goal.

• Provide flexible user services: Intelligent scheduling also impacts this

goal. Scheduling methods that can efficiently resolve conflicts improve

the flexibility of the system. A scheduling system that can adapt and re-

prioritize users and jobs when unexpected changes occur also impacts

flexibility.

• Improve system performance: In this case, system performance per-

tains to throughput of error-free data ("goodput"). Intelligent routing to

determine and utilize the network path with shortest overall end-to-end

delay based on link reliability, transmission rates, propagation delays,

node storage capacity can improve overall network throughput. Proto-

cols which reduce the amount of overhead and duplicate messages sent

allow for a greater amount of actual data to be sent within a given trans-

mission period.

• Improve system reliability: Scheduling and routing methods which look

for patterns within current and past network performance can sense

failures and take a counter measure, allowing neighboring nodes to "fill

in" for failed nodes or making predictions and taking proactive mea-

sures for when a system failure may occur.

• Increase system asset utilization: Machine learning algorithms can be

used to augment or as an alternative to human-created or rule based

schedules. This may allow for quicker reactions to unanticipated sched-

ule changes or to produce more efficient schedules.
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Within this set of goals it can easily be seen that scheduling and routing have a

significant impact on many aspects of improving the overall network operations.

Cognitive techniques such as machine learning can provide valuable improve-

ments to many of these areas.

1.3 Contributions

The section summarizes the main contributions of this dissertation.

• Study and comparison of various conventional DTN routing algorithms.

In order to first survey the current state of the art of routing techniques

in delay tolerant networks, as well as gain familiarity with several pop-

ular DTN implementations, the performance of several routing tech-

niques were characterized. These include DTLSR, PRoPHET, flooding

which are included as part of the DTN2 reference implementation, as

well as the RAPID algorithm implemented as an external routing mod-

ule for DTN2. The PRoPHET, flooding and epidemic routing implemen-

tations as provided within IBR-DTN are also characterized.

• Study and comparison of simulation and emulation environments for

DTN testing with 10’s of mobile network nodes. Several frequently used

simulation and emulation tools including OMNeT++, ONE simulator and

CORE/EMANE emulation.

• Develop an architecture, problem formulation and considerations for

machine learning techniques relative to the environmental challenges
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in various sectors of the space and deep space network, specifically in-

situ landed networks, cislunar and similar networks and deep space net-

works.

• Simulation of the reinforcement learning Q-Routing algorithm and anal-

ysis of its applicability to the DTN environment.

• Develop, implement and emulate offline multi-label learning approach

to DTN scheduling and routing.

• Develop and emulate a cluster based approach to epidemic routing for

DTNs.

• Analyze the results of the classification and clustering routing methods

using machine learning metrics.

• Analyze the performance of the routing methods to show a reduction

of replicated bundles while maintaining a satisfactory bundle delivery

ratio.

1.4 Outline

Chapter 2 covers background information relevant to this work. The current

and future interplanetary network as proposed by NASA’s SCaN program is dis-

cussed, as well as how characteristics of these environments influence network-

ing considerations. Example future mission scenarios and use cases for machine

learning are discussed. Next, an overview of delay tolerant networking is given,

as well as a brief introduction to machine learning concepts.
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Chapter 3, Related Work, covers the main concepts of several well known

state-of-the-art DTN routing algorithms. In addition, several closely related works

utilizing machine learning techniques for DTN routing are described.

Chapter 4, Approach, discusses the approach to applying machine learning

techniques to delay tolerant network routing. A software and network archi-

tecture for machine learning based techniques are developed. Several popular

machine learning techniques such as Q-Routing, classification, multi-label clas-

sification and clustering are implemented as potential improvements for DTN

routing.

Chapter 5, Implementation, discusses the details of what software tools were

used and how they were extended by this research. DTN implementations that

were considered are discussed, as well as how IBR-DTN was modified for ma-

chine learning based routing.

Chapter 6, Simulation and Emulation, covers several network simulators and

emulators that where explored to create a DTN environment to test the various

routing approaches. Node mobility models and scripting as well as libraries used

are also described.

Chapter 7, Performance Measurements, discusses the results of the network

emulation scenarios. Metrics relative to machine learning as well as performance

metrics for routing are considered.

Chapter 8, Conclusion, outlines the work completed in this dissertation as

well as suggestions and ideas for follow on work.
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2 Background

This chapter covers an introduction to the main topics that comprise the

background context for this dissertation. The current and future network con-

cepts of the NASA SCaN (Space Communications and Navigation) program are

discussed, as well as the challenges that are unique to each network subsection.

Next, an overview of the DTN architecture and relevant protocols are given, as

well as how they address the different environmental challenges within the SCaN

network. Finally, an overview of the basic concepts of machine learning that were

used in this research are given.

2.1 NASA SCaN Networks

The NASA SCaN networks currently consist of the Near Earth Network (NEN),

the Space Network (SN) and the Deep Space Network (DSN)[4]. These are cur-

rently independent networks, however it is the future vision of SCaN that they

will be combined into a single integrated network. The Space Network consists

of the set of geosynchronous Tracking Data Relay Satellite (TDRS) and their as-

sociated ground stations. The Space Network ground segment consists of three

ground stations at the White Sands Complex, the Guam Remote Terminal, and
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Network Control Center at Goddard Space Flight Center in Maryland. The Near

Earth Network consists of NASA and partner organization ground stations and

integration systems that support space communications and tracking for lunar,

orbital and suborbital missions. The Deep Space Network consists of commu-

nication assets from Geosynchronous Earth Orbit (GEO) to the edge of the solar

system as well as the large aperture ground stations which support them. DSN

ground stations exist at the Goldstone Deep Space Communication Complex in

California, Madrid Deep Space Communication Complex in Madrid, Spain, and

the Canberra Deep Space Communication Complex near Canberra, Australia.

They are nearly 120 degrees apart which allows for constant communication with

space craft as the earth rotates. The SCaN networks provide services between

user experiments in space and the user mission ground stations which may con-

sist of NASA, commercial organizations, academia and other space and military

organizations. These services include forward data delivery service, return data

delivery service, radiometric services from which the position and velocity of the

user mission platform are determined, science and calibration services.

The SCaN integrated network will aim to provide customers with the ability to

seamlessly use any of the available SCaN assets. The development of a common

set of protocols across the various regions of the integrated network will simplify

the compatibility requirements between NASA, customers and commercial en-

tities. The need for a high-layer routed and store-and-forward service is among

the protocols and techniques to be developed and evaluated to achieve this goal.

In its current form, as well as the future vision of an integrated network there

exists several challenges that differ throughout the network based on a commu-

nication asset’s location. Most notably, there is a difference in one way distance
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and therefore round trip times from Earth, low Earth orbit (LEO), the lunar sur-

face and Mars. Table 2.1 shows a summary of some of these parameters. Based

on these times, it becomes apparent that in some cases conventional protocols

such as TCP/IP will perform quite well, whereas at farther distances it will not be

suitable. In a similar manner, routing protocols and other cognitive mechanisms

may use approaches which require frequent communication, acknowledgments,

or updates between nodes, whereas in the case of long haul links from Mars to

Earth, this will not be a suitable approach. In addition to these constraints placed

on newly developed protocols, it can also be expected that within these differing

regions of the network, there will be a variety of lower level protocols as necessi-

tated by the environment.

RTT Network Asset Location One Way Distance

< 0.1 s Communication between rovers, landers, etc. Local landed network
0.1 s Earth to Low Earth Orbit A few hundred kilometers
0.1 s Lunar surface to low-lunar orbit A few hundred kilometers
0.1 s Martian surface to low-Mars orbit A few hundred kilometers
0.5 s Earth surface to LEO via geosynchronous orbit 72,000 kilometers
0.1-2.5 s Earth surface to lunar transfer orbit 200,000-384,000 kilometers
2.5 s Earth surface to lunar surface direct 384,000 kilometers
6-45 min Earth surface to Mars 55,000,000-401,000,000 kilometers

Table 2.1. Approximate Round Trip Times of Network Assets [1]

2.2 Delay Tolerant Networking

The DTN architecture [5] and Bundle Protocol [6] address several of the afore-

mentioned issues. Bundle protocol is an overlay protocol that it creates an ad-

ditional layer between the application layer and underlying transport, datalink

and physical layers within the protocol stack. Bundle protocol is a store and for-

ward based protocol, so data will be stored during a network disruption and then
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transmitted once connectivity is restored. Data can be transmitted to a destina-

tion without a known end-to-end path by relaying to nodes which may even-

tually come in contact with the destination. In addition, this overlay concept

abstracts away the differences in lower level details so that nodes may use a va-

riety of different protocols from the transport to physical layers as appropriate

for their particular conditions. Nodes in close proximity together on a planet’s

surface may use a standard TCP based network. Long haul links such as a Mars

relay to earth may use protocols designed for extended distances such as Lick-

lider Transmission Protocol (LTP) [2]. The bundle layer will abstract away these

differences, which will be handled by the lower level mechanisms. The bundle

layer will be concerned with storage of the data until an appropriate transmis-

sion time, custody transfer of the data and routing of the data. Figure 2.1 shows

an example of the various protocols that could be used in a delay tolerant net-

work consisting of a landed Martian rover, orbiter satellite, and various compo-

nents of the ground segment needed to reach a science mission’s control center.

A DTN node may typically consists of some user application which generates,

sends and receives data using bundle protocol. The bundle layer implements

bundle protocol as well as DTN routing. Bundles will be stored until they can

be transferred to a suitable neighbor. Lower level protocol layers will determine

when the link is available and are interfaced to the bundle layer using a conver-

gence layer adapter specific to the protocols being used. The DTN protocol stack

roughly follows the OSI network stack model [5]. The exact number of layers may

differ upon implementation, however in general it can be expected that a DTN

node would consist of the following layers:
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Figure 2.1. Example Mission Operations Center to Deep Space
Rover Protocol Stack[2]

• User Applications: The top level applications that may perform any num-

ber of tasks, for example reading data from science instruments, accept-

ing user input, or aggregating telemetry to communicate system health

to the ground operations.

• Data Processing Protocols: Beneath the user applications, protocols such

as CFDP (CCSDS File Delivery Protocol) or BSS (Bundle Streaming Ser-

vice) may be used. These protocols will take raw user data and break

them into bundles and perform other management functionality as out-

lined in the protocol specification. These protocols are not necessarily

required and user applications may interact with the bundle layer using

a bundle layer API or a custom developed implementation to send and

receive bundles to the bundle protocol agent.
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• Bundle Protocol: The bundle protocol is intended to be an overlay pro-

tocol which connects a variety of networks using a store, carry and for-

ward methodology. It is here that the delays and disruptions experi-

enced in a space network are mitigated since bundles are stored in long

term storage until a contact opportunity is available. Bundle protocol

uses the concept of custody transfer among nodes, meaning that a neigh-

boring node must be willing to accept responsibility of a received bun-

dle, ensuring that it will attempt to deliver it to its destination prior to

the bundle’s expiration and must notify a "report-to" node on the status

of the bundle . Custody may be refused if the receiving node’s bundle

storage is too full, among other reasons. In addition to bundle storage

and custody, routing and forwarding decisions are made at the bundle

layer.

• Convergence Layer Adapters: The convergence layer adapters are de-

signed to provide an interface between the bundle protocol layer and

the transport layer protocols.

• Transport Layer: A DTN node may commonly use several transport pro-

tocols including TCP, UDP and LTP. In particular, LTP may be considered

specific to delay tolerant networks and is often used over long haul links

since its functionality is not as dependent on handshaking procedures

that would be impractical over long latency paths in the way that TCP

does, yet it provisions for more reliability than UDP by dividing data ac-

cording to the need for reliable transfer , called red data segments, ver-

sus unreliable transfer (green data segments). Red data segments may
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be retransmitted in the event of corruption or loss and require status

reports and acknowledgments.

The DTN architecture [5] specifies that nodes will be identified by Endpoint

Identifiers (EID) which follows the syntax of URIs (Uniform Resource Identifier).

The URI begins with a scheme name maintained by IANA. Following the scheme

name is a scheme specific string of characters. In DTN, the scheme specific por-

tion is the end point identifier which serves as the DTN address of the node.

This specification however, is obviously very general and as such different im-

plementations of the DTN architecture use different EID syntax. The ION im-

plementation uses the scheme "ipn:n.m" where n is the node number and m is

the service number. The DTN2 and IBR-DTN implementations use the syntax:

"dtn://nodename.dtn/endpointname" In both cases the node name or number

identifies a specific node and the service number or endpoint name is used to

send and receive data to a particular application. A node may have one name

and multiple applications will communicate using a given EID, but each appli-

cation will listen to and receive from a specific service number or endpoint name.

An EID may also refer to a group of nodes in a multicast scenario.

2.2.1 Top Level DTN Flow Chart

Figure 2.2 shows a top level flow chart of one DTN node transmitting data

to a receiving node [7]. User applications will generate data such as image or

text files which can be sent to a file delivery service such as CFDP (CCSDS File

Delivery Protocol) that will segment the files and interact with the bundle proto-

col layer. User audio and video data may be sent over a streaming service which

will also interact with the bundle layer. Once the data has been formatted into
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Figure 2.2. DTN Top Level Flow Chart

bundles via bundle layer library calls (bundle protocol send and receive func-

tions), they enter the bundle forwarding queue. The bundle forwarder will ex-

amine the bundle header destination, custody transfer requests and time-to-live

to determine a suitable path to send the data to its destination. The bundle for-

warder/router will consult a routing table with information regarding which of

its outgoing queues corresponds to a suitable neighboring node.



Background 16

Depending on the transport layer that corresponds to the selected outgoing

queue, a convergence layer adapter must be selected to encapsulate the bundle

into the appropriate protocol data unit. In the case of LTP, a session buffer will be

used to store the LTP segments while waiting for acknowledgments from the des-

tination node regarding the reception of reliably sent data. Similarly, when data

arrives at the receiver, segments enter the LTP session buffer and the appropri-

ate convergence layer adapter interacts with the bundle layer. The new bundles

are either sent to a forwarding queue if they are destined for another node and

sent to a delivery queue if they are addressed to the local node. They will then be

reassembled into application data units and received by the appropriate appli-

cation at the final destination node.

2.2.2 Bundle Protocol

The format of each bundle consists of at least two blocks, a primary block and

a payload block. The first block in a sequence is the primary block which con-

tains information about the bundle source, destination, creation time and other

processing information. The payload block contains the actual data that is be-

ing sent in the bundle. Figures 2.3 and 2.4 show examples of the bundle primary

and payload blocks. Bundle protocol makes use of Self-Delimiting Numeric Val-

ues (SDNVs) for much of its processing information. SDNVs consist of a variable

number octets. The last octet has its most significant bit set to zero. The most

significant bit of all other octets is set to one. The value encoded in the SDNV is

the unsigned binary number obtained by concatenating the seven least signifi-

cant bits of each octet [6]. Each field other than the version can be of variable

length since they are using the SDNV format.
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Figure 2.3. Bundle Protocol Primary Block[6]

Figure 2.4. Bundle Protocol Payload Block[6]

The steps for bundle transmission outlined in the bundle protocol specifica-

tion [6] are shown in Figure 2.5. A brief summary of the procedure is as follows:

• The forwarder examines the bundle header to see if custody transfer is

requested. This means that the local bundle agent must agree to accept-

ing custody of the bundle

• Transmission of the bundle begins by creating an outbound bundle with

retention constraint “dispatch pending” and the current custodian end-

point is set to none.
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Figure 2.5. Bundle Protocol Transmission Procedure[6]

• If the bundle is destined for an endpoint to which the node is a mem-

ber, the bundle is delivered locally. Otherwise, the bundle forwarding

procedure is followed.

• To begin bundle forwarding, the “forward pending” retention constraint

is added and the “dispatch pending” constraint is removed. A “retention



Background 19

constraint” is term used in the protocol for essentially flags added to the

bundle’s state designating a reason for which the bundle must continue

to be stored and must not be deleted until all retention constraints have

been removed.

• It must be determine if forwarding contraindications exist. If the bundle

forwarding agent cannot find any endpoint to send the bundle to which

moves the bundle towards its destination, forwarding is not possible. In

addition, if an endpoint is found to forward the bundle to, an appropri-

ate convergence layer adapter must exist that will allow the bundle to

be sent to the selected endpoint. If either of these conditions exist, the

forwarding contraindicated procedure is followed.

• If forwarding was contraindicated, the bundle protocol agent must de-

termine if forwarding has failed, depending on the reason that forward-

ing was contraindicated. If it has been determined that forwarding is

not possible, the forwarding failed procedure is followed. Otherwise, the

bundle agent will attempt to forward the bundle again at a later time.

• If forwarding has failed and custody transfer was requested, a “failed”

custody signal is sent to the bundle’s current custodian, with a reason

code corresponding to the forwarding failure reason. If local node is a

member of the bundle’s destination endpoint, the “forward pending” re-

tention constraint must be removed. The bundle is deleted.

• If custody transfer was requested, the custody transfer procedure is fol-

lowed.

• The bundle is sent to each convergence layer adapter for each endpoint

selected.
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• When each convergence layer adapter has completed, a bundle forward-

ing report is sent to the report-to endpoint id requested in the bundle

header and the “forward pending” retention constraint is removed.

Figure 2.6 shows the steps for the bundle reception procedure as outlined in

the bundle protocol specification [6]. The steps are summarized as follows:

• The “dispatch pending” retention constraint is added to the bundle.

• If “request reporting of bundle reception” is specified, a bundle recep-

tion status report is sent to the bundle’s report-to endpoint id.

• If there are any blocks that are intelligible and cannot be processed, a

“block unintelligible” status report is sent if required. The bundle is

deleted if the block processing flags indicate to do so.

• If bundle custody transfer was requested, and if it is found that this bun-

dle has the same source, timestamp, fragment offset and payload length

as an existing bundle, this bundle is redundant. In this case custody

transfer redundancy must be handled.

• If the bundle’s destination is the local node, the bundle delivery proce-

dure is followed. Otherwise the bundle forwarding procedure is followed

as discussed in the bundle transmission procedure.

• When the bundle has reached its destination endpoint if the bundle is a

fragment, the application data unit reassembly procedure is followed. If

this results in the completion of an application data unit, the bundle can

be delivered. Otherwise, the “reassembly pending” retention constraint

is added to the bundle and it must wait for the remaining fragments.
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• If the registration corresponding to the destination endpoint id is in the

active state, the bundle is delivered. If the registration is in the passive

state, then delivery failure results.

• If “request reporting of bundle delivery” was indicated, then a bundle

delivery report is generated and sent to the bundles report-to endpoint.

If custody transfer was indicated, then a “Succeeded” custody signal is

sent to the bundle’s current custodian.
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Figure 2.6. Bundle Protocol Reception Procedure[6]

2.2.3 DTN IP Neighbor Discovery

In addition to Bundle Protocol, the DTN protocols also define an opportunis-

tic discovery mechanism, IP Neighbor Discovery (IPND)[8]. IPND allows nodes
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to announce themselves to previously unknown nodes and exchange connec-

tivity information. In this way, it is not necessary to know node addressing and

schedules in advance. If two nodes come in contact with one another, they will

exchange information using discovery beacons in the form of UDP datagrams.

DTN IP Neighbor Discovery (IPND) is an Internet Draft protocol outlining the

mechanism for previously unknown DTN nodes to exchange connectivity infor-

mation to allow them to begin to communicate with one another [8]. It utilizes

discovery beacons to allow nodes to advertise their existence to one another. The

beacons are small UDP datagrams, so that any node using an IP-based conver-

gence layer may participate in the discovery process. This is done as part of the

Bundle Protocol overlay concept, so that heterogeneous networks may still ex-

change data using the commonality of the bundle layer and IP underlay.

