
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2012

An Exploration of the Feasibility of FPGA Implementation of Face An Exploration of the Feasibility of FPGA Implementation of Face

Recognition Using Eigenfaces Recognition Using Eigenfaces

Vinod Anbalagan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Anbalagan, Vinod, "An Exploration of the Feasibility of FPGA Implementation of Face Recognition Using
Eigenfaces" (2012). Electronic Theses and Dissertations. 8122.
https://scholar.uwindsor.ca/etd/8122

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8122?utm_source=scholar.uwindsor.ca%2Fetd%2F8122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Exploration of the Feasibility of FPGA

Implementation of Face Recognition

Using Eigenfaces

by

Vinod Anbalagan

A thesis

Submitted to the Faculty of Graduate Studies the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements of the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2012

©Vinod Anbalagan 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

mmmmmmmmmmmmammmmmmmammmmmsmmaKmBrnmammamBmBamammmammmm

Biometric identification has been a major force since 1990's. There are different types of

approaches for it; one of the most significant approaches is face recognition. Over the

past two decades, face recognition techniques have improved significantly, the main

focus being the development of efficient algorithm. The state of art algorithms with good

recognition rate are implemented using programming languages such as C++, JAVA and

MATLAB, these requires a fast and computationally efficient hardware such as

workstations.

If the face recognition algorithms could be written in a Hardware Description Language,

they could be implemented in an FPGA. In this thesis we have choose the eigenfaces

algorithm, since it is simple and very efficient, this algorithm is first solved analytically,

and then the architecture is designed for FPGA implementation. We then develop the

Verilog module for each of these modules and test their functionality using a Verilog

Simulator and finally we discuss the feasibility of FPGA implementation.

Implementing the face recognition technology in an FPGA would mean that they

would require relatively low power and the size is drastically reduced when compared to

the workstations. They would also be much faster and efficient, since they are

specifically designed for face recognition.

iv

Acknowledgments

There are several people who deserve my sincere thanks for their generous contributions

to this project. First and foremost I would like to express my deepest gratitude and

appreciation to Dr. Jonathan Wu and Dr. Mohammad Khalid, my supervisors for their

invaluable guidance, encouragement and support over the years. Their generosity,

wisdom, empathy and professionalism helped me complete this thesis, would also like to

thank Dr. Tepe and Dr. Zhang for their invaluable advice.

Secondly, I would like to express my gratitude to Dr. Nihar Biswas, who

personally helped me overcome my personal difficulties. Also I am very thankful to Mrs.

Andria Ballo, for always being there for me and for all the engineering souls in distress,

assisting them with her guidance, support and friendly approach.

Next, I would like to thank my senior and friend Mohan Thangarajah, for

constantly encouraging me and helping me whenever I was in need. His company

through the university years would be cherished, especially our 7/11 and Tim Hortins

coffee breaks whilst staying up all night for working on our projects in our office, lab and

library.

Finally, I would like to thank my parents A. Premalatha and R. Anbalagan, my

brother A.Vivek, for all their understanding, support and sacrifices over the past couple

of years, and this note would be incomplete without thanking my family

ACKNOWLEDGMENT

Fifi Dyne, Lorena Marie, James 0. Lepp, Steven O. Lepp, Jeni Robertson, Ricki Oltean,

Kirsta and Chris Konrad, Gina, Chelsea and Gerry Lepp, your support, motivation and

constant encouragement and has helped me immensely to complete this project.

vi

my family and friends for their unending love and support.

