939 research outputs found

    A Novel Approach to Face Recognition using Image Segmentation based on SPCA-KNN Method

    Get PDF
    In this paper we propose a novel method for face recognition using hybrid SPCA-KNN (SIFT-PCA-KNN) approach. The proposed method consists of three parts. The first part is based on preprocessing face images using Graph Based algorithm and SIFT (Scale Invariant Feature Transform) descriptor. Graph Based topology is used for matching two face images. In the second part eigen values and eigen vectors are extracted from each input face images. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. In the final part a nearest neighbor classifier is designed for classifying the face images based on the SPCA-KNN algorithm. The algorithm has been tested on 100 different subjects (15 images for each class). The experimental result shows that the proposed method has a positive effect on overall face recognition performance and outperforms other examined methods

    Likelihood Ratio-Based Detection of Facial Features

    Get PDF
    One of the first steps in face recognition, after image acquisition, is registration. A simple but effective technique of registration is to align facial features, such as eyes, nose and mouth, as well as possible to a standard face. This requires an accurate automatic estimate of the locations of those features. This contribution proposes a method for estimating the locations of facial features based on likelihood ratio-based detection. A post-processing step that evaluates the topology of the facial features is added to reduce the number of false detections. Although the individual detectors only have a reasonable performance (equal error rates range from 3.3% for the eyes to 1.0% for the nose), the positions of the facial features are estimated correctly in 95% of the face images

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    An Exploration of the Feasibility of FPGA Implementation of Face Recognition Using Eigenfaces

    Get PDF
    Biometric identification has been a major force since 1990\u27s. There are different types of approaches for it; one of the most significant approaches is face recognition. Over the past two decades, face recognition techniques have improved significantly, the main focus being the development of efficient algorithm. The state of art algorithms with good recognition rate are implemented using programming languages such as C++, JAVA and MATLAB, these requires a fast and computationally efficient hardware such as workstations. If the face recognition algorithms could be written in a Hardware Description Language, they could be implemented in an FPGA. In this thesis we have choose the eigenfaces algorithm, since it is simple and very efficient, this algorithm is first solved analytically, and then the architecture is designed for FPGA implementation. We then develop the Verilog module for each of these modules and test their functionality using a Verilog Simulator and finally we discuss the feasibility of FPGA implementation. Implementing the face recognition technology in an FPGA would mean that they would require relatively low power and the size is drastically reduced when compared to the workstations. They would also be much faster and efficient, since they are specifically designed for face recognition

    Real time face matching with multiple cameras using principal component analysis

    Get PDF
    Face recognition is a rapidly advancing research topic due to the large number of applications that can benefit from it. Face recognition consists of determining whether a known face is present in an image and is typically composed of four distinct steps. These steps are face detection, face alignment, feature extraction, and face classification [1]. The leading application for face recognition is video surveillance. The majority of current research in face recognition has focused on determining if a face is present in an image, and if so, which subject in a known database is the closest match. This Thesis deals with face matching, which is a subset of face recognition, focusing on face identification, yet it is an area where little research has been done. The objective of face matching is to determine, in real-time, the degree of confidence to which a live subject matches a facial image. Applications for face matching include video surveillance, determination of identification credentials, computer-human interfaces, and communications security. The method proposed here employs principal component analysis [16] to create a method of face matching which is both computationally efficient and accurate. This method is integrated into a real time system that is based upon a two camera setup. It is able to scan the room, detect faces, and zoom in for a high quality capture of the facial features. The image capture is used in a face matching process to determine if the person found is the desired target. The performance of the system is analyzed based upon the matching accuracy for 10 unique subjects

    Image Spam Analysis

    Get PDF
    Image spam is unsolicited bulk email, where the message is embedded in an image. This technique is used to evade text-based spam lters. In this research, we analyze and compare two novel approaches for detecting spam images. Our rst approach focuses on the extraction of a broad set of image features and selection of an optimal subset using a Support Vector Machine (SVM). Our second approach is based on Principal Component Analysis (PCA), where we determine eigenvectors for a set of spam images and compute scores by projecting images onto the resulting eigenspace. Both approaches provide high accuracy with low computational complexity. Further, we develop a new spam image dataset that should prove valuable for improving image spam detection capabilities
    corecore