IPND beacons are sent periodically to neighboring nodes. They may be either

unicast or multicast messages. There is no specification for the time interval be-

tween periods, as this is quite application specific and may vary greatly depend-

ing on the type of nodes participating in the neighborhood discovery. A beacon

period field indicating the frequency at which beacons will be sent is considered

optional within the specification. Data sent between discovered nodes may sub-

stitute as a beacon, and the reception of data from a discovered node suppresses

the output of discovery beacons between the two neighbors [8]. Figure 2.7 shows

the beacon format. The discovery beacon consists of the following fields:

• Version: An 8-bit field representing the IPND version

• Flags: 8 bits which serve as processing flags. The flags indicate if various

optional fields are present. A given bit is set if the related field is present
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within the beacon. The flags consist of the following, (listed in order of

least-signficant-bit to most significant):

– Bit 0: Source Endpoint ID (EID) present

– Bit 1: Service block present

– Bit 2: Neighborhood Bloom Filter present

– Bit 3: Beacon Period present

• Beacon Sequence Number: 16-bit field that is incremented each time a

beacon is transmitted to a given IP address.

• EID Length: The byte length of the canonical EID contained in the bea-

con.

• Canonical EID: The canonical EID of the node advertised by the beacon.

• Service Block: An optional listing containing all or some of the follow-

ing information: convergence layers available at the advertised node, a

Neighborhood Bloom Filter, routing information and other implemen-

tation specific fields.

• Beacon Period: Optional field containing the period at which the adver-

tised node will send discovery beacons.

Figure 2.7. Discovery Beacon Format[8]
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Due to the nature of DTNs and MANETs (Mobile Ad-Hoc Networks), it is not

assumed the links are bidirectional. This is because there very often is a dif-

ference in antennae characteristics, transmit power and other factors between

wireless nodes. For this reason, it is not assumed that just from receiving a bea-

con that data may be sent to the neighboring node. IPND uses a Neighborhood

Bloom Filter (NBF) to determine the set of neighboring nodes relative to the

transmitting node. If the receiving node is contained in the NBF, then it is as-

sumed safe to transmit data to that node as the link is considered bi-directional

[8].

Determination of link connectivity is left to implementation specific details

and not outlined within the IPND specification. Upon receiving a beacon, a node

may determine that the neighbor is available to receive data. Continued receipt

of beacons within the beacon period specified or data is used to determine the

link state. The actual process of establishing a connection between nodes is de-

pendent on the lower level protocols used. The convergence layer information

listed in the beacon service block will provide the information required to make

the connection, such as addresses and port numbers on the listening node.

It has been noted that there are several security concerns regarding IPND,

as well as DTNs and neighborhood discovery protocols in general [9], [10], [11].

Since nodes participating in discovery advertise their connectivity information,

it is apparent that applications with specific security concerns should not use

IPND without implementing a security strategy.
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2.3 Machine Learning

Machine learning is a somewhat broad term that can encompass techniques

from artificial intelligence, statistics, control theory, and data mining among oth-

ers. Machine learning algorithms are often categorized as supervised or unsu-

pervised. In supervised learning, a large set of data is used to train the learner.

The learner develops rules from the dataset in order to classify new instances

of the data based on the training set. Data in the training set is labeled and the

learner makes predictions which may be correct or incorrect. In unsupervised

learning, the goal is to draw inferences about the input data and learn more

about associations within the data set by using techniques based on mathemat-

ics and statistics. Unsupervised learning doesn’t develop a set of rules or deci-

sion criteria, instead it is used to learn about the characteristics of a dataset. Yet

another subset of machine learning is reinforcement learning. In this case, the

learner makes decisions initially in a trial-and-error method. Decisions which

result in a positive outcome earn the learner a reward. In this way, the learner

determines what are good and bad decisions in a given instance. Each of these

methods has its own particular strengths and weakness and can be applied to a

network routing problem in different ways.

2.3.1 Reinforcement Learning

Reinforcement learning is a subset of machine learning algorithms in which

the learner discovers how to best map situations to a desired outcome by max-

imizing a numerical reward. The learner is not told what to do, it must learn

through a trial and error process to act in a way that maximizes its reward. The
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reward may not be immediate, several actions may be completed before the fi-

nal reward is received and previous actions may influence future rewards. Rein-

forcement learning differs from supervised learning in that there are no exam-

ples provided by an external supervisor. In reinforcement learning, the learner

must interact with its environment and learn from its own experience [12].

Figure 2.8 shows an example scenario of a reinforcement learning problem.

A robot must learn to navigate through a maze environment. The robot has a

current state it determines from the environment and will take a specific action.

It will receive a reward based on the action and the next state. If the robot makes a

movement that leads it to an open path in the next state, it increases a numerical

reward (+10 for example). If the movement leads to being blocked by a wall, it

will not receive a reward.

Figure 2.8. Reinforcement Learning Example
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Reinforcement learning systems typically consists of four elements: a policy,

a reward function, a value function, and in some cases, a model of the environ-

ment [13]. A policy describes the way in which the learner behaves in a given

situation. The policy maps the perceived state of the environment to the action

the learner will take in that situation. The reward function is based on the goal of

the learning problem. Each state is given a reward value that informs the learner

about the desirability of that state. The value function defines the total amount of

reward the learner can expect to accumulate over time, starting from that state.

The reward function specifies the immediate reward, whereas the value function

looks ahead to the future rewards the learner will earn based on its previous state.

The final element, the model of the environment, can be used by the learner to

help to predict the expected rewards as possible next states based on the current

state. The learner uses the model to plan its next action [13].

Q-Learning is a reinforcement learning strategy that is classified as temporal-

difference learning (TD). Temporal-difference learning methods can learn di-

rectly from experience without a model of the system by which to make predic-

tions. This type of learner bootstraps, meaning it updates its estimates based

on other learned estimates without waiting for the final outcome or receiving its

final reward [13].

Q-Learning itself is a fairly simple approach. The Q-Learning algorithm is

defined by st , a non-terminal state visited at time t, the learned action-value

function Q, and an action a. Q-Learning chooses the next action that will be

taken by selecting the one which will maximize its current reward and the future

rewards it expects to learn. The current value in Q-table is updated after the

action is taken and the algorithm proceeds recursively to make the next decision
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and update to the Q-Table. Pseudo code for the basic Q–Learning algorithm is

given in Algorithm 1. In this listing, r is the reward at time t, and γ is the discount

rate parameter between 0 and 1[12].

Algorithm 1. Q-Learning Pseudocode [12]

I n i t i a l i z e Q( s , a ) a r b i t r a r i l y
ForEach ( episode ) :

I n i t i a l i z e s
ForEach ( step of each episode ) :

Choose a from s using pol icy derived from Q
Take action a , r e c e i v e reward r
Observe new s t a t e st+1
Q(s, a) ← r +γmaxat+1 Q(st+1, at+1)
s ← st+1

Until s i s terminal

The Q-learning algorithm utilizes a table comprised of entries representing

the reward associated with every possible state-action pair. Initially, all entries

are initialized to zero or a random value. The learning agent must estimate the

reward associated with each state-action pair. From the Q-table the agent will se-

lect the action that maximizes its reward at the current time. After it has selected

an action, the learner will update its Q-table with the reward it received. This is

intended to improve the estimates of the Q-table and allow the learner to con-

stantly tune its policy to receive better rewards. After many iterations, the agent

will converge to an optimal policy, though in some cases this may take several

thousands of iterations [14].

2.3.2 Classification

Classification is a method of categorizing objects as having a set of attributes

and an overall label which describe it. Labels typically consist of a finite set of

discrete values. Attributes are a vector of several values which also are typically
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discrete, but may also be continuous values that are divided into discrete bins.

Previous pairs of attributes and labels can be used to make predictions about

new instances of objects. In the simplest classification methods, the frequency

of occurrence of a certain set of attributes appears with a given label can be used

to determine the most likely label for a new instance with similar attributes.

The performance of a classification algorithm can be measured in several

ways. Typically, a data set that is being used to develop a classification model

will be divided into several training and test sets. The training set(s) will be used

to allow the algorithm to learn which labels coincide with a given set of attribute

values. This will allow the algorithm to construct a model of the data set. Once

the algorithm has been trained, it will be executed on the test data set, which the

trained model currently has no knowledge of. The algorithm will only be given

access to the attribute values and must predict what label to assign to a new data

point. Once this is completed the number of correct classifications can be deter-

mined by comparing the algorithm output to the set of known labels that were

withheld during the testing phase. In addition to simply counting correct classifi-

cations versus incorrect classifications, the performance can be evaluated using

precision and recall. Precision and recall are calculated by counting the total true

positives tp , true negatives tn , false negatives fn and false positives fp for exam-

ples classified as label l. The F1 score is as a weighted average of the precision

and recall. Each of these metrics are discussed in more detail in Chapter 7.

There are several well known and rather simple classification techniques used

in this research. Decision trees, K-Nearest Neighbors, Naive Bayes were used to

classify neighboring nodes in terms of route suitability. This section will briefly

discuss the basic concepts of each.



Background 31

Decision Trees

Decision trees construct a graph like tree structure based on a series of yes

or no decision criteria as learned by associating frequency of occurrences of a

specific label value with a specific attribute value. The ID3 decision tree algo-

rithm uses information gain, a function based on the entropy of training data

set to determine which attributes should be used as the root decision of the tree,

following down through the lower branches of the tree [12]. Information gain is

used to determine the relevance of each variable to predicting the category label,

it is the amount of information gained about the label from observing a specific

attribute. The attribute which has the greatest information gain is selected as the

root node, and is the evaluated recursively to generate the rest of the tree struc-

ture. The entropy of a data set S is defined as:

Entr opy(S) ≡−p⊕ log2 p⊕−pª log2 pª (2.1)

where p⊕ and pª are the proportion of positive and negative examples in S. From

the entropy, information gain can be obtained in Eq. 2.2:

Gai n(S, A) ≡ Entr opy(S)− ∑
v∈V alues(A)

|Sv |
|S| Entr opy(Sv ) (2.2)

Figure 2.9 shows an example of the decision tree structure that could be used

to classify types of animals. Each node in the tree examines the attributes of

an animal and the value of the attributes contribute to the determination of a

binary decision on whether or not it is a specific type of animal (in this case, a

small carnivorous animal like a cat).
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Figure 2.9. Decision Tree Illustration

Naïve Bayes

The concept of Bayesian machine learning is based on the conditional prob-

ability that a certain outcome has some likelihood given that it possesses a par-

ticular set of attributes. This learning method is used to classify a new instance

or occurrence within a set of possible values based on previous training data.

The learner will determine the probability that a certain set of attributes most

likely correspond to a specific classification within the training data. When a

new occurrence is presented to the learner, the training probabilities are used to

determine the value v of the new instance from a finite set of values V based on

its attribute vector < a1, a2, ..., an > [12]. There are many benefits to the Naïve

Bayes classifier in that it is a very simple method and performance is generally

not affected by missing attributes. It has been used for many classification prob-

lems and is particularly well known for categorizing text based on words within

the text. In this example, the learner will predict what the text is about based on

the frequency that certain words (the attributes) appear within the text [12].
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Bayesian learning is based on calculating the most probable outcome, often

called the maximum a posteriori or MAP hypothesis. The Naïve Bayes classifier

attempts to find the most probable value for a current instance VM AP given its

known attributes < a1, a2, ..., an > [12].

VM AP = max
v j∈V

P (v j | a1, a2, ..., an) (2.3)

Bayes rule can be used to write Eq. 2.3 as:

VM AP = max
v j∈V

P (a1, a2, ..., an | v j )P (v j )

P (a1, a2, ..., an)
(2.4)

The term P (a1, a2, ..., an) is dropped since it is a constant independent of v j .

This simplifies to:

VM AP = P (a1, a2, ..., an | v j )P (v j ) (2.5)

Equation 2.5 calculates the MAP hypothesis as the probabilities of observing

the value v j in conjunction with the attributes < a1, a2, ..., an >. This is easily

found by taking the product of the conditional probabilities of observing v j given

each individual attribute. The Naïve Bayes classifier becomes [12]:

VN B = max
v j∈V

P (v j )
∏

i
P (ai | v j ) (2.6)

K-Nearest Neighbors

K-Nearest Neighbors is a classification method which classifies objects based

on a distance measure relative to other instances in the data set. The attribute

vector < a1, a2, ..., an) > can be thought of as x, y coordinates on a plot and each

point will have its associated label. The distance will be calculated from a new

point < b1,b2, ...,bn > to all the other neighboring points .The actual attribute
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vector can consist of more than two dimensions and this will not affect the dis-

tance formula, simply more attributes are added. Euclidean distance d(a,b) ≡√
n∑

i=1
(ai −bi )2 can be used as well as other distance metrics. The number of

neighbors selected for the distance calculation is the number K, the K nearest

neighbors to the point are chosen for the classification. The new point will be

classified as the label that most frequently occurs among the K nearest neigh-

bors. Figure 2.10 shows a graphical representation of classifying a new data point

indicated by either a white or black x, representing a binary label such as true/-

false or positive/negative based on its 5 closest neighboring points.

Figure 2.10. K-Nearest Neighbors Illustration

2.3.3 Multi-label Learning and Metrics

The classification methods described in the previous section discusses meth-

ods which produce a single label , either binary or selected from a finite set of

possible labels, for a single instance of an attribute vector. Multi-label classifica-

tion allows for there to be multiple categories of labels assigned to one instance
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of an object. An example of this could be in the classification of books. A multi-

label classification of a book could be non-fiction, paperback, and biography.

There are several approaches to multi-label classification that were used in this

dissertation.

The simplest form of multi-label classification is the Binary Relevance (BR)

method. In this case the multi-label classification is decomposed into several bi-

nary classifications, one for each label category. This can be considered a prob-

lem transformation approach. A single classification problem with multiple out-

puts is transformed into multiple classification problems. This method has been

critiqued for the fact that all labels are classified independently, without taking

into account interdependence between outputs.

A large amount of work in multi-label classification has been focused on de-

termining the relationships between labels to improve classification accuracy.

Classifier Chains [15] (CC) also transform the multi-label problem into a set of

individual binary classifications, however the attribute space for each model is

extended with the binary label relevances of all previous classifiers, forming a

chain. This takes associations between previously classified labels into account

when performing classification of the next label. For this reason, selection of

the order in which labels are classified may influence the outcome of how the

classifier performs. A poor choice of order can negatively impact performance.

In addition, one drawback of the CC approach is that errors can be propagated

through the chain, for example by the early choice of a poor order further im-

pacting the performance down the rest of the chain. The Ensemble of Classifier

Chains (ECC) attempts to correct this issue by using multiple chains of randomly
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ordered classifiers, so that the impact of order selection will be decreased overall

[15].

To validate the multi-label classification performance, there are four well known

multi-label prediction metrics used. Hamming loss calculates the fraction of la-

bels that are incorrectly classified. This is in contrast to zero-one loss which con-

siders the entire prediction incorrect if any label in the prediction is incorrect.

Hamming loss is a more lenient metric which scores based on individual labels.

In both Hamming loss and zero-one loss, values tending toward zero indicate

good performance whereas values tending toward one indicate a higher percent-

age of misclassification. The Jaccard similarity score is the size of the intersection

of two label sets ( the predictions and true labels) divided by the size of the union

of the two label sets. The F1 score is as a weighted average of the precision and

recall. Micro-average F1 score calculates the score globally by counting the total

true positives, false negatives and false positives. These metrics are discussed in

detail in Chapter 7.

2.3.4 Clustering

Clustering is an unsupervised learning method which can be used to deter-

mine how similar two or more attribute vectors are two each other. The method

used in this dissertation was the K-Means Clustering algorithm [16], which pro-

duces disjoint clusters. The attributes within the data set can be thought of as

points on an x, y plot. Initially, K cluster centers are randomly selected among

the possible x, y coordinates. Each point ion the data set is assigned to the cluster

whose center is closest. Next, the K cluster centers are recalculated as the mean

of the coordinates of each cluster. All of the points are reassigned based on the
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new cluster centers, and the process repeats until the cluster centers no longer

change. An understanding of the data set can be developed from information

about what points have been clustered together.

Equation (2.7) shows how the clusters are calculated [17]. The goal is to min-

imize J , the sum of squares of the distances of each point to the centroid of its

assigned cluster µk . Here K is the number of clusters, N is the number of data

points and xn is each data point to be clustered. The variable rnk is an binary

indicator of whether the point xn should be assigned to cluster k as shown in

Equation (2.8).

J =
N∑

n=1

K∑
k=1

rnk
∥∥xn −µk

∥∥2 (2.7)

rnk =


1 k = ar g mi n j

∥∥xn −µ j
∥∥2

0 other wi se.

(2.8)

An iterative procedure is used to find values of the cluster centers µk and rnk

to minimize J .
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3 Related Work

This section covers several routing algorithms that were closely related to

and/or used in this dissertation. Algorithms such as flooding, epidemic and

PRoPHET are well known in the DTN community and often used as points of ref-

erence or the basis for new routing approaches. In addition, several lesser known

works that are closely related to the topic of machine learning in regard to DTNs

are also covered.

3.1 DTN Routing Algorithms

Balasubramanian et al. classify most DTN routing protocols as either based

on packet forwarding or packet replication [18]. Replication based routing, or

epidemic routing protocols, create multiple copies of a packet to send to neigh-

boring nodes with the intent that the packet will traverse multiple paths and have

a greater likelihood to reach its final destination. Forwarding based routing pro-

tocols create a single instance of a packet and employ various methods to deter-

mine a suitable path, often requiring global knowledge of the network.
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In the case of a space network, it can be seen that both of these approaches

have their own benefits and drawbacks. As noted in [18], naïve flooding can con-

sume excessive resources on any node by generating multiple copies of unneces-

sary bundles. In the case of satellite networks, on-board avionics are often quite

processor and memory limited, making this unnecessary processing particularly

troublesome. Benefits of replication include redundancy to prevent lost pack-

ets, and potentially simplified algorithms which require limited knowledge of the

global network. The need for feedback regarding the network state in particular

can be impractical for deep space communication, where information will likely

be stale by the time it reaches its destination. In contrast, while forwarding-based

protocols require fewer resources, they often have lower message delivery rates

[19]. Furthermore, the use of an oracle with future knowledge of the network, or

a knowledge base of the existing network may be difficult to implement in many

real-life scenarios [18].

Table 3.1 shows a comparison of the routing algorithms studied in this work.

The column "Replication" indicates if the algorithm uses message replication

or it forwards a single copy. The column "Topology" lists the intended type of

network topology, meaning a fairly randomly changing topology, a more sta-

ble graph-like topology and changing topologies particularly focused on VANETs

(Vehicular Ad hoc Networks). The final column "Methodology" is a brief sum-

mary of the main routing mechanism. The five algorithms listed first (epidemic,

DTLSR, PRoPHET, RAPID and CGR) are very well known DTN routing algorithms.

The next two listed (Bayesian and Epidemic+C and Saw+C) are lesser known but
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included due to the similarity and relevance to this work. The final two algo-

rithms (Classification and Clustering) are the algorithms developed in this dis-

sertation.

Algorithm Replication Topology Methodology

Epidemic Replication Frequently Changing Replicate unknown bundles
DTLSR Forwarding Relatively Stable Link state announcements
PRoPHET Replication Changing Probabilistic history of encounters
RAPID Replication VANET Maximize utility metric
CGR Forwarding Relatively Stable Forward based on contact schedule
Bayesian [20] Replication VANET Bayesian classification
Epidemic+C/SaW+C [21] Replication VANET Decision tree
Classification Replication Frequently Changing Ensemble of classifiers
Clustering Replication Frequently Changing Cluster analysis by node location

Table 3.1. Summary of DTN Routing Algorithms

3.1.1 Flooding/Epidemic Routing

Flooding or epidemic routing is the simplest type of routing, aside from stat-

ically configured routes. Epidemic routing schemes assume minimal knowledge

of the network topology. Messages are replicated each time the transmitting

node comes in contact with a new neighboring node [22]. This approach has

a high delivery probability and low delay, however it consumes a great deal of

resources in terms of message storage and utilizing transmission opportunities

for messages that already exist in the network. Nodes will need to determine

when copies should be deleted and how to deal with receiving duplicate mes-

sages. Furthermore, this approach will not scale well with a large amount of data

or a large number of nodes. Solving these issues has given rise to an entire class

of epidemic-based routing algorithms. Spray-and-Wait [23] is one such approach

in which the transmitting node begins with an initial "spray" phase where copies

of each message are sent to each available relay node. The transmitting node
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then waits to see if one of the relay nodes was the message destination, if not the

relay nodes will wait to see if they can forward the message on to its destination.