vii

Contents

Abstract iv

Acknowledgment v

Dedication vii

List of Figures xiii

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

1.1 Face Recognition 1

1.2 Eigenfaces 2

1.3 Problem Statement 3

1.4 Objectives 4

1.5 Motivation 4

1.6 Thesis Organization 5

2 Biometric Recognition 7

2.1 Introduction 7

2.2 What is Biometrics? 7

2.3 Need for Biometric System 8

2.4 Types of Biometric Recognition 9

2.5 Application of Biometric Systems 10

2.6 Advantages of Biometric Systems 11

3 Face Recognition 13

3.1 Introduction 13

3.2 Primary Tasks of Face Recognition 13

viii

CONTENTS

3.3 Disadvantages of Other Biometric Systems 14

3.4 Advantages of Face Recognition System 14

3.5 Evolution of Face Recognition 15

3.6 Applications of Face Recognition 18

3.7 Face Detection 18

3.7.1 Face Detection Scenarios 19

3.7.2 Face Detection Methods 20

3.7.2.1 Knowledge Based Methods 20

3.7.2.2 Template Matching 20

3.7.2.3 Appearance Based Method 21

3.8 Face Extraction 21

3.9 Face Classification 22

3.10 Different Approaches in Face recognition 23

3.10.1 Appearance Based Approach 24

3.10.1.1 Linear Analysis 24

3.10.1.1.1 Principal Component Analysis 25

3.10.1.1.2 Linear Discriminant Analysis 25

3.10.1.1.3 Independent Component Analysis 26

3.10.1.2 Non-Linear Analysis 26

3.10.2 Model Based Approach 26

3.10.2.1 2D Approach 27

3.10.2.1.1 Elastic Bunch Graphing 27

3.10.2.1.2 Active Appearance Model 28

3.10.2.2 3D Approach 28

ix

CONTENTS

3.10.2.2.1 3D Morphable Models 28

3.10.3 Piecemeal / Holistic Approach 29

3.10.3.1 Hidden Markov Model 29

3.11 Face Recognition Database 30

3.12 Difficulties in Face Recognition 30

4 Eigenfaces 32

4.1 Introduction 32

4.2 Principal Component Analysis 32

4.3 Background Mathematics 33

4.3.1 Standard Deviation 33

4.3.2 Variance 34

4.3.3 Co-Variance 34

4.3.4 Eigenvectors and Eigenvalues 35

4.4 PCA Example Calculation 36

4.5 PCA in Face Recognition 43

4.6 Eigenfaces 44

4.7 Eigenfaces Approach 46

4.8 Assumptions in EA 49

4.9 EA 49

4.10 Face Space 54

5 Proposed Architecture for FPGA Implementation of EA 57

5.1 Introduction 57

5.2 Data Representation 58

5.3 Assumptions 58

5.4 Proposed Architecture 59

x

CONTENTS

5.4.1 Phase I 62

5.4.1.1 RAM Controller 64

5.4.1.2 RAM Blocks 67

5.4.1.3 Controller to Control Location and Position 69

5.4.1.4 Pipelining 71

5.4.1.5 Parallel-Pipelined Adder 73

5.4.1.6 Divider Module 75

5.4.1.7 Bit Check Module 81

5.4.1.8 Pipelined Adder 82

5.4.1.9 Multiplier 85

5.4.1.10 MATLAB Module 88

5.4.2 Phase II 90

5.4.2.1 Multiplier 92

6 Simulation and FPGA Implementation Issues 103

6.1 Introduction 103

6.2 Simulation 103

6.2.1 Basic Simulation Flow 103

6.2.2 Simulation Result 105

6.2.2.1 Parallel-Pipelined Adder Module 105

6.2.2.2 Divide by - 3 Module 106

6.2.2.3 Read and Write Address Generator Module 107

6.2.2.4 Read and Write Data to RAM Module 107

6.3 FPGA Implementation - Feasibility Issues 108

xi

CONTENTS

7 Conclusion and Future work 111

7.1 Dissertation Summary Ill

7.2 Future Work 112

References 113

Vita Auctoris 121

List of Figures

1.1 Eigenface 2

2.1 Types of Biometric Recognition 10

3.1 Sub-Routines in Face Recognition System 18

3.2 Face Recognition Approaches 24

4.1 Plot of Original Data 37

4.2 Mean Adjusted Data 38

4.3 Mean Adjusted Data with Eigenvectors 39

4.4 Final Data with Eigenvectors 40

4.5 Comparison between Original Data and Final Data 42

4.6 PCA in Face Recognition 44

4.7 Flowchart - Eigenfaces 48

4.8 Eigenfaces Concept 49

4.9 Face Images from AT&T Database 50

4.10 Average Face 51

4.11 Difference Face 51

4.12 Eigenfaces 53

4.13 Image Space and Face Space 55

4.14 Different Possibilities of Face Space and Face Class 56

5.1 Proposed Architecture for Eigenfaces 61

5.2 Architecture Data Flow - Phase I 62

xiii

LIST OF FIGURES

5.3 RAM Controller 66

5.4 RAM Blocks 67

5.5 Internal Register 69

5.6 Controller to Control the Address Location and Position 70

5.7 Pipelined Addition of'Two' 12bitData 72

5.8 Parallel-Pipelined Adder 73

5.9 Divide by - 3 Module 76

5.10 Average Information Module 77

5.11 Normalization Module 78

5.12 Controller to Control the Address Location and Position 79

5.13 Bit Check Module 82

5.14 Pipelined Adder 83

5.15 Difference Face 83

5.16 Multiplier Module - ('A' Matrix and 'AT' Matrix) 86

5.17 L Matrix - Normalization Module 86

5.18 MATLAB Module 89

5.19 Architecture Data Flow - Phase II 90

5.20 Multiplier Module - ('A' matrix and Eigenvectors Vi,V2and V3) 92

5.21 Internal Register - ('U' and 'UT' Matrix) 93

5.22 Bit Check Module 96

5.23 Parallel-Pipelined Adder - (Average Face and Unknown Face) 97

5.24 Parallel-Pipelined Adder - (Average Face and known Face) 98

5.25 Multiplier Module - (Ur x (r, -XF)) 99

5.26 Bit Check Module for Weight Vectors 100

xiv

LIST OF FIGURES

5.27 Pipelined Adder for Weight Vector 101

5.28 Compare and Display Module 101

6.1 Basic Simulation Flow 104