3.1.2 DTLSR

Delay Tolerant Link State Routing (DTLSR) is based on conventional link state

routing [24]. Nodes attempt to learn the network topology by sending flooding

messages containing connectivity information for the current state of the net-

work. The network topology is stored by each node in the form of a network

graph. Routes are computed using Dijkstra’s shortest path algorithm. Link State

Announcement messages may contain the source node’s endpoint identifier, se-

quence number and link state information such as the next hop destination and

queue status. DTLSR differs from standard link-state routing (LSR) in that cur-

rently unavailable nodes are still considered in the best path computation. For

nodes that are available, hop count can be used as a simple metric to determine

the best path. This does not allow the algorithm to take advantage of better paths

that may not currently be available but will be in the future when the message

arrives at a remote node. To account for this, DTLSR attempts to minimize the

estimated expected delay. For nodes that are available, the delay is estimated

based on the total size of all messages in the queue qlen (bits), number of mes-

sages in the link queue qnum , the per-message latency (s) and bandwidth (bps).

The estimated delay is given by Eq. 3.1 [25]:

del ayavai l able = qnum × l atenc y + qlen

band wi d th
(3.1)

The estimated delay associated with unavailable nodes is inferred from the

duration of the current outage. This is based on the assumption that if a node
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has been unavailable for a long amount of time, it is likely to continue to be un-

available. The duration is limited to 24 hours [24].

3.1.3 PRoPHET

The PRoPHET (Probabilistic Routing Protocol using History of Encounters

and Transitivity) routing protocol attempts to reduce the number of replicated

bundles in the network by calculating the probability of successful message de-

livery to a given destination. PRoPHET is based on the human mobility model

and the observation that a large number of contact opportunities between two

nodes follow a non-random pattern [26]. Messages are replicated and sent to

neighboring nodes that have a high probability of delivering it to its destination.

PRoPHET determines this likelihood based on a delivery predictability metric.

Each node maintains a vector of delivery predictabilities for all nodes encoun-

tered and exchanges this information with other nodes during an initial contact

phase. The delivery predictability is calculated whenever two nodes are in con-

tact. Nodes which are frequently in contact have a higher delivery predictability

and as such the algorithm will choose that pair of nodes as the preferred path.

The delivery predictability P (A,B) for node A to destination B is calculated as

follows [27]:

P (A,B) = P (A,B)ol d + (1−P (A,B)ol d )×Penc ≤ 1 (3.2)

The probability of direct encounter Penc is a configurable parameter meant to

increase the delivery probability of nodes that are frequently encountered. De-

livery predictabilities for other nodes encountered by B are updated for node A

using the transitive property. The transitive property is based on the concept

that if node A frequently encounters B and node B frequently encounters node
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C , then node A can be used to forward messages to C via node B [27]. In Eq.

3.3, the value of β is a scaling factor for the transitivity of predictability and is a

configurable parameter;

P (A,C ) = P (A,C )ol d + (1−P (A,C )ol d )×P (A,B)×P (B ,C )×β (3.3)

To reflect changes in the network, the delivery predictability for each node i de-

cays over time according to Eq. 3.4:

P (A, i ) = P (A, i )ol d ×γT (3.4)

In Eq. 3.4, T represents the length of time since the probability was last aged

and γ is constant. The PRoPHET Internet Draft recommends values of 0.75 for

Penc , 0.25 for β, and 0.99 for γ as a starting point, though they may be tuned for

a particular application [26].

3.1.4 RAPID

The Resource Allocation Protocol for Intentional DTN (RAPID) was devel-

oped at the University of Massachusetts Amherst and was deployed as part of the

DieselNet project. It attempts to conserve resources such as bandwidth, storage

space, and power by only replicating bundles that optimize a specified routing

metric [28]. The RAPID algorithm can be configured to optimize average delay,

worst-case delay, or number of bundles delivered before they expire. This is done

using a per-packet utility function specific to the desired routing metric. When

two nodes encounter one another they exchange metadata about what bundles

they have buffered, as well as information from past meetings. Bundles that can

be directly delivered to their destination are transferred in order of creation time.
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Bundles that are destined for another node in the network are replicated if they

do not already exist in the neighbor’s buffer. The utility function is calculated for

each bundle and they are then selected for transfer in decreasing order of their

marginal utility.

The functionality of RAPID is broken into three main elements. A selection al-

gorithm determines what packets to replicate based on their contribution to the

optimization of the desired metric. An inference algorithm estimates the bun-

dle’s contribution to the selected routing metric. A control channel is used to

exchange information about bundles in the network with other nodes [28]. Table

3.2 shows the routing metrics used by RAPID. Here Ui is the packet’s utility, or

the packet’s expected contribution to a given routing metric, D(i ) is the packet’s

expected delay, and S is the set of all packets in a given node’s buffer [28].

RAPID estimates the delay in a three-step process. Each node maintains a

queue of bundles for each destination in decreasing order of the time they were

created. The delivery delay distribution is computed for each bundle as if it is to

be delivered directly, based on the number of bytes ahead of it in the queue and

the size in bytes of the expected transfer opportunity. This is done for each node

possessing a copy of the bundle. The minimum is then found among all delay

distributions for each replicated bundle [28].

Metric Per-Packet Utility Function Explanation

Minimize Average Delay Ui =−D(i ) Replicate packets which re-
duce the delay most

Minimize Expired Bundles Ui = {
P (a(i ) < L(i )−T (i )), L(i ) > (T (i )

0 other wi se
L(i) is the bundle time-to-
live and T(i) is the time since
creation. A bundle that has
expired has a utility of 0.

Minimize Maximum Delay Ui = {
−D(i ), D(i ) ≥ D( j ) ∀ j ∈ S

0 other wi se
Replicate the packet which is
causing the maximum delay

Table 3.2. RAPID Routing Metrics
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3.1.5 Contact Graph Routing

Contact Graph Routing [29] (CGR) is a popular DTN routing algorithm, par-

ticularly for space networks which have highly periodic contacts between nodes.

It is typical in such networks that communication will be scheduled (manually)

days, weeks or months in advance. In addition to human scheduling constraints

such as operator availability and sharing resources among multiple users, orbital

constraints on the communication assets make it relatively straight forward to

know when and for how long two nodes will be physically able to contact one an-

other. Contact Graph Routing uses this upfront knowledge to determine suitable

routes based on contact times. To do this, CGR uses a contact plan as input to the

CGR routing algorithm. The information in the contact plan is entered by users

either through update commands in a DTN administration interface program

or as configuration files. The contact plan is read at system start up or initiated

using an administrative command, requiring privileged access to the node. Al-

ternatively, the CPUP (Contact Plan Update Protocol) [30] has been proposed to

allow updates to the contact plan that can be triggered by events such as queue

capacity limits.

CGR begins with basic network information which is obtained from user sup-

plied configuration files. These files define a set of contact messages and a set of

range messages. A contact message defines a transmission interval, containing

the start and stop time that a given contact opportunity pertains to, the trans-

mitting node number, the receiving node number and the planned data rate be-

tween the nodes in bytes per second. A range message defines the distance be-

tween two nodes in light seconds, consisting of the start and stop time that a
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given range pertains to, the transmitting node, the receiving node and the an-

ticipated distance between the two nodes in light seconds. The following initial

conditions exist:

• Destination variable D is set to the bundle’s final destination

• Deadline variable X is set to the bundle’s expiration time

• The list of proximate (neighboring) nodes is empty

• Forfeit time is set to infinity

• Best-case delivery time is set to zero

• The list of excluded nodes is populated with the node from which the

bundle was received and all excluded neighbors for the destination node.

When a new bundle arrives to be forwarded to another node, the CGR algo-

rithm begins with the contact review procedure as shown in Algorithm 2. In the

pseudo code listing, "xmit" objects contain information about contact start time,

stop time, transmitting node number, and data transmission rate for all contact

messages with receiving node D. The Estimated Capacity Consumption (ECC) is

the size of the bundle plus the overhead associated with each convergence layer

frame that the bundle will be broken into for transmission. A flow chart of the

CGR contact review procedure and forwarding decision as outlined in [29] are

shown in Figures 3.1 and 3.2.
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Algorithm 2. Contact Graph Routing Pseudocode [29]

Append D to the l i s t of excluded nodes

For each xmit m in node D’ s xmit l i s t :

I f m’ s s t a r t time i s a f t e r the deadline X :

Skip xmit m

Else :

I f D i s a neighbor of the l o c a l node S :

Compute ECC of bundle from l o c a l node to D

I f m’ s residual capacity < ECC:

Skip xmit m

Else :

I f D i s already in the l i s t of proximate nodes :

Skip xmit m

Else :

I s m’ s stop time < f o r f e i t time :

Set f o r f e i t time to m’ s stop time

Add D to l i s t of proximate nodes

Compute f o r f e i t , best case d e l i v e r y times to D

Remove D from excluded node

r e v e r t f o r f e i t and best case times

Else :

I f node S i s already in the l i s t of excluded nodes :

Skip xmit m

Else :

I f m’ s stop time < f o r f e i t time

Set f o r f e i t time to m’ s stop time

I f m’ s s t a r t time > best−case d e l i v e r y time

Set best−case d e l i v e r y to m’ s s t a r t time

Compute estimated forwarding latency

Set D=S and X =min(T , L )

Invoke Contact Review Procedure r e c u r s i v e l y

Remove D from l i s t of excluded nodes

r e v e r t f o r f e i t and best case times
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Figure 3.1. CGR Contact Review Procedure [29]

Once the list of proximate nodes has been populated and the Contact Re-

view Procedure has completed, CGR then makes a forwarding decision based on

which proximate node leads to a path to the destination with the smallest best
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Figure 3.2. Forwarding Decision [29]

case time. If the bundle is a critical bundle, it is inserted into the outbound queue

of every proximate node. If it is a non-critical bundle, it is inserted into only the

best proximate nodes’ outbound queue.

For simplicity, the original algorithm is given from [29] and does not include

the several updates that have been made to the algorithm such as ETO-CGR (Ear-

liest Transmission Opportunity CGR) [31] and overbooking management [31],

though it is recognized that these are very relevant improvements.



Related Work 50

3.2 Machine Learning Based DTN Routing Algorithms

There are several works which apply machine learning techniques to routing

in DTNs and MANETs [20, 21, 32, 33]. Decision tree-based classifiers are applied

to make improved routing decisions for epidemic routing by classifying nodes

using an attribute vector and a derived classification label[21]. The attributes

considered are the node ID, a region code where the message was received, the

message reception time, the lobby index (a measure of neighborhood density),

the time interval τ between message reception and successful transmission, and

the distance δ between where the message was received and transmitted. The

region code is determined by dividing the grid of possible node locations into

1 km ×1 km squares. The class label is calculated as r = δ
τ . The value of r is then

made into discrete class labels C = {C1, ...,Cm} by separating each instance into

approximately equal bins based on a threshold value.

The method explored in [20] focuses on people-based DTNs (Pocket Switch-

ing Networks) and therefore makes use of the relatively predictable patterns of

human mobility. Nodes are classified based on an affinity index, with attributes

consisting of the current time, location, contact probability and contact dura-

tion. Nodes individually store network data that is derived by tracing acknowl-

edgments, neighboring nodes can exchange their calculated affinity indices with

each other. Both methods from [21]and [20] use stored network traffic history as

samples to train their classifiers.

Bayesian classifiers have also been used to tune the performance of broad-

casting packets in MANETs [33]. An objective function is developed to assess if
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the mobility of a given node is contributing to the delivery of broadcast pack-

ets. A Naïve Bayes model of successful packet retransmission is constructed with

one- and two-hop neighbors, speed, number of duplicates, link duration and

traffic as variables. A new broadcast packet is classified by choosing the hM AP

(maximum a posteriori) hypothesis to predict if the transmission is successful or

not.

These works, while related to the work developed in this dissertation differ

from it in several ways. Perhaps most notably none of them attempt to address

the particular challenges of space networking, such as long round trip times, or

the extended time to receive acknowledgments or other feedback due to asym-

metric link rates. In addition, this work developed a multi-label classification ap-

proach which takes into consideration multiple hops in a network path, as well

as a clustering, rather than simple grid based approach to location determina-

tion. In addition, several base classifiers such as K-Nearest Neighbor, Decision

Tree and Naïve Bayes are all tested for performance within the same classifica-

tion framework.
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4 Approach

4.1 Architecture

In this section, a software architecture for machine learning based routing is

developed. There are several designs decisions that must be considered. Learn-

ing may be done by each individual node independently, or system data and

learning decisions may be stored and evaluated in a central location, with in-

structions being disseminated to the individual nodes. There are performance

trade-offs to each approach and the type of learning algorithm selected may be

more suitable to one architecture over the other. Centralized versus distributed

control has been a popular topic for a wide variety of systems, and the same

thought process applies to DTN routing.

4.1.1 Centralized Versus Distributed Learning Architecture

A centralized learning architecture as shown in Figure 4.1, consists of a net-

work of multiple "worker" nodes and a central processing and storage location.

The worker nodes might be satellites, rovers, science instruments or other mo-

bile nodes. They would have a local storage for intermediate data holding and

processing capabilities to perform their specific tasks, execute a local portion of

the routing algorithm and other communication activities. They would be fed
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Figure 4.1. Centralized Learning Architecture

potential data path suggestions, schedules and other decisions from the cen-

tral control system. The central control system would receive network statistics,

node locations and conditions which it would use to update the global routing

information. In this way, the mobile nodes would be free from the burden of hav-

ing to have a large storage area for such statistics, or the need to run potentially

lengthy data analysis or algorithm training phases. The centralized architecture

would work well for supervised learning techniques and unsupervised learning.

It could be suitable for reinforcement based learning if most nodes are frequently

in contact with the central processor and there is not a long propagation delay

between them. This is because reinforcement learning requires feedback from

the previous decision, in order to make improvements for a future decision. If

nodes receive no response for an extended period of time, the algorithm will not

converge on a set of satisfactory policies.

In a distributed learning architecture as shown in Figure 4.2, each node is

treated as an equal peer which has sufficient storage and processing capabilities

to make independent decisions. The full routing algorithm would be executed on
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Figure 4.2. Distributed Learning Architecture

each node, but nodes will likely share information with one another when they

come in contact with a neighbor. They may trade partial or complete network in-

formation from each node’s point of view. The distributed approach works well

for nodes which may encounter other nodes very infrequently. If the network

grows very large, it may be impractical for the node to have a complete topol-

ogy of the network. The distributed approach would not work well for super-

vised learning, since the accuracy of most algorithms improves with larger, more

complete data sets and typically there is a training phase which can be computa-

tionally costly as well as lengthy. Each node would have to complete the training

phase on its own, and copy the necessary data to one another. The distributed

architecture would work well for reinforcement learning, since intuitively each

node acts as an independent learner, which makes a decision and then receives

a reward depending on how successful the produced outcome was.
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4.1.2 Online versus Offline Learning

There are many trade-offs to be analyzed to determine the fundamental de-

cision of whether the learning algorithm should be performed in real-time (on-

line) or if learning should be done as a sort of post processing approach (offline).

Learning done online allows for a more dynamic, flexible approach which may

allow for the algorithm to adapt more rapidly to changes in the network. This

approach would likely require more processor and memory resources on-board

each node, as each node would be performing the computations required by the

algorithm in real-time, and would likely have to have access to some database,

either local or centralized in another location that houses network statistics in-

formation. Online learning could be done in a distributed fashion or centralized,

although worker nodes might require frequent access to the central node.

The offline approach would likely require fewer on-board resources, since

data can be recorded, stored and analyzed in a centralized area to produce a set

of decisions or models which are then disseminated throughout the network.

In addition, for systems in which safety is critical, offline learning may provide

the advantage that computations and models generated by the learner can be

checked for validity before an action is taken using the model. The drawback to

this approach is that as the network changes, this may be reflected more slowly

as a new updated model would need to be generated.

In this work, both centralized and distributed architectures as well as online

and offline learning methods have been implemented. Table 4.1 summarizes

each approach and the algorithm used. The next sections of this chapter discuss

each method in detail.
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Algorithm Learning Architecture On/Offline Use

Q-Routing Reinforcement Distributed Online Dynamically update delay estimate through-
out network

Classification Supervised Centralized Offline Determine reliability of Neighbors based on
global network knowledge

Clustering Unsupervised Centralized Offline Determine regions and Similarities within
Network

Table 4.1. Algorithm Summary

4.2 Q-Routing

Q-routing is an adaptation of Q-learning developed for packet routing [34].

Q-routing uses the estimated end-to-end packet delivery time for the basis of the

Q-table. The table contains a row for each neighbor that a node has. Each col-

umn corresponds to a destination node. The entry for the row-column pairs in

the table is the estimated time required for a packet to be received at the destina-

tion if it was sent from one of the possible neighboring node choices. Each node

in the network starts out with an initial Q-table. There are several approaches

that can be taken for the initial estimate. One method is to initialize all entries to

zero. Similarly, all entries can be initialized to a random value. Finally, a method

can be developed to try to calculate an initial estimate of the end-to-end delays.

The learner will determine what neighboring node to send a packet to based on

which node minimizes the delivery time. Once the packet has been sent to the

chosen neighboring node, the neighbor will reply back with what it believes the

remaining time will be to deliver the packet to its final destination. This response

will be used by the first node to update its Q-table. Each update should incre-

mentally improve the accuracy of the Q-table, since nodes closer to the destina-

tion should have a more accurate idea of the remaining delivery time [34].
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Pseudo-code for the Q-routing algorithm is shown in Algorithm 3. The value

of Qx(y,d) is the delivery delay estimate for node x to deliver a packet to the des-

tination d via neighboring node y [14]. This serves as the reward function Q(s, a)

as discussed in Chapter 2. The selected neighbor ȳ has the minimal Qx(y,d) of

all neighbors in the Q-Table of node x. Once the packet has been sent to ȳ , ȳ will

simiarly select the node z with the smallest Q-value in its Q-Table to send the

packet to and send node x an updated delivery estimate based on the Q value of

selected node z̄. The variable t is the transmission time from x to ȳ , q is the time

spent waiting in the transmission queue and α is the learning rate. The learning

rate is the weight that will be given to new values added to the current estimate.

Algorithm 3. Q-Routing Pseudocode [14]

While ( f o r e v e r ) :
s e l e c t a packet from the queue
s e l e c t ȳ from neighboring nodes with minimal Q( y , d)
wait f o r a reply from ȳ
update Q(ȳ ,d) in current node using new estimate from ȳ
Q(ȳ ,d) =Q(ȳ ,d)+α[Q ȳ (z̄,d)+ t +q −Q(ȳ ,d)]

end while

When a node r e c e i v e s a packet , interrupt the while and do :
Receive packet p from node s
s e l e c t z̄ with minimal Q( z , d)
send the value of Q( z , d) back to node s

J. Boyan and M. Littman developed the Q-routing algorithm and discuss it

in “Packet Routing in Dynamically Changing Networks: A Reinforcement Learn-

ing Approach” [34]. They studied Q-routing by implementing it for a variety of

network topologies, including the 7-hypercube, a 116-node LATA telephone net-

work, and an irregular 6x6 grid. For their experiments, they varied the network

load and measured the average packet delivery time once the learner had set-

tled on a routing policy. They compare the results to the shortest path algorithm.
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Their results indicate that Q-routing performs better than the shortest path al-

gorithm when the network load is high. This is due to the fact that the shortest

path algorithm establishes a routing policy on startup and maintains it through-

out, with no regard to changes in congestion in the network. Q-routing is able

to adapt its routing policy based on the feedback received from each network

node. As end-to-end delays increase for a given node, Q-routing is able to help

compensate by redirecting future packets to less congested nodes. The delay es-

timates updated from selected nodes give an indication of the queuing times and

level of traffic at each node.

In this work, a simulation model for the network simulator OMNeT++ was

developed. The network is implemented as a set of nodes, with each node rep-

resenting a node in the DTN, which could be relay satellites, cube sats, ground

stations or other network assets. Each node consists of three modules: an appli-

cation module, a routing module and a queue module. The application gener-

ates and receives network packets, just as a software application would generate

network traffic. The routing module determines where to send the packets that

are generated by the application module. The queue module implements a vec-

tor of queues for transmitting and receiving the packets. There is one queue for

each neighbor that a given node is connected to. The structure of the simulation

modules are shown in Figure 4.3.

The connections between nodes are defined as bidirectional. Network pack-

ets are generated by the application module. The rate at which packets are gen-

erated is configurable. The packet format is very simple and consists of a source

address field, a destination address field, the current hop count, the last hop

taken and the first hop taken. These fields are used by the routing modules to
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Figure 4.3. Q-Routing Simulation Modules

help determine where to send the packet. A feedback message is generated by

the routing module of each node and sent as a reply to the node that last trans-

mitted a packet to the current node. The feedback message contains the address

of the node sending the feedback message, the final destination address of the

packet that replying node received, the remaining time estimate until the packet

reaches its destination and the creation time of the packet. This information is

used by the router modules to update their Q-table time estimates.

In addition to generating the network traffic, the application modules per-

form most of the performance metric measurements. Since the application is

the top level module, it generates the packets and is the final module to receive

the packets, so it is here that the end-to-end time is measured. The applica-

tion module also tracks the total number of bytes transmitted, total number of
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Figure 4.4. Example Node and Q-Table

bytes received and periodically calculates the transmission data rate and recep-

tion data rate.

The routing policy implemented was to generate a table of initial time esti-

mates for delivery to each node based on the number of hops required to reach

the destination node. For each hop in the path, the time is estimated by dividing

the number of bits in a packet by the data rate, to get an estimate in seconds.

Delivery times are summed for each hop to calculate the total time for the entire

path. This is used as the initial entry for the Q-table. Beyond the initialization

step, once packets are being transmitted and received, the time estimates in the

Q-table will get updated with actual times as measured by the receiving nodes.

An example Q-table is shown in Figure 4.4.

The routing module will check an incoming packet’s destination address and

choose which of its neighboring nodes to send the packet to based on which one

has a smaller delay associated with reaching the packet’s destination. In addition

to this policy, network exploration is encouraged by forcing the node to choose
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randomly on every 100th packet. This will help ensure that all paths will continu-

ously get updated once the receiving node sends its response with the improved

time estimate. If a node fails, other paths will have been updated recently and

the learner will have an accurate estimate to use to choose an alternate path.

4.3 Classification Based Routing

This section attempts to solve the routing problem as a machine learning

classification task. The motivation behind this method is that the routing so-

lution should be adaptable to a variety of conditions, new nodes entering the

network, leaving the network and operating in potentially different time regimes

(meaning that surface nodes might be following a certain route which follows a

pattern predictable over several hours, other nodes might follow an orbit which

repeats every 90 minutes, other nodes may follow a pattern which repeats once

a day). In addition,it should be able to determine patterns of disruption or pat-

terns of network traffic which are not immediately obvious. The techniques of

machine learning can use data derived from the network environment to deter-

mine such patterns.

Classification and supervised learning in general may have some advantages

over reinforcement learning for DTN routing. Reinforcement learning has been

recommended for routing protocols in several works [32, 34, 35]. There are how-

ever some drawbacks in the case of DTNs. One is that a function must be deter-

mined to enable the learner to receive rewards. In DTNs, the goal is usually to

minimize delivery time and maximize delivery probability. Using time as a met-

ric in DTNs may lead to inconclusive results since delay times may vary either
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on network conditions which are out of the control of the learner (propagation

delays between nodes, for example) or delays may occur because of poor routing

choices. Delivery predictability is a good indicator of routing success, however in

many cases in DTNs, it may be unknown at the source node if the message was

in fact delivered.

Protocols such as TCP and LTP can ensure reliable delivery but since these

rely on acknowledgments or retransmission requests from the destination, there

may be considerable delay before this is known at the source node depending on

the distance between nodes and the data rate. It may be preferred in terms of

speed and efficiency to send data in simple datagrams (UDP or LTP green seg-

ments). Within Bundle Protocol, delivery receipts and custody transfer can be

requested at the bundle layer, but again it is limiting to assume that these mecha-

nisms will always be used. It can be prohibitive to assume that acknowledgments

and receipts will be propagated back to the sender and much work has been

done in the DTN community to try address the drawbacks of having potentially

long round-trip times to send a message and receive an acknowledgement back.

Therefore, it is preferred to avoid a protocol that relies on acknowledgement, de-

livery receipts or status packets, particularly the case in which the timeliness of

receiving such feedback is important to the performance of the algorithm. In the

case of reinforcement learning, if the learner relies on positive feedback from the

destination to make better decisions, this feedback could come at quite a time

later and result in a series of poor performance.

Learning the best possible path to a given destination within a mobile net-

work can be viewed as a time series prediction problem. The goal is essentially

to determine the future network state based on the history of the network. There
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are several factors that will influence which route a bundle should take and will

be used as input data (attributes) to the learning algorithm. They are the current

and future topology of the network (the set of neighboring nodes for the source,

destination and relaying nodes), the duration of the contact period, data rate,

buffer capacity and location of each neighbor. Each of these features will change

in time, though we expect that some or all will follow some predictable periodic-

ity.

The time interval in which a pattern of behavior reoccurs over time can be

considered the learning epoch. An example of this learning epoch could be the

period of one year, over which from year to year a series of recurrent events are

observed (the seasons change in a predictable pattern throughout the year). The

term learning epoch is kept intentionally generic since this time interval will be

different depending on what is the subject of the learning model. For example,

the epoch could be orbital periods, however these periods would be different de-

pending on the orbit of the Earth, a satellite or another planet. The term is used

to avoid confusion with other periodic events. Each epoch will be divided into

time slices so that the continuous value of time can be treated as discrete at-

tributes or bins. This is often done for classification attributes since there should

be some finite set of values which each attribute can take on. This is essentially

the concept of having one day (epoch) which is then divided into 24 hours. Each

node will have some pattern of mobility and data generation within the epoch

that will likely repeat itself over time.

Three well-known classifiers (Naive Bayes, Decision Tree and K-Nearest Neigh-

bors) were selected to determine which would provide the best performance.

These classifiers are both simple and intuitively fit the described problem. Nodes



Approach 64

are following a given pattern throughout the epoch (for example, humans driv-

ing to work every day at the same time) and so it is reasonable to expect that they

will continue to follow this pattern in the next time segment (drive home at the

same time as well and return back at a similar time the next day). The input to

the classifier is based on an attribute vector X consisting of the time index in the

epoch, the source node, the destination node, and if the message was delivered

or not (1 or 0). The label data Y, or output of the classifier, is the set of nodes that

the message was forwarded to. This is encoded as an n-bit string where n is the

number of nodes in the network. If the message has visited node i, then the bit

in position i is set, it is zero otherwise. This data is obtained from network logs

during an initial phase in which routes are determined using epidemic routing.

The delivery of bundles and information on forwarding nodes is saved at each

node and then compiled in a central location to gain a complete view of how

bundles propagated throughout the network. This is discussed in further detail

in Chapter 5.

The classifier is trained with historical values for each message sent in a test

emulation consisting of attributes X and the forwarded node string correspond-

ing to each message. A subset of the test data is withheld to validate the model.

Only the X attribute string (time, source and destination) is given to the model

and it will output a prediction for the most likely set of nodes a message will be

forwarded to. The performance of the classifier is evaluated by comparing the

actual output Y of the test set to the output of the prediction. Once a suitable

model has been obtained, this can be integrated into a routing software module

that will supply a set of nodes that are the best candidates to forward a mes-

sage to based on the current time, source node and destination node. Figure 4.5
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Figure 4.5. High Level Learning Architecture

Figure 4.6. Example Classifier Attribute Vector and Prediction

shows the high level architecture for this routing scheme,using a centralized ar-

chitecture as discussed earlier in this chapter. Figure 4.6 shows the concept of

the attribute vector X and output variable, or label, Y.

The method described divides the routing classification problem into n sep-

arate problems, meaning one classification for each node in the network. Each

classifier produces a binary output indicating a node is or is not a member of the
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set of nodes along a given route. This can be considered a multi-label classifica-

tion approach, in particular the Binary Relevance method (BR) [36]. As noted

in Chapter 2, the Binary Relevance method has the draw back of considering

classifications independently. For this reason independent classification (BR),

Classifier Chains and an Ensemble of Classifier Chains [15] are each tested for

performance in Chapter 7.

4.4 Clustering

Clustering techniques can be used to recognize patterns and similarities over

a large set of data. An intuitive use of clustering could be to divide nodes into

similar location regions. This could be used to predict the movement of nodes

such asµ sats, drones, wireless sensor nodes or other systems in which there may

be a large number of worker nodes entering different areas and exchanging data

(performing as data mules or message ferries). One of the strengths of machine

learning and classification is to take into account multiple previously observed

attributes to give an overall probability for a given outcome. Additional features

such as location, buffer capacity and data rate may improve performance by tak-

ing into account possible delays caused by slow links, or excessive queuing times.

For this reason, clustering could be used in two different ways to gain insight into

node patterns of movement. The first way would be to solely use the output of

the cluster analysis to make decisions about what actions nodes should take, for

example selecting nodes to forward data to based on their current or future re-

gion (assigned cluster). Another method would be to use the assigned cluster as
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an attribute to a classifier, along with other attributes such as delivery history,

data rate or predicted buffer capacity.

The approach in this dissertation is to use the K-means clustering algorithm

[16] (discussed in Chapter 2) to determine regions in which nodes frequently

visit, much like the region code used in [21]. Rather than simply dividing the

area into a grid based system, the K-means clustering algorithm will provide a

data-driven approach to grouping node locations. It can be used on its own to

make decisions based on past, present and likely future node locations and as-

sociations between neighboring nodes and clusters. Node location clusters are

used to determine whether the transmitting node will be within the destinations

cluster region in time t +∆t seconds.

Figure 4.7. Example of Clustering Over Time with K=2

Figure 4.7 shows an example with K=2 clusters. The node n1 has a message

to send to node n6. The locations of the nodes are shown at time t = 1 and later

at time t = t +∆t . Clusters could be assigned based on previously recorded node

locations which are now similar to the behavior at t = 1 and t = t +∆t as shown
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in the overall clustering. In this case, node n1 should choose n2 to forward its

message to n6 since this is a node in its current cluster which is known to enter

the cluster to which n6 belongs.

Figure 4.8. Clustering Block Diagram

A block diagram of the process is shown in Figure 4.8. The worker nodes

can periodically report their location to the central processing node, or it can be

known by some other means (observed by another node or following a planned
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path). The central processing node will perform the clustering over the learning

epoch as discussed earlier in this chapter, meaning the range of time over which

it is predicted that there will be a pattern of recurrent behavior. The central pro-

cessing node will disseminate the routing information to all nodes in the form

of a series of node ids, time indices and cluster ids pertaining to each node at

the given time. The worker nodes will use this information to select appropri-

ate neighbors to forward their messages to. If the neighboring node will enter

the destination’s cluster with in a given interval of time ∆t , it should forward the

message. The selection of ∆t should at least be shorter than the message’s time

to live, otherwise it is possible that it will expire before the message can be deliv-

ered.
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5 Implementation

This chapter covers the selection of a bundle protocol implementation and

how it was modified for use with machine learning. The various DTN packages

that are available were evaluated to determine which was the most suitable for

the basis of this work. It was not desirable to develop a completely new bundle

protocol implementation due to the length of the time involved and also the fact

that there are several available, as well as the focus of this research being more on

routing algorithms rather than solely the bundle protocol implementation itself.

Several goals were determined to evaluate each DTN implementation. The DTN

software should:

• Provide a complete bundle protocol implementation and several con-

vergence layers

• Provide a IP Neighbor Discovery (IPND) implementation

• Provide several example routing protocols

• Be efficient enough to run on embedded targets or an emulation envi-

ronment

• Provide an up to date version with minimal dependencies

It was found that among ION (Interplanetary Overlay Network ), DTN2, IBR-DTN

and µPCN, that IBR-DTN was the best match to these goals. The Common Open
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Research Emulator (CORE), discussed in Chapter 6, was used to emulate a net-

work of multiple nodes running Ubuntu Linux and IBR-DTN [37] bundle proto-

col implementation. Scikit-learn [38] and scikit-multilearn [39] Python libraries

were used to implement machine learning algorithms within IBR-DTN.

5.1 DTN Implementations

This section discussed several open source DTN implementations that are

available. The motivation and use-cases for each implementation, as well as

what specific features are provided are covered.

5.1.1 DTN2

DTN2 is the reference implementation provided by the DTN Research Group

[40]. It was developed as part of the PhD research of Michael Demmer at Uni-

versity of California at Berkeley [25]. DTN2 was developed based on the idea of

using store-and-forward techniques to provide network connectivity to develop-

ing, rural areas with otherwise very limited network access. DTN2 is written in

C++ and runs primarily on UNIX based systems. It provides a number of conver-

gence layers including TCP/IP, UDP, Bluetooth, and NORM [41]. It also provides a

collection of built-in routing protocols (Static, epidemic, PRoPHET and DTLSR).

In addition, it provides an XML-based interface to allow user developed routing

protocols to send routing commands to the DTN2 daemon. For this reason, a

number of external routing protocols have been developed for DTN2, including

RAPID [18] and HBSD [42]. DTN2 hasn’t been updated since 2012, with current

version being 2.9.
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5.1.2 ION

ION was developed by the NASA Jet Propulsion Laboratory [43]. ION is fo-

cused on communication between interplanetary spacecraft, as well as their as-

sociated ground segment. In this case, communication between network nodes

is often scheduled well in advance. ION supports TCP/IP, UDP and LTP. It is inter-

operable with DTN2, though they use slightly different addressing schemes. ION

supports Linux, RTEMS, VxWorks, Android and Windows. It continues as of the

present (2018) to be updated with new features added often. The current version

at this time is 3.6.1. ION supports Contact Graph Routing, which was specifically

designed with interplanetary routing in mind (predetermined contact times, ef-

ficient operation and does not require the use of network status packets). Newer

versions support an opportunistic form of Contact Graph Routing as well.

5.1.3 IBR-DTN

IBR-DTN, Instituts für Betriebssysteme und Rechnerverbund (Institute of Op-

erating Systems and Computer Networks ) Delay Tolerant Network, is a bundle

protocol implementation that is focused on embedded systems [37] developed

at the Technical University of Braunschweig. It has a much smaller footprint and

RAM usage in terms of the DTN daemon and associated libraries when com-

pared to both DTN2 and ION. IBR-DTN is written in C++. It supports TCP/IP,

UDP, HTTP and IEEE 802.15.4 (LoWPAN) convergence layers [44]. It also sup-

ports IPND neighbor discovery, static routing, and epidemic routing with bloom

filter, PRoPHET and bundle forwarding based on discovery. IBR-DTN has been

tested on Linux, Android, Mac OS X, Raspberry Pi and BeagleBone. IBR-DTN was

currently updated as of November 2017.
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IBR-DTN [37], [44] is a lightweight Bundle Protocol package that was de-

signed specifically with embedded systems in mind. Several performance analy-

sis studies have shown it to have bundle throughput comparative to ION [7] and

DTN2 [41] Bundle Protocol implementations, while also being able to run on

very resource constrained platforms such as the Technologic Systems TS-7500

SBC (ARM 9 running at 250 MHz with 64 MiB RAM) [45], [46]. IBR-DTN is an

event driven architecture. The arrival of new bundles, discovery of new neigh-

bors, transfer of bundles and loss of link connectivity all trigger events within

the system which run in parallel threads. IBR-DTN provides implementations of

flooding based routing, epidemic routing and PRoPHET routing, which served as

examples for the development of the classification-based router.

5.1.4 µPCN

The Micro Planetary Communication Network (µPCN) is another lightweight

bundle protocol implementation focused on embedded systems [47]. It supports

POSIX operating systems, FreeRTOS, and can also be compiled to run on bare

metal for the ARM Cortex STM32F4 microcontroller. µPCN provides the bun-

dle protocol, IPND discovery protocol and a message ferry based routing. Much

work has been done regarding the use of µPCN in Ring Road networks [48], the

concept of using LEO CubeSats and DTN protocols to create a message ferry sys-

tem which would provide low cost network connectivity to developing regions.
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5.2 Machine Learning Routing Implementation

IBR-DTN was selected as the basis of this work from the several available DTN

packages. It is very resource efficient, allowing it to perform satisfactorily in an

emulated environment. It supports several convergence layers, such as TCP/IP

and UDP which are convenient for testing routing performance. It provides an

IPND discovery implementation, which is used for opportunistic networking. It

also provided multiple routing extensions as examples for development and test-

ing. The next sections cover the basic architecture and components of IBR-DTN

as shown in Figure 5.1.

5.2.1 IBR-DTN Architecture

Figure 5.1. IBR-DTN Software Structure [49]

5.2.2 Daemon

The main functionality of IBR-DTN is within the daemon libraries. All of the

main components of the DTN node capability are developed here.

• API - Provides underlying functionality for a management interface.

• Core - Provides bundle core, bundle event, bundle filter, event types,

fragmentation management, node classes, and timing functionality.

• Net - Provides bundle transfer and reception classes, connection man-

agement, convergence layers, and discovery agent.
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• Routing - Provides the base router class, neighborhood database, node

handshake class, scheduling, retransmission and static routing. Also

provides extensions to the base router including epidemic routing, flood-

ing, and PRoPHET routing.

• Security - Provides security certificate and key management.

• Storage - Defines bundle storage, bundle index and result functions, memory-

based bundle storage, SQLite bundle storage, and metadata storage.

5.2.3 ibrcommon

Utility functions used throughout IBR-DTN are stored in the ibrcommon li-

brary.

• Data - Provides classes for BLOB data type, bloom filters and IO buffers.

• Link - Provides link management functions for POSIX and Win32, as well

as link monitoring.

• Net - Provides socket streams, address and interface functions.

• SSL - Provides functions such as RSA SHA256 streams, MD5 streams,

hash and cipher streams.

• Thread - Provides mechanisms for thread safety such as mutex lock,

semaphores, thread safe queue, timers and clocks.

• XML - Provides XML stream reader, writer and handler functions,

5.2.4 Tools

IBR-DTN provides several application layer tools. They include dtnsend, dtnreceive,

dtnping, dtntracepath, dtninbox, and dtnoutbox.



Implementation 76

5.3 IBR-DTN Modifications

In order to implement machine learning enabled routing, several modifica-

tions were made to the IBR-DTN source. The epidemic routing module was used

as a basis for the new routing module. The IBR-DTN daemon runs the routing

extension in its own thread, which listens for and raises routing related events.

These events monitor the status of the bundle queue, bundle transfer, connec-

tion status, and routing handshakes.

5.3.1 IBR-DTN Routing

Figure 5.2 shows a high level overview of how bundles are processed by the

routing module. Bundles may be received from other nodes via one of the con-

vergence layers (CL) or they may be bundles that were created by an application

on the local node through the DTN application interface (API). In either case, an

event will be generated to notify the base router module that new bundles are

available. The base router class essentially provides management functions to

all routing extensions used in IBR-DTN. It communicates with the routing ex-

tensions by generating and listening to events related to the network topology

and status of bundles in storage and queued for transmission. When the new

bundle is processed it will generate a bundle queued event. This will alert the

API and routing extensions that a new bundle is available. The API will be used

if the bundle is destined for delivery to a local application, otherwise it will be

processed by the routing extensions.
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Figure 5.2. IBR-DTN Bundle Reception[49]

IBR-DTN uses an inheritance structure in which the base router defines some

limited capabilities which are then further implemented by routing extensions.

The routing extensions consist of a default neighborhood routing, static routing,

flooding, epidemic and PRoPHET routing, as well as custom defined modules.