6.2 Parallel-Pipelined Adder Interface Module 105

6.3 Divide by 3 - Interface Module 106

6.4 Read and Write Address Generator Module Interface 107

6.5 Read and Write to RAM Module Interface 108

xv

mmmmmmmmmmmmmsm,

List of Tables

4.1 Original Data 36

4.2 Mean Adjusted Data 37

4.3 Final Data 40

5.1 RAM Controller - Port Names and Description 64

5.2 Internal Register - Port Name and Description 68

5.3 Parallel-Pipelined Adder - Port Name and Description 75

5.4 Divide by - 3 Module - Port Name and Description 75

5.5 Controller for Address Location and Position - Port Name and Description 79

xvi

List of Abbreviations

The notation used in this thesis is as follows. In general, a scalar element of a vector is denoted as

v, e v, Which is read as " the i4 element of vector v with indexing of vectors starting at i = 1

and ranging to the length of the vector. All vectors are assumed to be column vectors. Some

commonly used operators, symbols and abbreviations are listed below.

Abbreviations Definition

(•)T Transpose Operator

N x N Height (N) and Width (N) of an Image

X Mean of x

I Identity Matrix

D Dimension

SD Standard Deviation

V Variance

Cov Covariance

C Covariance Matrix in Eigenfaces Algorithm

L Dimensionality Reduced Covariance of Eigenfaces Algorithm

U Eigenvector of Covariance Matrix 'C'

V Eigenvector of Covariance Matrix 'L'

X Eigenvalue

n Weight Vector

£rec Smallest Euclidean Distance

0 rec Heuristically Chosen Value

r An Image in the Database

Average Face Vector

xvii

LIST OF ABBREVIATIONS

® Difference face vector

M Total Number of Images in the Database

K Top Most Significant Eigenfaces

MATLAB Matrix Laboratory

HDL Hardware Description Language

FPGA Field Programmable Gate Array

ID Identification

E-Passport Electronic Passport

DOD Department of Defense

MIT Massachusetts Institute of Technology

FERET Face Recognition Technology

DARPA Defense Advanced Research Product Agency

FVRT Face Recognition Vendor Test

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

ICA Independent Component Analysis

FBG Face Bunch Graphing

AAM Active Appearance Model

HMM Hidden Markov Model

FRGC Face Recognition Grand Challenge

AT&T American Telephone & Telegraph

CAS-PEAL Chinese Academy of Science - Pose, Expression, Accessory and
Lighting

PICS Psychological Image Collections

RMA Royal Military Academy

RAM Random Access Memory

LSB Least Significant Bit

MSB Most Significant Bit

EA Eigenfaces Algorithm

IC Integrated Circuit

Chapter 1

Introduction

1.1 Face Recognition

Face recognition in humans has always been an enigma, for we can recognize a face with

facial hair, occlusion, even after several years of separation and in worst possible lighting

conditions. For two decades now researchers, not only from the field of computer vision

but also psychologists and neurologists, have been trying to emulate this ability using

machines, so far we only know that the temporal lobe in the brain is partly responsible for

face recognition, damage to this region would result in a person losing his ability to

recognize faces, and this condition is called prosopagnosia. Even after this condition has

occurred, the perception of face remains unchanged because the human mind would use

its hearing ability and cognitive ability to analyze the voice and gait of a person for

recognition, so emulating such an ability will be an herculean task even with the latest

available technology. This challenge is one reason why face recognition has caught the

imagination of so many researchers from diverse fields.

1

1. INTRODUCTION

1.2 Eigenfaces

The concept of eigenfaces is similar to Fourier decomposition, which is one of the most

fundamental ideas in mathematics and signal processing. A Fourier series decomposes

periodic signals into sum of (possibly infinite) set of simple oscillating functions namely

sine and cosines.

Eigenfaces technique represents a face as linear composition of the base images

also known as 'eigenfaces' or 'eigenpictures', these eigenfaces are basically a set of

eigenvectors used in computer vision problem, they are generated by performing a

mathematical procedure called 'Principal Component Analysis' [Joll 02] on a large set of

human face images. In mathematical terms, we are finding the eigenvectors of the

covariance matrix of a set of faces, where these faces are treated as a vector in a high

dimensional space. The characteristic features from each face contributes to the

eigenvectors, which can be represented as a ghostly face as show in Figure 1.1, we call

this as an eigenface.

Figure 1.1: Eigenface

2

1. INTRODUCTION

The approach of using eigenfaces for recognition was developed by Sirovich and Kirby

(1987) at Brown University [Kirb 87], later was expanded and developed by Matthew

Turk and Alex Pentland [Turk 91] [Pent 91], which was considered as the first successful

model of automated face recognition technology.