The base router has access to the neighbor database which contains a list of all

known neighbors as well as a summary vector of all the bundles which are known
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to that neighbor. It also maintains a local summary vector of all bundles in the

local storage as well as a vector of purged bundles.

Figure 5.3. IBR-DTN Base Router[49]

Figure 5.3 shows the relationship between the base router and routing ex-

tensions. When the network topology has changed or a bundle is received, the
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base router is notified. The base router will issue and listen to data changed

(something in the network has changed), bundle queued, transfer completed

and transfer aborted events between the routing extensions. These events are

the signaling mechanism for when routing modules should begin the search for

new bundles, when bundles have been successfully transferred or when a trans-

fer has failed.

IBR-DTN uses neighborhood routing as the default routing extension if no

other routing is configured. The neighborhood routing extension will only de-

liver bundles that are destined for a direct neighbor. In addition, static routes

can be configured for when a certain destination EID should always be trans-

ferred through a specific path.

Figure 5.4 shows a block diagram of the neighborhood routing extension. The

data changed, bundled queued, transfer completed and transfer aborted events

will trigger the routing extension to begin a bundle search. The routing module

will iterate through each neighbor in the neighbor database. A bundle filter is

created to determine which bundles in the bundle storage should be sent to the

current neighbor. The routing module will access the bundle storage to obtain

the bundle metadata (bundle id, origin, destination, time to live, hop limit). For

neighborhood routing, the criteria are the hop limit should not be zero, the bun-

dle should not be for local delivery, the bundle should not be for other nodes

(since this is direct delivery, not forwarding), it should not be over the payload

limit for the neighbor, it should be a singleton bundle and it should not be in

the neighbor’s summary vector (it is already in the neighbor’s bundle storage). If

these criteria are met, the bundle is added to the bundle filter and all bundles in

the filtered list will attempt to be sent to the neighbor. The bundle is not copied
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from storage when it is added to the bundle filter, only the bundle id is used to

refer back to which bundle will be transmitted.

Figure 5.4. IBR-DTN Neighborhood Routing Extension[49]
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The classification and clustering based routing extensions follow in a sim-

ilar manner to the neighborhood routing extension. Figure 5.5 shows a block

diagram of the classification based router. The same events which trigger the

neighbor routing extension will trigger the classification routing extension.

The first step in the classification based routing extension is to load the learn-

ing model into memory. This is the trained model that has been generated by

the central processing node from the stored network statistics obtained from the

worker nodes as discussed in Chapter 4. Next, each neighbor will be queried in

the neighborhood database. The bundle filter will now look for bundles which

have a hop limit greater than zero, are not for local delivery, are not over the

neighbor’s payload limit, are singleton bundles, are not known to the neighbor,

are not for direct delivery to the neighbor and additionally must be predicted for

delivery to the neighbor. The learning model will be used to determine if the

bundle should be forwarded to the neighbor based on the inputs of the local EID

(the endpoint id of the local node), the endpoint id of the destination, the end-

point id of the current neighbor being considered, and the current time index in

the learning epoch (described in Chapter 4). If the prediction returns true, the

bundle will be added to the list of bundles to transfer to the neighbor. The next

section discusses the learning procedures in greater detail.
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Figure 5.5. Classification Routing Extension
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5.4 Learning Procedures

For maximum flexibility in the choice of machine learning algorithm and

ease of coding and changes, the machine learning portion of the routing exten-

sion was developed in Python. IBR-DTN is written in C++. While Python natively

provides the capability and header files needed to call the Python interpreter

within a C/C++ application, this can be a cumbersome process. Wrappers must

be defined to handle the differences between Python and C/C++ data types. In

addition, since IBR-DTN is multi-threaded application and the routing module

will be called from within a thread, all functions and data types must be made

threadsafe. In addition, since Python itself is not technically multithreaded or

thread safe, functions are defined to lock the Python interpreter so that only a

single instance is active at a time. The library Boost.Python is used to facilitate

this [50]. Boost provides the thread safety mechanisms, function wrappers and

data type conversions to simplify embedded Python. The first step is that the

Python interpreter must be initialized within the C/C++ application before it is

used and this must be done only once. Functions may be defined in a Python

module and called from within C/C++ but exceptions must be handled using

Boost. In order to use Python in a multi-threaded application, Python uses a

Global Interpreter Lock (GIL). Boost provides function to acquire the GIL, call

the Python function and when completed, release the GIL.

The main mechanism of the IBR-DTN routing extension is the bundle filter,

which is instantiated when a new routing extension is run. When any of sev-

eral events such as a bundle transfer completed, bundle transfer aborted or new
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neighbor nodes are discovered, a bundle search is run on the list of existing bun-

dles on the local node. The search uses the bundle filter as a set of criteria to

determine what bundle should be sent to the neighboring node. The bundle fil-

ter uses bundle metadata such as the destination, hop count, and source as the

basic criteria to determine if the bundle should be forwarded to the neighbor. It

is here that the results of the machine learning analysis can be used as additional

criteria.

The learning function takes the current node EID (the DTN equivalent of a

URI or address), the destination EID, the neighboring node EID and a learning

specific time index as parameters. It will return a value of 1 if the bundle should

be forwarded to the neighboring node and 0 otherwise. This is a simple format

that is used for both the classification and cluster based learning methods, such

that the IBR-DTN C++ code does not change and only the Python scripts change

for the different learning methods. This was done to simplify modifications and

allow for experimentation with the learning approach.

In both cases for the clustering and classification methods, the network nodes

consist of a central processing node and multiple worker nodes as discussed

in Chapter 4. The central processing node will store the global network data

received from worker nodes and will perform the calculations to generate the

learning model. The central processing node can be a ground station, satellite or

any other type of network asset provided that it has sufficient data storage capac-

ity and processing capabilities. What is termed the worker nodes can be mobile

nodes such as CubeSats, surface landers, rovers, drones and other network as-

sets. The worker nodes will support primary mission goals by collecting science
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data or performing automated tasks. The worker nodes will seek to select neigh-

boring nodes to relay data back to a mission operation center as needed.

5.4.1 Multi-label Classification Method Overview

There are several steps to the multi-label classification method consisting of

compiling network statistics, developing the classification model, distributing

the classification model and routing. An overview of the basic procedures for the

central processing node and the worker nodes are given in Algorithms 4 and 5 .

Each step will be discussed in this section.

Algorithm 4. Classification Algorithm Overview for Central Node

Receive network s t a t i s t i c s from nodes
Format data f o r learning
Store data
S e l e c t train and t e s t data s e t s
S e l e c t algorithm :

Base C l a s s i f i e r : NB, KNN or DT
Multi−l a b e l C l a s s i f i e r : CC, ECC, LP

Train model
Test model
Score Results
Disseminate model to a l l nodes

Algorithm 5. Classification Algorithm Overview for Worker Nodes

Record network s t a t i s t i c s
Receive trained model from central node
Upon bundle search events :

I f a valid model i s known :
I f bundle passes c r i t e r i a f o r epidemic routing :

Determine time index
C l a s s i f y ( l o c a l id , neighbor id , destination id , time index )

I f bundle should be sent :
Add to bundle l i s t

Transmit bundle
Else

Route based on epidemic c r i t e r i a
A f t e r period time t , transmit stored network s t a t i s t i c s
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5.4.2 Multi-label Classification Central Processing Procedure

In this classification scheme, a central node is used to store all of the network

statistics used for generating the learning models for all of the working nodes in

the network. This is done for several reasons. It is anticipated that many nodes

may have limited resources in terms of processing speed, power and memory ca-

pacity. Since machine learning training is the most computation intensive phase

of the learning process, this task will be offloaded to a more powerful aspect of

the network. This may be a ground station facility, a satellite or some other node.

In this way, all nodes can benefit from the learning enhancements without hav-

ing to be concerned with storing and processing large amounts of data. In ad-

dition, this approach will allow for a more complete view of the network. Nodes

will be able to gain information about nodes several hops away in the network

without having to directly have had contact with them.

Central Processing Node Train and Test Procedure

The following steps are summarized in Algorithm 4.

• Receive network statistics from nodes. Each worker node participating

in the learning based routing method will save network statistics based

on bundles it has sent, to what neighbor it has been sent, whether the

bundle is known to be delivered and the time when it was sent. Nodes

can store this data into a batch based on a time period when it will be

convenient to transmit to the central processing node.

• Format data for learning. Several formatting issues must be handled for

the raw data. First, the EIDs of the DTN nodes concerned must be con-

verted into unique numeric identifiers. Next the time stamp must be
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converted into an index within the learning epoch. The learning epoch

is a time period over which the learning takes place. It is the period of

time in which it is expected that a repeated pattern of contacts will exist,

such as an orbital period, an Earth day, a Martian day, etc. depending

on the network itself. Each time stamp is then matched to an index with

the epoch that has been divided into bins of a specific length, depen-

dent again on the network operations. Essentially, the continuous time

stamp is digitized to values within a specific length of time.

• Store data. The data is now stored in the format of x attributes and y

labels. The delivery status, source id, destinations id and time index are

store as the x vector attributes. The series of node ids that the bundle

has been forwarded to are store as a y label vector.

• Select train and test data sets. The data is split into train and test sets

using K-fold cross validation with 5 folds. K-fold cross validation is a re-

sampling technique that allows a machine learning model to be trained

and tested on a limited amount of data. Data is shuffled and divided in

K groups. Each group will be withheld as a test set and the model will be

trained on the remaining data. This is repeated for each group, essen-

tially producing K different data sets to train the model on. The training

data is then normalized and this pre-processing is also applied to the

test set.

• Select algorithm. The algorithm and associated parameters is selected.

This consists of Decision Tree (DT), Naive Bayes(NB) and K-Nearest Neigh-

bor (KNN) for the base classifier. The multi-label method must also
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be selected from Chain Classifiers (CC), Ensemble of Chain Classifiers

(ECC) and Label Powerset (LP).

• Train model. The model is trained using the training folds.

• Test model. The model runs predictions on the x data attributes of the

test data set.

• Score Results. Metrics are calculated on the true values and predicted

values of the test data set.

• Disseminate model to all nodes. If the metrics show a successful up-

date of the model, the model is saved to a Python Pickle archive and

transmitted to each participating worker node for use.

5.4.3 Multi-label Classification Worker Node Routing Procedure

This section covers the process that will be followed by the participating worker

nodes. Initially any node can use the epidemic routing method and can revert to

this method if needed ( there is some problem with the learning model). In this

case, a bundle will be forwarded to any node encountered unless the neighbor

node already has a copy of this bundle.

Worker Node Routing Procedure

The following steps are summarized in Algorithm 5.

• Record network statistics. This initial phase is used to collect data on

what paths were taken from a source node to a destination at a particu-

lar point in the learning epoch that resulted in successful delivery. Epi-

demic routing or a previous learning model can be used for the routing

decisions. The data is saved until a convenient time occurs to transfer it
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to the central processing node. This can be on a reoccurring schedule or

as needed.

• Bundle search event. When the routing extension receives an event

which triggers a search for bundles to send, either epidemic routing or

the learning model can be used.

• Evaluate criteria for epidemic routing. The bundle should not already

exist on the neighboring node if it is to be forwarded and not destined

for the current local node (local delivery).

• Determine time index. The current time stamp should be converted

into a time index within the learning epoch.

• Classify. The learning prediction function is called with the local id,

neighbor id, destination id, time index as parameters. The function will

perform multi-label classification which will determine a set of nodes

that will most likely lead to the bundle being delivered to the destina-

tion. If the neighboring node is within the set, the function will return

true.

• Bundle list. If the neighbor node is predicted to deliver the bundle, it

is added to the bundle list that will be queued for transmission to the

neighbor.

• Transmit bundle. The bundle is sent to the neighboring node.

• Transmit statistics. The recorded statistics are transmitted as needed

to update the model. In this way the model can be continuously up-

dated and improved. Statistics recorded include when and to where a

bundle was sent from a source node, when and where bundles are for-

warded, and when bundles are delivered. The statistics from each node
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are compiled together to create a complete trace of a bundle through

the network. In addition, the total number of bytes sent and received,

the number of replicated bundles, the number of queued, expired and

aborted bundles are also reported at the end of each emulation. The

statistics used are covered in more detail in Chapter 7.

5.4.4 Clustering Method Overview

The section covers the process that nodes will follow to use location cluster-

ing to make routing decisions. The central and worker nodes perform similar

functions as within the classification method with a few differences as listed in

Algorithms 6 and 7. The steps of acquiring data and disseminating the learned

model are the same as in Algorithm 4, however the analysis performed on the

data is K-Means clustering rather than the classification methods discussed in

the previous section. Similarly, the worker nodes will execute a similar routing

procedure, however the cluster regions will be used to determine which bundles

should be sent to each neighbor. This is intentionally done since all of the routing

software is highly modular and object oriented, so the overall routing framework,

objects and events are reused.

Algorithm 6. Clustering Algorithm Overview for Central Node

Receive network s t a t i s t i c s from nodes
Format data f o r learning
Store data
Cluster data based on location
Disseminate model to a l l nodes

Algorithm 7. Clustering Algorithm Overview for Worker Nodes
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Record network s t a t i s t i c s
Upon bundle search events :

I f a valid model i s known :
I f bundle passes c r i t e r i a f o r epidemic routing :

Determine time index
QueryClusterData ( neighbor id , destination id , time index )

I f bundle should be sent :
Add to bundle l i s t

Transmit bundle
Else

Route based on epidemic c r i t e r i a
A f t e r period time t , transmit stored network s t a t i s t i c s

Algorithm 8. QueryClusterData Function

t = current time index
Get l i s t of c l u s t e r s A f o r neighbor during t unti l t +∆t
Get l i s t of c l u s t e r s B f o r destination during t unti l t +∆t
I f A and B are not d i s j o i n t :

Return True
Else

Return False

5.4.5 Clustering Method Central Processing Procedure

The central processing node performs the task of storing sampled locations

from the other nodes in the network. The steps outlined in Algorithm 6 are ex-

plained below.

Clustering Method Central Processing Procedure

• Receive network statistics from nodes. In this case, the nodes will store

their local id, their location and current time at a specified sampling in-

terval. This data will be transmitted to the central processing node at a

convenient time as described above.

• Format data for learning. The data is formatted according to the node

id, time index and location coordinates.
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• Store data. The data is stored in a central database.

• Cluster data based on location. The locations are clustered using K-

means clustering. A cluster id is matched back to the associated node id

and time index.

• Disseminate model to all nodes. The cluster id, node ids and time in-

dices is transmitted to each node. Each node now has an idea of where

every node is in the network based on cluster location region.

5.4.6 Clustering Method Worker Node Routing Procedure

Once the worker nodes have obtained a list of the cluster regions and nodes

belonging to them based on time, this information can be used to make routing

decisions as outlined in Algorithms 7 and 8.

Clustering Method Worker Node Routing Procedure

• Record network statistics. This initial phase is used to collect data on

where each node is located at a particular point in the learning epoch.

Epidemic routing or a previous learning model can be used for the rout-

ing decisions. The data is saved until a convenient time occurs to trans-

fer it to the central processing node. This can be on a reoccurring sched-

ule or as needed.

• Bundle search event. When the routing extension receives an event

which triggers a search for bundles to send, either epidemic routing or

the learning model can be used.

• Evaluate criteria for epidemic routing. The bundle should not already

exist on the neighboring node if it is to be forwarded and not destined

for the current local node (local delivery).



Implementation 93

• Determine time index. The current time stamp should be converted

into a time index within the learning epoch.

• Query Cluster Data. The learning prediction function is called with the

local id, neighbor id, destination id, time index as parameters. The func-

tion will query the current and future locations from time t +∆t for the

neighbor node and destination node, where t is the current time index

and∆t is a configurable duration of time. If the neighbor node will enter

the cluster region of the destination node within that time, the function

will return true, meaning the neighbor is likely to deliver the bundle.

• Bundle list. If the neighbor node is predicted to deliver the bundle, it

is added to the bundle list that will be queued for transmission to the

neighbor.

• Transmit bundle. The bundle is sent to the neighboring node.

• Transmit statistics. The recorded statistics are transmitted as needed to

update the model. In this way the model can be continuously updated

and improved.

5.5 Machine Learning Libraries

Two Python libraries were used to perform the learning algorithms, data prepa-

ration and evaluation of metrics. Scikit-learn [38] was used for the base classifiers

(Decision Tree, Naive Bayes, and K-Nearest Neighbors). Functions to normalize

the data and split it into training and test sets were also used. Scikit-multilearn

[39], which is based on Scikit-learn was used to perform the multi-label classi-

fications (Chain Classifiers, Ensemble of Chain Classifiers, and Label Powerset).
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The details of the algorithms are discussed in Chapter 2 Background. The met-

rics used to score the classifier performance were also provided by scikit-learn

and are discussed in Chapter 2 and Chapter 7 Results. Scikit-learn also provided

the K-means clustering algorithm.
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6 Simulation and Emulation

This chapter covers specifically the techniques and tools that were used for

the simulation and emulation environments, how the DTN network was emu-

lated and details of the automation tool chain. This was a challenge of studying

DTN routing, which was how to create an environment to test the DTN software,

obtain data to perform machine learning and evaluate routing performance. The

goals for this study were to obtain the following:

• Model the behavior of at least 10s of nodes (20 or more)

• Execute actual DTN software packages rather than models of protocols

• Allow node mobility and link behavior to be scripted or adjusted dynam-

ically

• Provide a simple way to obtain network and performance statistics for

analysis

• Provide a graphical interface for easy configuration

• Allow for scenarios of data transmission and reception to be easily scripted

and automated.

In order to achieve these goals, several open-source tools were evaluated for the

simulation and test environment as well as the basis for software development.
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Initial simulations of a Q-routing reinforcement learning based router was de-

veloped using OMNeT++ [51]. OMNeT++ is an open-source discrete event sim-

ulator that has a generic framework which can be used to develop simulations

of communication networks, multiprocessors and distributed hardware systems

and protocol modeling. Next, routing tests were done using DTN2 [25] bun-

dle protocol reference implementation and the NASA DTNbone [52], which is

a network of multiple Ubuntu Linux virtual machines. Finally CORE (Common

Open Research Emulator) [53] was used to emulate a network of multiple mobile

nodes.

6.1 Simulation Environment

OMNeT++

The simulation experiments were done using OMNeT++. OMNeT++ is a dis-

crete event simulator that has a generic framework that can be used to develop

simulations of communication networks, multiprocessors and distributed hard-

ware systems and protocol modeling. OMNeT++ uses a component based archi-

tecture defined by C++ classes. Components may be provided as base classes by

OMNeT++ or developed by the user. External interfaces between the modules

are defined in network description (NED) files. The connections between two

modules are also described in NED files. OMNeT++ uses a message class to pass

information between modules. The messages can be further defined by the user

to represent network packets, status and timing internal messages or any other
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Figure 6.1. OMNeT++ Simulation Environment

type of message the user requires. OMNeT++ also provides a signaling and sta-

tistics framework so that users can collect and analyze data and statistics from

the simulation. Figure 6.1 shows the OMNeT++ graphical interface.

There are several popular network simulators that have been modified to

simulate the characteristics of DTNs (mobile nodes, long delay times, asymetric

links, intermittent connectivty, for example) or have been created with DTNs and

opportunistic networking specifically in mind. The simulators considered in this

work are OMNeT++ [51], the ONE simulator [54], and ns-2/ns-3[55]. While OM-

NeT++ is a more of general purpose networking simulator, several related works

have used it as the basis for DTN or satellite network simulation [56], [32], [57],

[58]. Initial work was completed using OMNeT++ [32], however it was found that

significant customization would be required in order to create a higher fidelity

model of the delay tolerant networking characteristics essential to the routing

problem, as well as to execute/simulate any of the well known DTN implemen-

tations’ software.
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The ONE

The ONE (Opportunistic Networking Environment)[54] simulator is a dis-

crete event simulator written in Java, designed especially with delay tolerant and

opportunistic networks in mind. It has been used quite extensively for simulat-

ing DTNs and studying routing protocols [59–62]. The ONE models node move-

ment, inter-node contacts and messaging, and routing. Lower level networking

details and operating system specifics are abstracted away. Each node has a sim-

plified model of the radio interface, persistent storage, energy consumption as

well as message routing and movement models. The radio interface and stor-

age are configured through several parameters such as data rate, communica-

tion range and storage capacity. There is extensive flexibility for custom routing

protocols and movement models, as well as the inclusion of several well known

routing protocols and mobility models. The built-in routing protocols provided

with the ONE installation include First Contact, Direct Delivery, Epidemic, Spray-

and-wait, Max-Prop and PRoPHET. New routing modules can be user defined

based on the existing routing protocols provided. A new routing protocol will in-

herit simple buffer management and called backs for message events from the

provided MessageRouter module.

The ONE provides several mechanisms for simulating node mobility. The

synthetic mobility models can be characterized as either random movement mod-

els, map-based random movement and human patterns of mobility. Included

with the installation are the Random Walk and Random Way Point mobility mod-

els, as well as random map based mobility, shortest path map-based mobility

and routed map-based mobility. In addition, an interface is provided for either
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Figure 6.2. The ONE Simulation Environment

creating custom synthetic mobility models, as well as for importing real-world

mobility traces[54]. Figure 6.2 shows the ONE graphical interface.

While extensive work has been done in the DTN community using ONE, it

was decided that there were several implementation specific hurdles regarding

its use. Currently developed software cannot be directly executed within the

ONE. Some type of interface would need to be created to allow C/C++ software

to be executed using the ONE simulation. Several papers discuss this process,

involving using the Java Native Interface (JNI) wrappers and abstracting away

lower level libraries used by the DTN software (ION in this case) [59].

ns-2/ns-3

The simulator/emulator ns-3 is the updated version of the simulator ns-2.

Both have widely been used as general networking simulators and as the ba-

sis for simulations and emulations of DTNs and satellite networks [63–67]. The

current ns-3 package can perform as a discrete event simulator and also has a

real time operating mode. In this way, it can interface to a physical network or
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interconnect virtual machines as a channel emulator [68]. The ns-3 simulator

has been used as a standalone simulation/emulation environment and has also

been integrated with other packages such as CORE (Common Open Research

Emulator)[69] and Systems Tool Kit [70], [64].

6.2 Emulation Environment

This section discusses the emulation environment used to model the net-

work scenarios. Several tools are discussed. STK (Systems Took Kit)[71] was used

to compute node access times according to their orbital parameters and/or lo-

cations. CORE (Common Open Research Emulator )[72] was used to emulate

network layers 3 and above (network, transport, session, application). EMANE

(Extendable Mobile Ad-hoc Network Emulator)[73] was used to model the data

link and physical network layers. Sdt3d (Scripted Display Tools) [74] was used for

3-dimensional network visualization. This section also provides an overview of

other simulation/emulation tools that are often used in DTN research and con-

sidered as potential test environments.

Many network simulators abstract the operating system and network pro-

tocols into a simulation model to perform a statistical analysis of the network

[75]. Simplification of the underlying protocols and hardware provide an esti-

mate of the performance of the particular networking scenario. This allows for

more complex scenarios with a greater number of nodes to be evaluated on a sin-

gle host system. In addition many scenarios may be evaluated relatively quickly

since simulations can often be executed in faster than real time [70]. Emulation

provides a more in depth analysis of the software and protocols used, since only
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the hardware is modeled. Emulations run in real time and may require a more

powerful host machine or multiple host workstations.

CORE and EMANE together emulate the complete network stack of the net-

work nodes and simulate the links connecting them. In this way a very realistic

environment is created for testing software applications and protocols while re-

quiring only a single host machine rather than a hardware test bed of multiple

nodes. In addition, CORE uses lightweight Linux containers which reduce the

processing and memory consumption per node when compared to complete vir-

tual machine with a full installation of a guest operating system. This allows for

more nodes and more complex scenarios to be executed on the host system and

places fewer demands on its hardware resource requirements.

6.2.1 CORE and EMANE Network Emulation

Differing from the discrete event simulators discussed in the previous sec-

tion, CORE and EMANE are two open sourced emulation tools that have been

developed for network modeling and emulation. Both tools were developed by

the U.S. Naval Research Laboratory and are written in a combination C++ and

Python. The tools can be run separately and have also been integrated together

to provide emulation of the complete network stack. CORE emulates layers 3

and above, while EMANE emulates the data link and physical layers. Both tools

run on Linux and utilize several features of the Linux kernel version 2.6.24 or

newer (Linux namespaces/containers, Ethernet bridging, and the TUN/TAP de-

vice driver)[76]. Figure 6.3 shows an screen shot of the CORE GUI with a network

scenario from the MITRE DTN Development Kit [77].
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Figure 6.3. CORE Screen Shot [77]

CORE

CORE is an open source network emulation environment that provides a con-

venient graphical interface and Python based API for creating virtual networks of

mobile nodes. The CORE graphical interface provides several tools for network

and process visualization and monitoring. Nodes are arranged on the GUI can-

vas where pixel locations map to a user defined meters-to-pixel scale. Node loca-

tions can be read from a mobility script file or sent dynamically through Python

commands.

CORE provides a graphical interface for accessing and configuring nodes by

clicking on the node icon. A Linux terminal is launched on the virtual machine

from which commonly used Linux command, scripts and applications can be
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launched just as they would be on the host computer. In addition, CORE pro-

vides several built-in routing protocols and also the ability to launch custom

scripts and protocols at start up. It provides several tools which show system sta-

tus information such as running processes, routing adjacency neighbors, IP con-

figuration information and network traffic by simply hovering the mouse over

the node icon. Packet capture programs such as tcpdump and wireshark can be

launched from each virtual node as well.

A screen shot of the CORE graphical environment is shown in Figure 6.3.

Nodes in the network are shown with a router icon and display the network in-

terface name and IP address of the node. Each node in the emulation may be

thought of as corresponding to a satellite, surface vehicle, ground station, or any

other type of device that might function as a DTN node in a real network. Com-

munication ranges, bandwidth and delays can also be configured for each node.

Nodes may communicate on a wireless local area network or they may have di-

rect wired connections. Each of these emulated nodes are created from a Linux

container (LXC) [53] and function similarly to a light weight virtual machine. A

temporary file system is created for each node based on user defined directories,

either representative of the host machine or directories that are specific to the

virtual node. This virtual machine can be thought of as functioning like the flight

computer/avionics of a real node, which will execute the DTN software, generate

and process data, create system logs and provide an administrative interface.

Linux containers are not a complete virtual machine but rather a light weight

virtual machine with its own isolated resources (CPU, memory, block I/O, net-

work allocation) using a resource control mechanism (cgroups) that run on the

same host system kernel [78]. This is accomplished using the namespace and
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control group features of the Linux kernel. Since each node functions similarly

to an individal virtual machine,software applications and protocols can be exe-

cuted unmodified, just as they would be on a physical machine. This removes the

need for the use of built-in simulator models and classes, or wrappers and inter-

face software often required to run various protocols packages in many simulator

environments [59].

The LXC virtualization used by CORE differs from machine virtualization tools

such as Virtual Box and VMware in that it does not run complete instances of an

operating system on a host computer of the same or different operating system.

Linux containers are primarily used to isolate multiple instances of the same

Linux server environment on the same physical machine. Processes are isolated

within their own namespace with a separate stack but hardware such as disks,

video cards are not emulated but shared between nodes [75]. CORE uses the

Linux tc (traffic control) and netem (network emulation) features to create basic

network characteristics such as delay, loss and bandwidth limitations. Wireless

networks are emulated using Linux bridging. All node interfaces are connected

to the same WLAN network, using Linux bridging firewalls (ebtables) to provide

rules that will either restrict or allow network traffic between nodes.

EMANE

EMANE provides emulation of the lower network layers (physical and data

link). This allows predefined radio models or custom defined models to be used

to determine when emulated nodes have communication access to each other.

This creates a higher fidelity emulation of real radio hardware, rather than the

simplified communication parameters of CORE (range, bandwidth and delay).

Figure 6.4 shows the integrated architecture of CORE and EMANE.
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EMANE is based on network emulation modules (NEM) which are processes

and shared libraries configured through XML files [53]. The modular style of the

MAC and PHY models provides a framework for developers to implement custom

radio models if desired. EMANE also includes an 802.11 model and a generic RF

pipe model with configurable parameters. One or more NEMs may run on a sin-

gle host machine. Each NEM has an OTA (Over-the-Air) adapter which interfaces

with an overall OTA manager that allows communication between each NEM.

EMANE provides a raw transport interface using packet capture from a real

world interface or virtual interfaces can be used deliver packets to and from the

emulated network. Virtual interfaces utilize the Linux TUN/TAP device frame-

work. TUN/TAP devices are software based interfaces that allow user space pro-

grams to see raw network traffic [79]. They appear to applications as a regular

networking interfaces but exist only in the kernel. When the kernel would nor-

mally read/write data to the hardware file descriptor, it is instead accessing an-

other user space application rather than a hardware network device.

To integrate the operation of CORE and EMANE into a single emulation envi-

ronment, CORE uses run-time stages in order to account for the timing of bring-

ing up various processes required to perform the network virtualization. The

TUN/TAP device consists of a user space side and a kernel space side.The user

space side is implemented as a socket connected to a process that can be written

to and read from the user application. The kernel side of the TUN/TAP device

appears as any other network device and is installed into a namespace, which

hides it from the host machine, making it visible only within the namespace.For

this reason the EMANE user-space process must open the user-side socket to the

device before it is installed in the namespace. To simplify this, CORE enforces
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multiple runtime stages, such as edit (stopped), configuration, instantiation and

execute (start)[53]. The EMANE and CORE emulation run within the back-end

CORE daemon process. The CORE GUI runs as a separate process which sends

event signals about the node and link configuration to the daemon.

Figure 6.4. CORE/EMANE Architecture[53]

STK

The Systems Tool Kit [71] is used to model the orbital characteristics planets,

satellites and other objects. It provides a variety of freely available functions as

well as paid license plugins. The base functionality allows for access to a data-

base of planets, ground stations and air/spacecraft orbital data. The ephemeris

data can be exported in a variety of formats and calculations are performed to

determine the line-of-sight access between two nodes.This work uses only these
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base capabilities of STK, in conjunction with the radio interface emulation of

EMANE to determine when nodes in the network are accessible to each other.

6.3 Scenarios

This section discusses the details of several scenarios that were developed us-

ing the tools described in the previous section. The first scenario is based on the

International Space Station communicating with three TDRS (Tracking and Data

Relay Satellite). The next scenario uses 10 nodes with a Random Walk mobility

model. Finally, real world GPS traces are used from the ZebraNet [80] experiment

for an emulation of 10 nodes. These three scenarios provide a variety of condi-

tions spanning from a more realistic scenario in low earth and geosynchronous

orbit, to an abstract mobility model and finally traces from a real world experi-

ment.

6.3.1 International Space Station

This scenario models the International Space Station (ISS) in low earth orbit,

three TDRS satellites in geosynchronous orbit and the earth ground stations lo-

cated at the White Sands Complex (WSC) and Guam Remote Ground Terminal

(GRGT). The ISS periodically has access to each of the TDRS which then relay

data to either the White Sands Complex or Guam Remote Terminal. Since the

TDRS are in geosynchronous orbit, they have constant access to the ground sta-

tion.

The scenario was constructed using several tools. First the locations of each

node are computed using STK, based on standard objects available from the STK
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database. STK performs orbital analysis to determine a satellite’s location given

a time of the year and analysis duration. Next since the locations are known,

the access that each node has to each other is also computed by STK. ISS to the

TDRS has multiple intervals of communication, while the access from TDRS to

the ground is constant as shown in Figures 6.5 and 6.6.

Figure 6.5. STK Analysis for ISS Scenario

Once the orbital analysis has been performed by STK, the latitude and lon-

gitude (degrees) and the altitude (km) over every one minute interval can be ex-

ported to a comma separated file. In addition, the access times and duration

between the ISS and TDRS are exported to a comma separated file as well. These

are then converted to a format suitable for sdt3d [74]. The node positions are

scripted using the longitude, latitude and altitude values. The access times are

used to create node link and unlink commands for both sdt3d and CORE. In this

way a 3D visual animation is created using sdt3d and the network emulation

is performed by CORE. Commands are able to be sent between both sdt3d are
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CORE using Python and TCP ports which each application (sdt3d and CORE) lis-

ten to for commands.

Figure 6.6. STK Access Times for ISS Scenario

The actual network emulation is performed by CORE. In this case, there are 6

virtual machines the represent ISS, the three TDRS and two ground stations. The

links between TDRS and the ground stations are constant. The links between

ISS and the three TDRS are controlled using a Python script which reads the time

and duration from the exported access files and uses the CORE python API to link

and unlink the appropriate nodes. In this case, the node position within CORE

is not used to determine which nodes are able access on another. The rest of the

emulation process including automated data generation, bundle protocol store

and forward and routing are covered in the next section as this procedure is the

same for all scenarios. Figure 6.7 and 6.8 show the emulation in CORE and the

corresponding 3D display in sdt3d.
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Figure 6.7. ISS Scenario in CORE

Figure 6.8. ISS Scenario in sdt3d
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6.3.2 Random Walk

This scenario consists of 10 mobile nodes. In this case nodes can be thought

of as abstract mobile nodes, or perhaps mobile node in a wireless sensor net-

work. The node locations are determined based on the Random Walk mobility

model. Boundaries for the grid locations, number of nodes and speed are given

to the tool BonnMotion which will generate location coordinates for each node

over the duration of the emulation. In this case, the locations simply represent

pixel locations which CORE will scale to kilometers to determine connectivity be-

tween nodes based on distance and the communication range set for the nodes.

This scenario was considered since the Random Walk model is frequently used

in other works studying DTN routing and mobile nodes. In addition, this pro-

vides an interesting data point to determine how well the classifier will be able to

predict future routes as discussed in Chapter 7. It is a significantly more compli-

cated routing problem than the ISS scenario, and for this reason is studied more

in depth in Chapter 7.

6.3.3 ZebraNet Traces

This scenario also uses 10 nodes. Node mobility was generated from GPS

traces from the ZebraNet experiment. This scenario models any type of oppor-

tunistic DTN network in which nodes follow a non-random pattern of movement

such as humans, vehicles or animals. In this case CORE uses the GPS locations

to determine the distance between nodes and the range of the communication

links to determine when nodes have access to each other. The coordinates are

based on the UTM system rather than longitude and latitude. This is a grid based

system which maps easily to the pixel locations of CORE once a scaling factor has
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been set to adjust the screen appearance of the nodes. This scenario was used

for the majority of testing since it is complicated enough to provide a challeng-

ing routing environment and is also more realistic since it is based on real world

mobility traces.

6.4 Tool Chain and Automation

This section discusses the use of CORE and other tools to develop a DTN em-

ulation environment to test the routing software. There are several aspects to

be addressed in creating an automated test environment. Figure 6.9 shows an

overview of the emulation tool chain.

Inputs to the emulation process are the number of nodes and the data files

to send. Several scripts and configuration files are then created for each node to

control the behavior of IBR-DTN, as well as node mobility and data transmission.

The emulation will execute for a selected amount of time and generate network

data logs to be used as the input to the learning models. Once trained on the data

from previous emulations, the routing module can use this information to make

predictions about best paths through the network. The steps of the emulation

are described in detail in the remainder of this section.

• Node configuration. The first step of using CORE is to develop an em-

ulation configuration. For the most basic scenario, this includes select-

ing the number and type of nodes, selecting the number and type of

each network interface (wired or wireless), configuring the link behav-

ior (based on EMANE radio model or range information), and selecting

the protocols and services used by the nodes. CORE has a number of
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Figure 6.9. Emulation Tool Chain

predefined services for standard network operation such as OSPF, OLSR,

SSH, FTP, DHCP, HTTP and many others. To emulate a DTN, CORE must

be configured with a custom service, so that routing and discovery will

be performed using IBR-DTN. The DTN Development Kit [77] for CORE

provides examples using ION. This served as the basis of the emula-

tion scenario, however nodes were configured with IBR-DTN rather than

ION.

The CORE emulation utilizes a temp directory that is created at run

time. This will serve as the basis of the file system for the emulated

nodes. Prior to run time, the nodes’ directory structure and content
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must be configured. In the configuration folder, each node has a direc-

tory that will serve as the root directory of the emulated nodes. Files

needed for start up can be stored here. Shell scripts are used to link

the content of the configuration directories to the temporary emulation

directory and to set any necessary environment variables. Any needed

start up scripts can be launched from here as well.

Specific to the emulation of IBR-DTN, the IBR-DTN configuration

file is needed for each node. This contains information about the nodes

addresses and EIDs, what type of storage to use and storage limits, what

type of routing to use, static routes, and to enable or disable functional-

ity such as IPND discovery. Each node has a unique configuration.

• Mobility Scripts. The next step of the emulation is to enable node mo-

bility. This can be accomplished several ways. CORE can accept node

positions based on longitude, latitude and altitude or in UTM (Univer-

sal Transverse Mercator) format, which is a grid based coordinate sys-

tem. CORE provides a Python interface such that nodes can receive co-

ordinate updates over a socket interface. Mobility scripts can also be

generated from a scenario file which contains the node id, simulation

time and coordinates for the entire emulation. This file is based on the

NS2 mobility format. For a very lengthy or complex scenario, it is not

practical to generate these coordinates by hand. Instead the file can be

generated automatically using several tools.

One tool which is very helpful in generating mobility scripts is Bon-

nmotion [81]. BonnMotion consists of a variety of stochastic mobility
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models such as Random Walk, Random Waypoint, grid models and oth-

ers. The user can input the desired number of nodes, length of emu-

lation time, node speed, the desired model to use and other parame-

ters. BonnMotion will then generate the coordinates for each node in

a variety of formats, include NS2. Another option for mobility scripting

is to use traces from real world experiments. Dartmouth College hosts

an archive of traces from wireless experiments called CRAWDAD. This

work used the ZebraNet [80] dataset that is archived on CRAWDAD. This

dataset contains the GPS coordinates from a DTN experiment in which

tracking collars were fitted to multiple zebras in the wild and their loca-

tions were recorded. This allows for a more realistic pattern of mobility,

as opposed to models which have synthetically generated coordinates.

• Traffic generation. In order to create a realistic environment, data must

be exchanged between nodes to test the routing performance. A Python

script is started at run time to send a tar file in bundle format to a ran-

domly selected destination at a random interval of time. Each node exe-

cutes this script and also uses the IBR-DTN tool dtninbox to wait for files

that are inbound to the local node.

• Emulation scenario. All of the above mentioned scripts are executed

at start up to create the emulated nodes, launch and configure the IBR-

DTN daemon, run the node mobility scripts and generate network traf-

fic. As nodes generate, forward and receive bundles, these events are

captured in a log to trace the paths of the bundles through the network.

The status of the bundle storage and number of bytes sent and received

from the convergence layer are also periodically sampled.
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• Data preparation. Once the emulation run-time has expired, the net-

work logs must be prepared and formatted to be used for machine learn-

ing. Each bundle that was sent is traced through the logs using the

unique bundle id which is the bundle creation time and the bundle source

EID. In this way the path of each bundle is determined with a specific

time stamp for creation, forwarding and delivery. This data is then for-

matted into the attribute data of time stamp, source node, destination

and labels of known paths in the network. The node coordinates for

clustering are known from the mobility scripts. This data is formatted

into SQLite data tables which are then read into pandas (Python Data

Analysis Library) [82] data frames for processing.

• Training phase. Once the data has been formatted in the vector of at-

tributes and vector of labels, it is read into pandas [82] data frames and

converted into NumPy [83] (Python library for data structures and math-

ematics) arrays for mathematical manipulation. The data is divided into

train and test sets using K-fold cross validation as discussed in Chapter

5. The data is normalized as well. The selected machine learning algo-

rithm is executed on the training data sets. Next the generated model is

used to predict the labels of the test set. The test set’s predicted labels

(the classifier output) are scored against the true values. If the model

appears promising from the metric scores, it will be exported for the

worker nodes to use. If it is not, more data can be collected and pro-

cessed to improve the model, different parameters specific to each model

can be changed or the algorithm itself can be changed.
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• Export model. Once a satisfactory model has been achieved, it is archived

in a Python Pickle. This is a python specific format that allows the struc-

ture and data of Python objects to be saved to a file. In the case of Scikit

learn models, this is generally a series of weights. This allows the trained

model to be accessible to the emulated nodes, without having to actu-

ally perform the training calculations. This model can then be extracted

back into a Python object and used by SciKit learn to predict new label

values.