1.3 Problem Statement

Face recognition techniques have improved significantly. The focus of face recognition

has been to develop the most efficient algorithm; researchers have been striving to

develop this elusive algorithm with highest recognition rate. Face recognition algorithms

require computationally efficient and fast hardware with high storage capabilities such as

mainframes, workstations and server desktop computers.

If we deploy face recognition technology; we would require the best and efficient

workstations stationed at every entry points under human supervision, this could be very

costly and is not feasible in places like a huge organizations, storage facilities,

multistoried parking areas, residential complexes, warehouses, etc. The majority of the

areas would go uncovered and vulnerable since they would have many entry points. In

this thesis we explore the feasibility of implementing face recognition technology in a

FPGA, which would drastically reduce the size and would only require relatively low

power without compromising on recognition rate or speed. The reduction in size would

imply that it could be used in places where we would normally hesitate to use a

workstation or a server.

3

1. INTRODUCTION

1.4 Objectives

The work presented in this thesis has the following objectives.

1. Investigate new and existing algorithms and choosing a computationally efficient,

simple and accurate method.

2. Propose a feasible architecture for FPGA implementation based on the chosen

algorithm.

3. Developing Verilog HDL module for each individual module and test its

functionality using a Verilog simulator.

1.5 Motivation

Biometric signature is very distinct in verifying identities of an individual; they cannot be

guessed, stolen, forged or lost.

Biometric identities are derived from physiological characteristics such as face,

fingerprint, finger geometry, hand geometry, iris, palm, vein, retina and voice. Behavioral

traits such as gait, signature and keystroke dynamics can also be used in establishing

biometric identity.

Face recognition seems to offer several advantages over other biometric methods;

also face recognition can be done passively, where the subject need not even raise their

finger, but the face recognition technologies [Cogn 10] [Ayon 10] [Auro 08] that are

available now, require computationally efficient workstations and servers, since the

algorithm used are very complex and computationally intensive, along with the power

requirements and lack of mobility are a huge drawbacks even though they offer good

4

1. INTRODUCTION

recognition rate. This hurdle could be crossed if we could implement face recognition

algorithm on an FPGA.

Currently face recognition algorithms are implemented programming languages

such as C++, JAVA, MATLAB, Python and Mathematica. They are yet to be written in a

Hardware Description Language (HDL). This thesis aims at exploring the feasibility of

FPGA implementation of face recognition using the best and the most efficient algorithm

implemented using Verilog HDL.

1.6 Thesis Organization

Developing from the introduction in Chapter 1, Chapter 2 summarizes the biometric

systems, types of biometric system, applications and advantages of biometric system.

Chapter 3 covers face recognition technology's development though history, face

detection, extraction and classification process, popular face recognition approaches, the

difficulties involved in implementing face recognition technology and the available

database for face recognition.

Chapter 4 of this thesis provides a thorough background, mathematical

conceptualization and algorithm of principal component analysis and eigenfaces. The

chapter continues with a discussion on the assumptions and the steps involved in the

algorithm by presenting a detailed analysis of eigenfaces calculations using a small

example.

Chapter 5 builds on the foundation laid in Chapter 4; it proposes a flexible

architecture for implementing eigenfaces, each and every module from the architecture

along with their functionality are discussed in detail.

5

1. INTRODUCTION

Chapter 6 presents the ModelSim Simulation results of the functionality of the

architectural blocks and discusses the feasibility of FPGA Implementation and related

issues.

We conclude in Chapter 7 with a discussion of future work.

6

Chapter 2

Biometric Recognition

2.1 Introduction

Biometrics consists of methods for uniquely identifying individuals based on physical

and behavioral traits. This Chapter begins by discussing the history of biometrics and the

need for biometrics. We also discuss the different types of biometrics and finally the

advantages and applications of biometrics.

2.2 What is Biometrics?

The term "Biometrics" is derived from the Greek word "Bio" (life) and "metrics" (to

measure). Automated biometric system [Coun 06] has only been available over the last

few decades due to significant advances in technology.

Biometric recognition, however fancy the name sounds, was conceived before

thousands of years ago. In the earliest civilizations the cave walls were said to be adorned

with paintings and alongside these paintings there were numerous handprints, which were

believed to be tamper proof signature, by its creators. Face recognition was used by the

early civilizations to categorize an individual between known and unknown. Human to

human recognition kept evolving, the mind was unconsciously registering the behavior

7

2. BIOMETRIC RECOGNITION

patterns such as voice and gait. These physiological and behavioral patterns recognition

were collectively known as biometric recognition.

2.3 Need for Biometric Systems

During the mid 1800s there was rapid growth of cities due to industrial revolution. As

more and more people were migrating towards the cities, unrest and chaos was a common

scene, this made it more and more difficult for the justice system, to keep track of the

repeated offenders. They used a formal system that recorded the offences along with the

identity trait of the offender; this marked the birth of the official biometric system.