The next section will detail the experiments that were performed using OMNeT++

and CORE. The metrics used for machine learning as well as routing are dis-

cussed. The results of the experiments are analyzed using these metrics.
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7 Performance Measurements

This chapter covers the experimental emulations that were conducted, the

results of each of those studies and the metrics which are used to analyze the

performance of the machine learning and routing algorithms. There are several

routing metrics and statistics which are used to evaluate the effectiveness of the

DTN routing overall. In addition, prior to using the machine learning model for

routing, there are several metrics that are used to determine how well the model

is able to make correct predictions. The next subsections will cover both of these

classes of metrics in detail.

Following the discussion of metrics, an initial survey of the performance of

several DTN routing algorithms was completed using DTN2. This was a foun-

dational step in working with the DTN implementations available, determining

the appropriateness for continuing work as well as the concepts for developing

a DTN emulation environment. Next, the Q-Routing algorithm was simulated

using OMNeT++. Finally, CORE was used to create a higher fidelity emulation

environment to perform the development and testing of a classification based

and cluster based routing algorithm.
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7.1 Metrics

7.1.1 DTN Routing Metrics

There are several statistics that were collected using the IBR-DTN API [49].

These metrics are based on counters of various events within the bundle storage

and routing modules.

• Bundles Queued. This is the number of QueueBundleEvents that have

occurred during the emulation. When a new bundle is received from

a local application or a neighboring node, the bundle is forwarded to

the routing module which generates a QueueBundleEvent. The bundle

must be a unique bundle, not a copy of a bundle that has already been

received. The value is incremented throughout the emulation and is the

total number of bundles that were queued.

• Bundles Requeued. This is the number of RequeueBundleEvents that

have occurred. If a transmission fails with a temporary error, the bundle

may be requeued.

• Bundles Aborted. This is the number of TransferAbortedEvents that

have occurred. This event occurs when the transmission of a bundle

is aborted due to an error condition in the connectivity of a neighboring

node.

• Bundles Transmitted. This is the number of TransferCompletedEvents

that have occurred. This event is raised when a bundle is successfully

transmitted to a neighboring node.

• Bundles Stored. This is the number of bundles currently in storage. It is

a count of the bundles in storage at the end of the emulation.
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In addition to the bundle agent statistics, several other metrics are calculated

from the bundle generation script and bundle reception log. The number of ap-

plication data bundles sent from each node is counted as well as the number of

data bundles delivered at the final destination. The IBR-DTN statistics do not

differentiate between bundles generated by an application (actual payload data)

and routing bundles. IBR-DTN routing handshakes are done using the bundle

format. For this reason, the number of actual application bundles sent and de-

livered are counted separately. This will also help to determine the number of

replications of each bundle that were generated. Essentially the number of repli-

cations per unique application bundle and the number of routing specific bun-

dles constitutes the overhead associated with a particular routing algorithm.

• Delivery Ratio. The delivery ratio [84] is often seen as the most impor-

tant metric in DTN routing. It is the ratio of messages successfully deliv-

ered to the number of messages created. This is calculated based on the

number of application data bundles created and delivered.

• Delivery Cost. This is essentially a measure of the overhead associated

with replication based routing. It is the total number of transmitted

bundles minus the number of bundles delivered, divided by the num-

ber of bundles transmitted.

• Bundles Replicated. This is the count of each bundle that has been se-

lected for forwarding to a neighboring node. At a minimum, the bundle

must not be a direct delivery to the neighboring node or already exist in

the neighboring node’s bundle storage. For the classification and clus-

tering based bundle filters, the bundle must also pass the criteria out-

lined in Section 5.3.
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In addition, the delay from the time of bundle reception and bundle delivery is

calculated for each successfully delivered bundle. For each emulation, the min-

imum, average and maximum delay are recorded. Using end-to-end delay as

a metric in delay tolerant networks incorporates whatever delay is inherent in

the network itself at a particular time and is out of control of the routing algo-

rithm. However, the emulations performed used the same mobility scripts and

same set of node source and destination pairs, number of files sent, and bundles

were generated at the same rate. This will help to standardize the emulation sce-

nario and eliminate the number of variables impacting the delay measurement

between emulations.

7.1.2 Clustering Metrics

Two clustering metrics were used to help to determine the best number of

clusters to use. The Silhouette Coefficient [85] and Calinski-Harabaz Index [86]

were both used since there are no ground truth labels for the data. For this rea-

son, the cluster results cannot be evaluated based on how well the clusters rep-

resent the actual label values. Instead, both give an indication of how dense and

well separated the clusters are.

• Mean Silhouette Coefficient. The Silhouette Coefficient ranges between

-1 and 1, with higher values indicating better defined clusters. To calcu-

late the Silhouette coefficient, the value a(i ) is the mean distance be-

tween a point i and all other points in the same cluster. The values b(i )

is the mean distance between i and the nearest cluster that i is not a
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member of as shown in Eq. 7.1.

s(i ) = b(i )−a(i )

max(a(i ),b(i ))
(7.1)

The mean of s(i ) for all points i is reported as the clustering metric.

• Calinski-Harabaz Index. The Calinski-Harabaz Index is a measure of

dispersion within and between the clusters. A higher value indicates

better clustering. It is defined as:

s(k) = SSB

SSW
× N −k

k −1
(7.2)

where k is the number of clusters, SSB is the overall between-cluster

variance, SSW is the overall within-cluster variance, and N is the num-

ber of data points [86]. The between-cluster variance is defined as :

SSB =
k∑

i=1
ni ‖mi −m‖2 (7.3)

In Eq. (7.3), ni is the number of points in cluster i , mi is the center of

cluster i , m is the mean of all of the points and ‖mi −m‖2 is the Eu-

clidean distance between m and mi The within-cluster variance SSw is

calculated as:

SSW =
k∑

i=1

∑
x∈ci

‖x −mi‖2 (7.4)

where ci is each of the k clusters, x is a data point and mi is the center

of cluster ci .
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7.1.3 Classification Metrics

There are several basic classification metrics that are used to analyze the per-

formance of a model’s predictions.

• Accuracy. The accuracy is the count of correctly predicted labels, mean-

ing the prediction is equal to the corresponding entry in the test set.

• Confusion Matrix. The confusion matrix is a more detailed break down

of correct and incorrect classifications [87]. For binary classifications,

the count of true positives tp , false positives fp , true negatives tn and

false negatives fn will be tallied as compared to the ground truth known

values of the test set. An intuitive example of these metrics can be seen

in a medical test for a disease. The test will correctly predict some sam-

ple of patients as healthy that do not have the disease (tn) and also cor-

rectly predict some patients as ill that have the disease (tp ). There is

also a percentage of patients that are incorrectly identified as having the

disease that actually do not ( fp ) and patients that have been incorrectly

identified as healthy that actually do have the disease ( fn).

Predicted Positive Predicted Negative

Labeled Negative False Positive True Negative
Labeled Positive True Positive False Negative

Table 7.1. Confusion Matrix

• Recall. From the values calculated in the confusion matrix, the recall of

the classifier can be calculated. Recall is calculated as shown in Eq. (7.5),

where tp and fn are the number of true positives and false negatives, re-

spectively. Recall is an indication of how well a classifier identifies points
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of interest (actual value of positive) .

tp /(tp + fn) (7.5)

• Precision. Similarly, the precision is calculated from the true positives

tp and false positives fp in Eq. (7.6). Precision is an indication of how

many points identified as relevant actually were relevant.

tp /(tp + fp ) (7.6)

The relationship between recall and precision is essentially a tradeoff

between being aggressive in identifying points of interest when there is

little consequence for over identification versus more precisely identify-

ing points of interest with a chance of missing some points.

7.1.4 Multi-Label Classification Metrics

To validate the multi-label classification performance, there are four well known

multi-label prediction metrics used. Two related metrics for multi-label classifi-

cation are Hamming loss and zero-one loss [88]. Hamming loss calculates the

fraction of labels that are incorrectly classified. That is:

LH (y,h(x))) = 1

m

m∑
i=1

�yi 6= hi (x)�. (7.7)

In Eq. (7.7), LH (y,h(x) is the Hamming loss function, where y is the set of m ob-

served labels for a given instance and h(x) is the output of the classifier (the m

predicted labels). The expression �X � evaluates to 1 if X is true and 0 otherwise.
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The Hamming loss is in contrast to zero-one loss which considers the entire pre-

diction incorrect if any label in the prediction is incorrect, as shown in Eq. 7.8:

Ls(y,h(x))) = �y 6= (h(x))�. (7.8)

Hamming loss is a more lenient metric which scores based on individual labels.

In both Hamming loss and zero-one loss, values tending toward zero indicate

good performance whereas values tending toward one indicate a higher percent-

age of misclassification.

The F1 score is as a weighted average of the precision and recall. Precision

and recall are calculated by counting the total true positives tp , true negatives tn ,

false negatives fn and false positives fp for examples classified as label l. Micro-

average precision and recall are defined in Eqs. 7.9 and 7.10, respectively [89]:

Pmi cr o−av g =

m∑
i=1

tpi

m∑
i=1

(tpi + fpi )
(7.9)

Rmi cr o−av g =

m∑
i=1

tpi

m∑
i=1

(tpi + fni )
. (7.10)

In a similar manner to Equations (7.5) and (7.6), the difference between the micro-

averaged precision and recall is the consideration of false positives fpi and false

negatives fni . Micro-averaged F1 score is given by Eq. 7.11:

F 1mi cr o−av g = 2×Pmi cr o−av g ×Rmi cr o−av g

Pmi cr o−av g +Rmi cr o−av g
(7.11)

The Jaccard similarity score, or multi-label accuracy [90] is the size of the inter-

section of two label sets ( the predictions and true labels) divided by the size of
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the union of the two label sets. In both Jaccard similarity score and F1 scores, 1

is the best score and 0 the worst. Several metrics are selected as it is well known

in machine learning problems that it is often the case that there is a trade-off

between metrics, with classifiers performing well in some metrics, performing

poorly by other standards. Therefore, to get a complete picture of the perfor-

mance it is necessary to consider several metrics.

7.2 Survey of DTN Routing Performance

This section discusses initial testing using DTN2, the DTN reference imple-

mentation. The NASA DTNBone test bed was used to evaluate the several cur-

rent state-of-the-art routing algorithms for delay tolerant networks. The NASA

DTNBone [91] consists of thirteen virtual machines running Ubuntu 14.04.5 LTS.

Each virtual machine runs the current version of DTN2 (version 2.9.0). The nodes

are networked together in a mesh topology and link delays and disruptions are

simulated using channel-emulating software. Link disruptions are simulated

hourly, with each link following its own schedule. The configuration of the net-

work for initial testing is shown in Fig. 7.1. Table 7.2 shows the data rates and

one-way delays associated with each link. TCP was used as the convergence layer

for this initial testing. It should be stated for clarity that the development of the

DTNBone testbed was not part of the work of this dissertation and rather was

used since it was an existing system already developed for DTN testing.
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Figure 7.1. Network Topology of the NASA DTNBone

Link Delay Rate Limit Availability

bravo-charlie None None Toggles every 30 min.
bravo-echo None None Toggles every 3 min.
bravo-golf 5 s 128 Kb/s Always available
bravo-india None None Always available
charlie-delta None None Toggles every 3 min.
echo-foxtrot None None Toggles every 30 min.
golf-hotel 200 ms 256 Kb/s Always available
india-juliet 1250 ms 512 Kb/s Up for 20 min. at the beginning of the hour
india-kilo 1250 ms 512 Kb/s Up for 20 min. at 20 min. past the hour
india-lima 1250 ms 512 Kb/s Up for 20 min. at 40 min. past the hour
juliet-mike 200 ms 1544 Kb/s Toggles every 6 min.
kilo-mike 200 ms 1544 Kb/s Toggles every 5 min.
lima-mike 200 ms 1544 Kb/s Toggles every 2 min.

Table 7.2. DTNBone Availability Schedule

DTN2 provides a framework for DTN software research and development.

It includes a bundle protocol implementation as well as DTLSR, flooding, and

PRoPHET routing implementations. In addition, it provides an interface for ex-

ternal routers to communicate with and control the DTN2 daemon, allowing

developers to easily integrate custom software with the existing bundle proto-

col implementation. This is accomplished by sending XML message to a port

used by the DTN2 daemon. The RAPID protocol was implemented using this ap-

proach and as such can be used as an example for further software development.
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For purposes of exercising each algorithm, the dtnperf tool included in DTN2

was used to send a series of bundles to a specified node in the network. The dt-

nperf tool allows the user to configure the bundle size, number of bundles and a

destination server node in the network to send the bundles to. It generates a time

stamped log of bundle forwarding and delivery status to allow the user to analyze

network performance. Most testing was done sending bundles from node Bravo

to node Mike since this is the most complex path for the algorithm to navigate

as it has the most hops, possible paths and intermittent disruptions. The algo-

rithms selected were the DTLSR, PRoPHET and flooding implementations pro-

vided by DTN2, as well as the RAPID implementation developed by University of

Massachusetts Amherst as an external router to DTN2. Of the three routing pro-

tocols internal to DTN2 that were tested, DTLSR performed the best, followed by

flooding. The results from initial testing a summarized in Table 7.3.

Algorithm Average Delay (s) Average # Replications

DTLSR 78.15 2.24
Flooding 99.15 5.22
RAPID 511.69 5.38

Table 7.3. Results for 50 1 KB Bundles

To study the effects of bundle size on the routing algorithms, a simpler des-

tination to reach in the network was chosen. The path from node Bravo to node

Hotel consists of only two hops and has links which are always available. DTLSR

continued to perform better than RAPID as shown in Fig. 7.2. In addition to hav-

ing a lower average delay, it also did not replicate unnecessary packets. In the

case of RAPID, there were still typically an average of 4 bundles replicated per

delivery, even though there was a direct path to the destination. The PRoPHET
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Figure 7.2. Average Delay for 2 Hop Path

routing algorithm is not included in the preliminary results as its performance

was quite unstable and it was difficult to send any number of bundles to even di-

rectly connected nodes. Forwarding bundles to a destination requiring multiple

hops was even less successful. The initial parameters used were configured as

recommended in the PRoPHET Internet-Draft and also several attempts at ad-

justing them to improve performance were made. This is not to say that fur-

ther testing could not be done to determine the cause of the poor performance,

whether it be due to configuration parameters needing to be tuned for each node

or some other factor in the PRoPHET implementation or DTN2.

There are a number of studies of characterizing DTN routing algorithm per-

formance that have shown PRoPHET’s performance to be inferior to MaxProp,

Spray and Wait, Epidemic, and RAPID [28], [92], [27] in some cases, particularly

depending on the mobility scenario used, as well as the amount of time given

to allow the algorithm to converge. For the case of this initial testing, two prob-

lems were noted that impacted performance. The first was that links with a delay
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associated with them (bravo-golf: 5 seconds, india-juliet, india-kilo, india-lima:

1250ms) seemed completely missed in the exchange of PRoPHET routing bun-

dles containing the delivery predictability information. This is no doubt due

to the expiration of some timeout value, however increasing the value of the

hello_interval (20 s) and hello_dead value (allow up to 10 hello_intervals before

a node is considered unreachable) did not help to solve the problem.

The PRoPHET algorithm, or specifically the DTN2 PRoPHET implementa-

tion, seemed to have a difficult time reacting to availability changes in links that

toggle frequently (bravo-echo, toggle link availability every 3 minutes). When

the link was available, the delivery predictability would approach 1, however the

link would become unavailable and this would not be reflected in the delivery

predictability, causing the algorithm to continue to repeatedly attempt to con-

tact the unavailable node. These types of problems are noted in [27], where the

authors discuss improvements for a second revision of the PRoPHET protocol.

They note that when the frequency of encounters is disproportionate through-

out the network and encounters occur frequently enough that the delivery pre-

dictability is not reduced quickly enough by the aging procedure, the algorithm

can fail to produce an accurate representation of the current network state. It

is possible that performance could be improved for this test case by further in-

vestigating the recommendations of PRoPHETv2, as well as further refining the

PRoPHET configuration parameters for each node. In the initial test case, all

nodes were configured with the same parameters, but it would likely be bene-

ficial to customize the parameters based on the link characteristics of each node,

essentially to make nodes with links that change frequently adjusts their delivery

predictabilities more aggressively.
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It was decided after this experimentation that DTN2 was not a good candi-

date for further development. This is largely due to the fact that it requires mul-

tiple dependencies that are no longer being updated and becoming increasingly

difficult to install on newer operating systems. In addition, the resource usage

is considerably larger than IBR-DTN as discussed in [49]. However, this work

with DTN2 was helpful in becoming familiar with the concepts of DTN, as well

as working with some alternative routing methods.

7.3 Q-Routing Simulation Results

This section discusses the simulation of Q-Routing using OMNeT++. The de-

tails of the Q-Routing algorithm are discussed in Chapter 4.2. The first set of

simulations (1-4) were performed with a short delay between nodes for initial

testing. Several nodes are selected to reject all packets to simulate failure or un-

availability of a node. This will test the ability of Q-Routing to learn which paths

lead to the shortest delay, yielding a greater reward value in the Q-Table. Later

simulations (5) were performed with a slightly longer propagation delay between

nodes to create an environment closer to an actual DTN.

7.3.1 Simulation 1 – 10 Node Mesh

The purpose of this experiment was to compare the shortest path algorithm

(Dijkstra) to that of Q-routing. A random mesh of 10 nodes was generated with

connections between nodes as shown in Table 7.4. The links between nodes are

bidirectional.
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Source Node Destination Node Delay (s) Date Rate (bps)

1 2 5 1 kbps
2 3 0.04 1 Mbps
1 4 1.5 1 kbps
4 5 0.01 1 Mbps
4 7 0.01 1 Mbps
7 8 10.5 1 kbps
8 5 2.01 1 Mbps
8 9 0.01 1 Mbps
9 6 8.01 1 kbps
6 3 2.7 1 Mbps
6 10 0.01 1 kbps
10 2 6.1 1 Mbps

Table 7.4. Network Configuration for Simulation 1

In this simulation, packets were first routed using the shortest path algo-

rithm. Each node application generates 50 kB packets to transmit to a randomly

selected node. Packets were generated at intervals of 10 milliseconds for 1 min,

5 milliseconds for 1 minute, and then 2 milliseconds for 1 minute. It should be

noted that these times pertain to time in the simulation model, not actual clock

time. In addition to increasing network traffic, a failure in node 3 occurs at ran-

dom intervals. The failing node will periodically drop all packets, and then it will

recover and perform normally until the next failure is scheduled to occur. The

same test was then conducted using the Q-routing algorithm to compare its per-

formance to the shortest path. This is to test the ability of Q-Routing to learn the

pattern of failures based on feedback from successful and unsuccessful packet

deliveries. The data rate is ramped from 10 millisecond intervals to 2 millisec-

ond intervals over 3 minutes. The performance of the two algorithms are shown

in Figure 7.3.

Data rates as shown above to attempt to saturate the network as much as pos-

sible. With network links set to lower data rates, nodes are able to keep up with



Performance Measurements 133

Figure 7.3. Average Delay 10 Node Mesh

incoming packets and the delay in delivery to the destination node is less than

one second for both the shortest path algorithm and Q-routing. Due to resource

constraints, it was not possible generate packets any faster than 4 Mbps for each

node. The simulation times increase dramatically as the data rate increases or

as more nodes are added in the network. It can be seen that as the network load

increases, the shortest path algorithm starts to perform poorly compared to Q-

routing. This intuitively makes sense due to the fact the Q-Routing uses a delay

estimate to determine the best path versus the distance between nodes or num-

ber of hops.