Personal security is being treated with utmost importance these days and rightly

so, since the identity thefts are on rise. Unconventional recognition techniques such as

password and ID card are based on "what you know?" and "what you have?" In contrast

Biometric technology is based on "who you are?" It is derived from physiological traits

such as face, fingerprint, iris, palm-print, voice and behavioral traits such as signature,

gait and keystroke. This technology is extremely difficult to duplicate, steal, copy,

misplace or forge.

Since the advent of Internet, everything has gone online, including our day-to-day

activities such as online banking, social networking, online shopping etc. All our online

activities start with logging in and logging off the network with our user ID and

password. These could be easily hacked, stolen and guessed. Once this information falls

into the wrong hands, they could access your bank account; they could get your personal

information such as residential address etc. This poses a very serious security threat for

8

2. BIOMETRIC RECOGNITION

anyone. Therefore to avoid such situations a good solution is to implement an effective

biometric system.

2.4 Types of Biometric Recognition

There were two approaches to the early biometric system, the first approach was called as

Bertillon System of Measuring Various Body Dimensions, and this originated in France.

These measurements were written on cards that were sorted by height, weight, arm's

length etc., this field was called anthropometrics. The second approach was the method of

taking fingerprint from the index finger; this was introduced in Asia, Europe and South

America by 1800s. This method was based on the ridges and the finger print pattern on

the index finger.

The later half of the 20th century saw the much more advanced phase of biometric

system, which was helped by development in Computer Systems and Technology, the

biometric system could be categorized [Saw 11] into two groups, Physiological

characteristic and Behavioral characteristics, different methodologies have been

introduced based on these two categories shown in Figure 2.1

9

2. BIOMETRIC RECOGNITION

jC

Figure 2.1: Types of Biometric Recognition

2.5 Applications of Biometric Systems

The following are some of the applications of biometric systems.

1. Biometric Fingerprint Identification Systems are widely used in forensics for

criminal identification.

2. Biometrics are widely used for Physical Access Control

3. Logging into Computers

4. Welfare Disbursement

5. National ID cards and International Border Crossing

6. Keyless ignition in Automobiles

10

2. BIOMETRIC RECOGNITION

7. To verify customers during transactions via telephone and Internet.

8. E-passports are a work in progress for issue in near future, which has an

embedded chip containing the holder's facial image and other traits.

2.6 Advantages of Biometric Systems

The following are some of the advantages of biometric systems

Uniqueness:

It is impossible for two people to share the same biometric data, so biometric

systems are designed around an individual and unique characteristic.

Cannot be Lost:

A Biometric data could never be lost, unless the individual is involved in a

terrible accident.

Cannot be Copied or Guessed:

Biometric data cannot be forged or shared or guessed, since the biometric data are

physiological attributes.

The fact that biometric system needs "You" to authenticate that the subject is you is the

advantage of this system.

11

Chapter 3

Face Recognition

3.1 Introduction

Face recognition is a form of biometric identification, which uses facial features as the

basis for identification. This chapter covers face recognition, its development through

history and the different areas of application. It also talks about the steps involved in face

recognition; such as face detection, feature extraction and face classification. Finally, it

describes the different types of approaches for face recognition, list of available face

databases and the difficulties in face recognition.

3.2 Primary Tasks of Face Recognition

Face recognition is used for two primary tasks, which are as follows

Verification: (one to one matching)

When an individual presents an identity, the system verifies whether the

individual is who he claims to be.

Identification: (one to many matching)

If an image of an unknown individual should be identified, the system verifies the

image with other images in the database to establish the identity.

13

3. FACE RECOGNITION

3.3 Disadvantages of Other Biometric Systems:

When using other biometric systems, there are a few disadvantages, which are as follows

1. Finger print of people working in chemical industry can be affected

2. Voice recognition system would fail when a person has a sore throat and also

voice of a person would change with age, which would complicate the system.

3. For people with diabetes, the eyes would get affected resulting in failure to

authenticate, also iris recognition is very costly to implement.

4. Digital Signatures could be modified or forged.

The above disadvantages could be overcome by using face recognition method with an

effective algorithm.

3.4 Advantages of Face Recognition System:

Face recognition system is advantageous over other biometric systems; some of the

advantages are as follows,

1. Almost all of the biometric systems require the user to perform an action like

placing their hand or finger for finger print reading, speaking into the microphone

for voice recognizer etc. However face recognition does not require any explicit

action from the user.

2. Face recognition technology is cheaper when compared to other biometric

systems.

3. It is non intrusive

14

3. FACE RECOGNITION

4. Face recognition system does not cause any health risk to the user, whereas other

biometric technology that requires multiple users to use the same equipment can

potentially expose them to germs from previous users.

3.5 Evolution of Face Recognition

Face recognition technology has been extensively researched over the years. Researchers

are still working on algorithms that can provide high accuracy and portability. Face

recognition is a challenging task because of factors like change in expression, scale,

location, occlusion, pose and lighting conditions.

Many algorithms have evolved over the years [Coun 06] The Earliest Work on

Face Recognition was from the Field of Psychology during the 1950s. "The perception of

people, a handbook of social psychology" [Tagi 54] by J.S Bruner and R. Tagiuri.

Engineer's interest in face recognition resulted in the first semi automated face

recognition system during the 1960s. Woodrow W. Bledose and other researchers

developed the first semi automated face recognition system at Panoramic Research Inc.,

in Palo Alto, California [Bled 66]; the US Department of Defense (DOD) funded this

work. This system required human interference to locate the feature points such as eyes,

nose and mouth in photographs and the distance and ratios are calculated so that it can be

later compared to test image for recognition.

During the 1970s face recognition moved forward from semi automation. A. J.

Goldstein, Leon D. Harmon and Ann B. Lesk's [Gold 71] research in Bell Laboratories

described a vector, containing 21 specific features such as lip thickness, ear protrusion,

nose length etc., to recognize faces, nevertheless they were all manually measured and

15

3. FACE RECOGNITION

compared. In 1973 face recognition with template matching was introduced. Martin A.

Fischler and Robert A. Elschlager [Fisc 73] measured the similar features as in the earlier

papers but they made it automatically, they described an algorithm that used local feature

template matching approach. In the same year Kanade developed the First Fully

Automated Face Recognition system [Kana 73]. Kanade used pattern classification

technique to match test faces to a known set of faces, this was a purely statistical

approach. Template matching technique was improved during the 1980s. Mark Nixon's

[Agua 02] Eye spacing measurement improved template-matching approach by

introducing 'deformable templates'.

The first semi-automatic facial recognition system was deployed during 1988.

The Lakewood division of Los Angeles county sheriffs department began using

composite drawings of suspects to conduct a Mug shot database search using this system.

In the same year eigenfaces technique was developed for face recognition. L. Sirovich

and M. Kirby [Kirb 90] applied Principal Component Analysis, a linear algebra technique

on face images, they represented an image in a lower dimension as principal component

vectors without losing much information, and then reconstruction them.

In 1991 face detection technique was mastered, making real time face

Recognition was possible, Matthew Turk and Alex Pentland of MIT [Turk 91] [Pent 91]

extended the work on eigenfaces technique and made this a state of art face recognition

technique; this was the first successfully available industrial application, this paved way

for a new era in Face recognition systems. In 1993 FacE REcognition Technology

(FERET) program was initiated. The Defense Advanced Research Products Agency

(DARPA) and Department of Defense (DoD) sponsored the FacE REcognition

16

3. FACE RECOGNITION

Technology (FERET) [Phil 97] in an effort to develop face recognition algorithm and

technology to commercialize the product. Face Detection based on Neural Networks was

introduced in 1988. Henry A. Rowley, Shumeet Baluja and Takeo Kanade [Rowl 98]

came up with face detection technique using Neural Networks.

Face Recognition using Elastic Bunch Graph Method was introduced in 1999,

Laurenz Wiskott, Jean-Mark Fellous, Norbert Kruger, Christoph Von Der Malsburg

[Wisk 97] presented a system for recognizing human faces using Gabor wavelets

transform on images. A face graph is created from an image, it consists of sparse

collection of jets at the edges where eyes, nose mouth are located, the face bunch graph

has a stack like structure and combines graphs of individual sample faces. Comparing the

similarities between the graphs can recognize a new face.

In 2000 First Face Recognition Vendor Test was held. Multiple US Government

agencies sponsored the Face Recognition Vendor Test (FVRT) [Phil 03], this served as

the first open large-scale technology evaluation of multiple commercially available

biometric systems.

In the following decade face recognition systems has seen several changes and is being

Sponsored and promoted by many government and private organizations.

17

3. FACE RECOGNITION

3.6 Applications of Face Recognition

There are numerous areas where face recognition could be employed; a few are outlined

below.

1. Criminal Justice system - Mug shot database, witness face reconstruction, video

surveillance and Forensics reconstruction of face from remains.

2. Network security - User authentication, database access, e-commerce and online

banking.