7.3.2 Simulation 2 – 20 Node Mesh

This experiment was similar to simulation 1. The shortest path algorithm is

compared to the Q-routing algorithm. The network in this case consists of 20

nodes in order to test the scalability of Q-Routing. The network configuration is

shown in Table 7.5.
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Source Node Destination Node Delay (s) Date Rate (bps)

1 2 0.01 1 kbps
1 7 0.01 1 Mbps
2 3 2.01 1 Mbps
3 4 0.01 1 kbps
4 5 0.01 1 Mbps
5 6 0.01 1 Mbps
6 12 0.01 1 Mbps
12 18 5.01 1 kbps
18 17 0.01 1 Mbps
17 11 1.01 1 Mbps
11 10 0.01 1 Mbps
10 16 1.01 1 Mbps
16 17 0.01 1 kbps
16 15 0.01 1 Mbps
15 9 0.01 1 Mbps
9 8 0.01 1 kbps
8 14 0.01 1 Mbps
14 15 10.01 1 kbps
14 13 0.01 1 Mbps
13 7 0.01 1 Mbps
13 19 2.01 1 Mbps
19 20 0.01 1 Mbps
1 7 4.01 1 Mbps
20 14 0.01 1 Mbps
20 10 6.01 1 Mbps
18 2 2.01 1 kbps
7 3 1.01 1 kbps

Table 7.5. Network Configuration for Simulation 2

Figure 7.4 shows the comparison in end-to-end delay for Q-routing versus

the shortest path for the 20 node mesh. Again, Q-routing performed better than

the shortest path algorithm, especially as the network load increased. It is also

interesting to note that the trend line for the shortest path increases much more

steeply than Q-routing. This indicates that performance would likely continue

to suffer, whereas with Q-routing the delay increase begins to level off.
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Figure 7.4. Average Delay for 20 Node Mesh

7.3.3 Simulation 3 - Multiple Node Failures

For this simulation, the number of nodes forced to failure are incrementally

increased in the 20 node mesh. The nodes selected to fail are shown in the Table

7.6.

Simulation Number Node Address

1 3
2 3,6
3 3,6,15
4 3,6,15,13

Table 7.6. Nodes Selected for Failure

Figure 7.5 shows the average delay increase as the number of nodes forced to

failure increases. While the performance does start to decline as more nodes fail,

it doesn’t decline dramatically. This shows that Q-routing is a good candidate for

a routing policy in an unpredictable network [6].
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Figure 7.5. Average Delay Versus Number of Nodes Failing

7.3.4 Simulation 4 – Forgetting Policy

Simulation 4 involved implementing a forgetting policy to improve perfor-

mance when a node failure occurs as discussed in [6]. The forgetting policy at-

tempts improve the Q-table once the algorithm has converged by rediscovering

other paths that may be more efficient than the current policy. It was not found

that there was any performance advantage to this approach. Instead, a better

approach was to occasionally, randomly choose a different node than what is

suggested by the Q-table. This method allows other paths to be explored, rather

than constantly tending to the best paths that the learner has converged to. Fig-

ure 7.6 shows the average delay using the forgetting policy.
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Figure 7.6. Average Delay with Forgetting Policy

The same nodes were selected to fail as in Simulation 3 and kept all other

parameters the same as well. Overall, the delay was larger for all cases.

7.3.5 Simulation 5 – Longer Delay

Simulations with a longer propagation delay between nodes were conducted

using a 9 node mesh. Each node application generates 50 kB packets to transmit

to a randomly selected node following an exponential distribution with a mean

which was varied from 1 to 0.1 seconds. Each simulation executed for 2.7 hours

in simulation time (10000 simulation seconds).

Table 7.7 shows the link characteristics used. The link characteristics have

been selected such that multiple possible paths to a destination will have the

same number of hops but a longer propagation delay and/or slower data rate.

This was done as a test to determine that the Q-routing algorithm can success-

fully choose the quicker path based the average end-to-end delays of packets
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Source Node Destination Node Delay (s) Date Rate (bps)

0 3 1 to 30 200 kbps
0 4 1 2 Mbps
0 5 1 200 kbps
1 3 1 2 Mbps
1 4 1 to 30 200 kbps
1 5 1 to 30 2 Mbps
2 3 1 200 kbps
2 4 1 200 kbps
2 5 1 to 30 200 kbps
3 6 1 200 kbps
3 7 1 2 Mbps
3 8 1 to 30 2 Mbps
4 6 1 200 kbps
4 7 1 to 30 2 Mbps
4 8 1 200 kbps
5 6 1 2 Mbps
5 7 1 200 kbps
5 8 1 to 30 2 Mbps

Table 7.7. Network Configuration for Simulation 5

sent on a particular route. Q-routing was found to react to the network load

quite well and as expected, performed similarly to the shortest path algorithm

under low network load but out-performed the shortest path algorithm as the

network load increased. This shows that previous end-to-end delays may be a

good indication of congestion or link unreliability along a particular path.

Figure 7.7 shows the average end-to-end delay versus the maximum link prop-

agation delays that were incrementally increased over 4 simulations. It can be

seen that the shortest path cannot account for the link delays and that Q-Routing

is able to determine better paths based on an overall time estimate rather than

the number of hops. Figure 7.8 shows the average end-to-end delay as the input

data rate is increased (more traffic is generated by the nodes). As the network is

more congested, the delay increases and Q-Routing is better able to determine

routes which will lead to a shorter delay.
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Figure 7.7. Average End-to-End Delay Based on Propagation Delay

Figure 7.8. Average End-to-End Delay Versus Data Rate

This series of simulations studied Q-Routing with networks with brief link

delays (on the order of seconds), slightly longer delays (10s of seconds), multi-

ple nodes becoming unavailable and network congestion. From the results, it

can be seen that Q-Routing does have some advantages for use in unpredictable

network environments. However, the need for Q-Routing to propagate delay es-

timates between nodes could become problematic as delays and periods of un-

availability become longer.
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After this series of simulations were conducted, it was determined that fur-

ther testing should be done in a more realistic DTN environment. The next sec-

tion cover an emulations that were done using actual bundle protocol software

and a more sophisticated test environment. The draw backs of OMNeT++ were

that while it is very useful as a multi-purpose network simulator, there are several

tools available such as CORE and the ONE that are more suited to DTNs.

7.4 Multi-label Classification Approach

The multi-label classification approach to bundle selection for replication

routing was implemented using CORE as an emulation environment and a mod-

ified version of IBR-DTN as discussed in Chapters 5 and 6.

7.4.1 Classification Results

This section discusses the results of the multi-label classification indepen-

dent of the routing results. This is the fourth step in the process of creating

the machine learning model, following storing network statistics and training

the classifier as discussed in section 6.3. During initial testing, several data set

were used to determine the classifier performance with different mobility mod-

els. They are a mathematically generated RandomWalk mobility model from

BonnMotion [81], and two datasets from the ZebraNet [80] archive from the CRAW-

DAD repository at Dartmouth. The ZebraNet dataset consists of the GPS coordi-

nates from DTN experiment that traced the location of multiple zebras in the

wild. The use of real world traces can help to provide a more realistic pattern of

motion that what can be obtained from synthetic mobility models.
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Figures 7.9 to 7.16 show the classification performance of several different

base classifiers and multi-label approaches. Bundles are traced from the source

node through each forwarding node to the destination and labeled as success-

fully delivered or not. The classifiers are trained to determine what nodes will

results in successful delivery. Base classifiers selected were Decision Tree, Gauss-

ian Naive Bayes and K-Nearest Neighbors. In addition, two different routing

methods were used to obtain the initial bundle traces, Epidemic and PRoPHET.

This was done to see if there was any impact on classification performance since

PRoPHET uses a probabilistic method, whereas Epidemic simply uses a replica-

tion approach to all nodes as discussed in Chapter 3. Each color on the graphs in

Figure 7.9 to 7.16 indicates a different multi-label approach to classify the set of

nodes in the network as reliable or unreliable.

It can be seen that the classification method performs quite well for all com-

binations of initial routing , base classifier and multi-label method. Micro-Averaged

F1 score, as defined in Eq. (7.11), ranges from 0.1 to 0.8 for the dataset, where a

value of 1 indicates good performance. The lowest ranking classifier was the KNN

base classifier and best performing classifier was Decision Tree.

The Jaccard Similarity Score is shown in Figures 7.11 and 7.12. Overall, all

classifiers performed well by this metric, with again Decision Tree performing

the best and KNN performing the worst, however with a much smaller differen-

tiation in values. Again results based on the Hamming Loss were promising.

In this case Naive Bayes performed the worst and Decision Tree performed the

best. In the case of Hamming Loss, good performance is indicated by a value of

zero and poor performance is indicated by 1. The values for the classifiers ranged

from less than 0.05 for Decision Tree and 0.2 for Naive Bayes.
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Figure 7.9. Micro-Averaged F1 Score (Random Walk)

Figure 7.10. Micro-Averaged F1 Score (ZebraNet)

Finally, the Zero-One Loss is shown in Figures 7.15 and 7.16. The vertical

axis represents loss, with values closer to zero indicating a higher percentage of

correct predictions. The results are similar to the performance of other metrics

in which Decision Tree performed the best and Naive Bayes and KNN performed

the worst. Values range from 0.05 to 0.25.
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Figure 7.11. Jaccard Similarity Score (Random Walk)

Figure 7.12. Jaccard Similarity Score (ZebraNet)

7.4.2 Routing Results

This section discusses the routing results obtained after the classification model

has been trained and is now used to filter bundles to the most reliable nodes. The

results of the classification approach are compared to Epidemic routing, where
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Figure 7.13. Hamming Loss (Random Walk)

Figure 7.14. Hamming Loss (ZebraNet)

bundles are sent to all nodes that do not already have a copy of a given bun-

dle. Several parameters are adjusted in addition to the routing method to see the

results of additional traffic and queue lengths on the routing performance. To

accomplish this, in each emulation scenario each of the 10 nodes will send 180

10 kB bundles. The bandwidth is changed from 10 kbs, to 100kbps, to 1 Mbps in
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Figure 7.15. Zero-One Loss (Random Walk)

Figure 7.16. Zero-One Loss (ZebraNet)

3 scenarios, each using the same mobility script for node locations. In addition,

this series is emulated 2 separate times, once with a bundle time-to-live of 90

seconds and once with 60 seconds. Figures 7.17 and 7.18 show the total number

of bytes transmitted and received from the TCP convergence layer (CL). This in-

cludes all original bundles sent from a source node, replicated bundles that have
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Figure 7.17. Epidemic versus Classification Filter TCP CL Bytes
Transmitted

been forwarded by the routing module and bundles that are specific to the rout-

ing modules that contain handshake information and a list of the bundles that

are already known to the neighboring node. The classification approach reduces

the total number of bytes transmitted and received by replicating fewer bundles,

since only neighbors which are deemed good candidates for bundle delivery are

selected. This reduces wasted contact time, bundle processing, and the number

of bundles in storage on each node. All these are resources which are desirable

to conserve in resource constrained systems.

Figure 7.19 shows the percentage of bundles delivered versus the number

of bundles sent for Epidemic and Classification based routing. The emulations

were conducted with three different node bandwidth settings to determine the
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Figure 7.18. Epidemic versus Classification Filter TCP CL Bytes Received

effect of bundle expiration and queuing on each algorithm. In addition, the bun-

dle expiration time is varied from 60 to 90 seconds for this same reason.

Figure 7.20 shows the bundle delivery cost for Epidemic versus Classification

based routing. A value of zero would indicate that all bundles which were trans-

mitted where delivered and values closer to zero indicate better performance.

This metric in particular shows an advantage of classification based routing in

that fewer unnecessary bundles (bundles that never get delivered to their desti-

nation) are transmitted. This is because fewer bundles are waiting in queues to

be forwarded or expire before being delivered. Figure 7.21 shows that fewer bun-

dles are replicated by the classification based routing and Figure 7.22 shows that

fewer bundles expire before being delivered. Figure 7.23 shows fewer bundles are

queued by the classification based routing as well.
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Figure 7.19. Epidemic versus Classification Filter Bundle Delivery Ratio

Figure 7.20. Epidemic versus Classification Filter Bundle Delivery Cost



Performance Measurements 149

Figure 7.21. Epidemic versus Classification Bundles Replicated

Figure 7.22. Epidemic versus Classification Bundles Expired
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Figure 7.23. Epidemic versus Classification Bundles Queued

Figure 7.24 shows the delivery delay associated with Epidemic and Classifica-

tion based routing. There is less delivery delay associated with the Classification

based routing since fewer bundles need to be transmitted and queued. It can be

seen that the use of selecting bundles to forward based on the classification ap-

proach discussed in Section 4.3 is able to reduce the total amount of traffic in the

network while still delivering bundles at a satisfactory rate. The overall number

of bundles replicated is reduced, which reduces the number of bundles waiting

in the transmission queue as well as the number of bundles that expire before

being delivered.
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Figure 7.24. Epidemic versus Classification Bundle Delivery Delay

7.5 Clustering Results

This section discusses the metrics used for determining the best number of

clusters, given the number of nodes and location points. Figure 7.25 shows a

graphical representation of how node locations are divided into cluster regions.

The location coordinates shown are based on the UTM (Universal Transverse

Mercator) coordinate systems as discussed in Chapter 6. Initial emulations were

performed to determine the best number of clusters to use for routing bundle fil-

ter. As discussed in section 7.1, the metrics of Silhouette Coefficient and Calinski-

Harabaz Index indicate how well defined clusters are. This is loosely an indica-

tion of performance , since there are no true or correct ways to cluster the loca-

tion points. Based on these results from varying the number of clusters, 9 clusters

are chosen for the rest of the emulation.
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Figure 7.25. Graphical Representation of Location Clusters

Clusters Silhouette Coefficient Calinski-Harabaz Index

3 0.57 4343.4
4 0.62 5307.6
5 0.63 5635.2
6 0.63 5783.9
7 0.68 6398.3
8 0.68 7481.3
9 0.69 8854.8

Table 7.8. Cluster Metrics for Number of Clusters

7.5.1 Routing Results

Emulations were performed similarly to tests with the classification based

routing. Data rates are varied from 10 kbps to 1 Mbps over three emulations and

repeated with bundle expiration times of 60 and 90 seconds. Again, the total
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Figure 7.26. Epidemic versus Cluster Filter TCP CL Bytes Transmitted

number of bytes sent and received is reduced while still delivering a sufficient

number of bundles.

Figures 7.26 and 7.27 show the total number of bytes transmitted and re-

ceived by the TCP convergence layer. Figure 7.28 shows the bundle delivery ra-

tio and Figure 7.29 shows the bundle delivery cost. Again, it can be seen that

the cluster based approach is an improvement over Epidemic routing. Using the

same concept as the classification based routing, which is to use historical data

to predict the behavior of the nodes and subsequently reduce the number of un-

necessary replications as shown in Figure 7.30.

Reducing the number of replications reduces the number of bundles that

must be queued as shown in Figure 7.32. This will also reduce the number of



Performance Measurements 154

Figure 7.27. Epidemic versus Cluster Filter TCP CL Bytes Received

Figure 7.28. Epidemic versus Cluster Filter Bundle Delivery Ratio
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Figure 7.29. Epidemic versus Cluster Filter Bundle Delivery Cost

Figure 7.30. Epidemic versus Cluster Bundles Replicated
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Figure 7.31. Epidemic versus Cluster Bundles Expired

bundles that expire before delivery as shown in Figure 7.31 and also reduce the

overall delivery delay as shown in Figure 7.33.

Both the cluster and classification based bundle filters reduce the number

of replicated bundles which in turn reduce the number of bundles that must be

queued , transmitted and that may expire before delivery. This allows the entire

network to perform more efficiently, saving system resources and well as reduc-

ing delivery times.
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Figure 7.32. Epidemic versus Cluster Bundles Queued

Figure 7.33. Epidemic versus Cluster Bundle Delivery Delay
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8 Conclusions

This chapter covers a summary and conclusion of this dissertation as well

as suggestions for future work. In this dissertation several well known machine

learning techniques were applied to opportunistic DTN routing, including the

reinforcement Q-Learning approach, an innovative multi-label classification bun-

dle filter and a clustering based bundle filter for epidemic routing.

8.1 Summary

Chapter 1 discusses the introduction and motivations for cognitive and ma-

chine learning based networking and how these relate to the thesis contribu-

tions. Chapter 2 covered background material on the NASA SCaN Networks, the

main concepts of DTNs and an introduction to the machine learning technique

used in this work. Next, selected related works in DTN routing are discussed

as well as other works that have applied related techniques such as Naive Bayes

classifiers to DTN routing.

Chapter 4 discusses the approach taken to the contributions of this thesis,

such as the development of a network and software architecture, and the pros

and cons of distributed versus centralized learning architecture. From here, the
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majority of the work in this thesis used a centralized architecture, other than Q-

Routing which is a distributed approach. Each technique is then discussed in

detail. The development of the classification approach including the determina-

tion of suitable attributes, labels and problem formulation are discussed. Next,

the development of the cluster based approach are covered.

In Chapter 5, the actual details of how these algorithms where implemented

and tested are discussed. A variety of DTN bundle protocol implementations

were investigated for the suitability of this work and IBR-DTN was selected as

the best choice. The details of the modifications to IBR-DTN to integrate the

machine learning models are covered. Chapter 6 discusses the development of

a DTN testbed and the tradeoff between a simulation or emulation test envi-

ronment. Several popular network simulators were explored and the final se-

lection of the CORE emulator is discussed with details on how the emulation is

performed using Linux containers.

Finally Chapter 7 covers metrics used to evaluate the learning and routing

performance and a summary of results are given. It is shown that these route

selection techniques are promising way to reduce overhead associated with epi-

demic routing while still providing a comparable delivery ratio.

8.2 Conclusion

The techniques of clustering and classification are used to reduce the con-

sumption of resources such as bandwidth, processing time and data storage. Us-

ing historical data from the network, both techniques are able to predict which

neighbors are the most likely to deliver bundles to their destination. For systems
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with less data storage capacity, limited bandwidth or limited processing capabil-

ities, the overhead associated with epidemic routing can be burdensome. Both

machine learning techniques reduce the number of bundles that must be repli-

cated, while still delivering a satisfactory number of bundles.

While Q-Routing is an interesting approach for many network scenarios, the

long delays associated with some types of DTNs may make estimation of the re-

ward function (end-to-end delay) and propagation of the estimate difficult. For

this reason, alternative algorithms such as supervised learning (classification)

where considered. It is still very promising to consider Q-routing and other re-

inforcement learning techniques, however this will require additional consider-

ation for DTNs. The use of reinforcement learning and Q-Routing with a cross-

layer technique for obtaining information from lower protocol layers in particu-

lar may be a promising approach.

8.3 Future Work

This section covers several interesting avenues that could be pursued for fu-

ture work.

8.3.1 Cross Layer Approach

A cross layer approach as discussed in [93] and [32] could be used to incorpo-

rate information from the lower protocol layers to add addition features to each

reliability classifier for the nodes in the network. This information could also be

used in a reinforcement learning scheme to reward routing decisions that pro-

duce less errors or retransmission in the underlying protocol layers.
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8.3.2 Evolutionary Clustering

Evolutionary clustering [94],[95] is a type of clustering which takes into ac-

count points changing in time and updates clusters accordingly. This could po-

tentially improve the performance of the cluster based filter which simply used

a naive clustering method where all points within the period are clustered once

and then matched back to the location and point in time.

8.3.3 Deterministic Routing

This work focused on an opportunistic DTN environment using replication

routing techniques. Additional work could be done to apply machine learning

techniques to networks that perform in a more deterministic manner with addi-

tional constraints.

8.3.4 Radio/Optical Link Models

The emulations conducted used a very basic model of the wireless commu-

nication links based on distance and data rate. However, EMANE has the ability

to use custom defined radio models. The development of a higher fidelity radio

model or development of an optical link model would be interesting. This was

left for future work due to the scope of this dissertation being more focused on

DTN software and routing algorithms.
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