3. National Security - National IDs, Voter Registration, Border Crossing, etc.,

4. Personal Security - Home Video Surveillance, Driver Monitor system.

5. Access Control - Access control in areas like Warehouse, Seaports and Airports.

6. Entertainment - PlayStation, Digital cameras, etc.

3.7 Face Detection

Facial Recognition System [Grgi 07] is a whole package that consists of steps such as

face detection, feature extraction and face classification. Figure 3.1 illustrates the steps

involved a face recognition system

Face Detection Feature
Extraction Face Classification

Figure 3.1: Steps in Face Recognition System

The first step in any face recognition system is the detection of faces in images, since the

image might have multiple faces or structures similar to faces, but nowadays most face

18

3. FACE RECOGNITION

recognition algorithm would not require to detect faces in images, since the images are

normalized and fit to size according to the need of the algorithm, incase if the image is

too complex and is not normalized then we might have to detect the face from the image,

these images are mostly taken under uncontrolled environments, the following are the

factors that challenge face detection

1. Pose variation

2. Facial Expression

3. Background Environment

4. Occlusion

3.7.1 Face Detection Scenarios

There are two basic scenarios in face detection, first is when an image is taken under

controlled condition; the face is detected using edge detection technique. Second scenario

is when an image is taken under uncontrolled condition [Leun 95], if it is a color image

[Naka 96] then the skin color [Kend 96] could be used to identify the face, incase if it's a

grey scale image then the position of features like eyes, nose and mouth could be

identified in order to detect the face.

19

3. FACE RECOGNITION

3.7.2 Face Detection Methods

Face detection methods [Ahuj 02] are detected in to four categories, which are as follows.

3.7.2.1 Knowledge Based Method

In knowledge-based method [Teka 98] we try to apply a set of rules, which are derived

from our knowledge of faces, some of the rules are, a face usually has two symmetrical

eyes, the distance between the eyes, the color difference between the cheeks and the area

under the eyes, etc., while making these rules we have to make sure that they are not too

vague (generalized), if they are then there would be many false positives, on the other

hand false negatives would be generated if the rules are too fine (detailed). This method

of face detection has its own limitations and the detection rate depends on the rules

applied for this method.

3.7.2.2 Template Matching

Template matching [Pogg 92] method tries to define a face as a function; each feature

such as eyes, nose, mouth and ears can be defined independently in a face. Face contour

and relationship between different templates are identified as patterns, these standard

patterns are compared to images to detect faces, this type of detection is very simple to

implement, but these methods are limited to faces that are frontal and un-occluded,

variation in shape and pose would result in poor recognition rate.

20

3. FACE RECOGNITION

3.7.2.3 Appearance Based Method

Appearance based/ View based [Lew 96] [Pogg 98] method rely on techniques from

statistical analysis and machine learning methods, Appearance based method is said to

have a probabilistic nature, such that it finds if an image vector would belong to a face or

not, it depends on the discerning ability to identify a face class from a non face class.

Comparing with the other two face detection methods, appearance based method

has higher detection rate, few tools [Mite 96] that are based on appearance-based

methods [Turk 91] [Pent 91] [Sama 93] [Guo 00] [Phil 99] [Osun 97] [Sebe 02] are

listed below

1. Eigenfaces

2. Neural Networks

3. Hidden Markov Models

4. Naive Bayes Classifier

5. Support vector machines

3.8 Feature Extraction

Facial features [Craw 06] [Yow 97] are the essence of a face, for they make a face

distinct from one another, many face recognition algorithms incorporate feature

extraction, this must be optimized so that it takes much less memory and has reduced

computation time.

21

3. FACE RECOGNITION

An input face image is reduced to a feature set; this feature set is reduced to a

subset by discarding the non-relevant features and choosing the best of the feature set, the

following are few methods [Rowl 98] of feature extraction.

1. Generic method based on lines, curves and edges

2. Principal Component Analysis

3. Template based method

4. Neural Network based method

5. Self Organizing Maps

The number of features that are to be extracted from a face should be carefully chosen, if

it is too low, this might lead to loss in accuracy, if it is too high, then it might result in

more false positives and might take more memory and processing time.

3.9 Face Classification

Face classification is the step that follows feature extraction; classifiers when used in

combination with other classifiers outperform individual classifiers.

The basic classifier [Jain 00] is the one that classifies face based on similarity, it

classifies the similar class from the non-similar class, and an example of such classifier is

Euclidean Distance Classifier [Mite 96], some feature extractors could also be used as a

classifier, following are the list of few of the classifiers

1. Euclidean Distance Classifier

2. Vector Quantization

3. Self Organizing Maps

4. Template matching

22

3. FACE RECOGNITION

Since a classifier could be used in combination with other classifiers [Roli 01] [Kitt 98],

we can use a classifier to recognize the eyes, another classifier to recognize the nose and

another classifier to recognize the mouth, all these classifiers could be combined [Tuly

08] [Wang 03] [Heis 03] for an effective classification, these combinations could be

divided into three types

1. Parallel - All the classifiers are executed independently, and then they are finally

combined together.

2. Serial - Classifiers run one after another, where each classifier would refine the

previous classifier result.

3. Hierarchical - Classifiers are arranged in a tree like structure.

Choosing the best classifier impacts the processing speed and the accuracy, choosing a

very simple classifier would produce less accurate but a quicker result, whereas choosing

a complex classifier would produce a more accurate result but it takes more processing

time, so its important to strike the right balance to choose the best classifier.

3.10 Different Approaches in Face Recognition

Face Recognition methods [Arab 09] [Rose 03] evolved over time, it can be seen as a

process, which includes many steps. These steps could overlap or change their order to

best suit the application. This makes it hard to definitively categorize the approaches of

face recognition, but still they could be generally categorized [Lu 03] [Marq 10] [Tolb

06] as shown in Figure 3.2

23

3. FACE RECOGNITION

Figure 3.2: Face Recognition - Approaches

3.10.1 Appearance based Approach

An Image is considered to be a point in high dimensional vector space; an appearance

based or view based approach uses statistical technique to analyze the distribution of

image vector in the vector space and classifies the essential features for efficient

recognition. The Appearance based method can be divided into Linear and Non-Linear

Analysis.

3.10.1.1 Linear Analysis

Three of the widely used linear analysis classifications are

1. Principal Component Analysis (PCA)

2. Linear Discriminant Analysis (LDA)

24

3. FACE RECOGNITION

3. Independent Component Analysis (ICA)

3.10.1.1.1 Principal Component Analysis

PCA is one of the most widely used classifiers; it is based on Karhunen-Loeve

transformation [Kirb 87] [Pent 97] [Turk 01]. PCA performs a dimensionality reduction

by extracting the principal components of high dimensional data, these principal

component vectors defines the face space, which is a subspace in the image space.

The face images are projected onto the face space and their weights are identified,

and the test image is projected onto the face space, the weight coefficient of the test face

image is compared with the weights of the face images from the database, using a

distance classifier will give us the closest possible match to the test face.

3.10.1.1.2 Linear Discriminant Analysis

Linear Discriminant Analysis [Belh 97] finds the vector in the underlying space that best

discriminates the classes, for all samples of all classes the between-class scatter matrix

and within-class scatter matrix are defined.

LDA is closely related to PCA, it explicitly attempts to model the difference

between the classes of data; PCA on the other hand does not take into account any

difference in class.

25

3. FACE RECOGNITION

3.10.1.1.3 Independent Component Analysis

Independent Component Analysis [Bart 02] [Como 92] [Liu 99] minimizes both second

order and higher order dependencies in the input data and attempts to find the basis along

which the data are statistically independent. ICA is generalization of PCA.

3.10.1.2 Non Linear Analysis

The face manifold in subspace need not be linear; kernel methods are a generalization of

linear methods.

Linear analysis are not very sensitive to relationships among multiple pixels in an

image, to extract the non linear features of the image linear analysis methods was

extended to non linear analysis [Yang 02] such as Kernel PCA [Scho 98] [Zhou 04],

Kernel ICA [Jord 02] and Kernel LDA.

3.10.2 Model based Approach

A model of human face is constructed to capture the features, facial variations and texture

of a face.

Prior knowledge of facial features are used to construct a model, a model based

approach [Lani 95] derives distance and relative positions from the placement of facial

elements such as eyes, nose, ears and mouth, a constructed model is often called as

Morphable Model, a model based approach is divided into two types

1. 2D Approach

2. 3D Approach

26

3. FACE RECOGNITION

3.10.2.1 2D Approach

Two-dimensional approach can be divided into two categories

1. Elastic Bunch Graphing

2. Active Appearance Model

3.10.2.1.1 Elastic Bunch Graphing

A face is represented as a graph, considering the fact that all human faces have the

similar topographical structure, the graph is constructed with nodes positioned at eyes,

nose edge, mouth, etc., these positions are called as fiducial points, the edges are labeled

with a 2D distance vector, with these vectors a face graph is constructed.

The face bunch graph has a stack like structure and it combines graphs of

individual sample faces, it is crucial that the individual graphs all have the same structure

and that the nodes refer to the same fiducial points.

A jet is a condense and robust representation of a local grey value distribution, it

is based on Gabor Wavelet Transform, which is a convolution with a family of complex

gabor wavelets having the shape of plane waves restricted by Gaussian envelope

function. All jets referring to the same fiducial points, for example, all the right eye jets

are bundled together in a bunch, the right eye bunch might contain a male eye, a female

eye, both closed and open etc., from which we can select any jet as an alternate

description. To recognize a new face by elastic bunch graph matching [Wisk 97] [Kela

06], the fiducial points are positioned so as to extract a graph, after the nodes have been

located on the new face, the face can be recognized by comparing the similarities

27

3. FACE RECOGNITION

between the graph of this face and the graph of every face stored in Face Bunch Graph

(FBG).

3.10.2.1.2 Active Appearance Model

An Active Appearance Model (AAM) [Tayl 01] [Walk 00] is an integrated statistical

model, which combines a model of shape variation with a model of the appearance

variation in a shape-normalized frame.

The Active Appearance Model is constructed based on a set of labeled images,

where landmark points are marked on each example face at key positions to describe the

facial features, models are combined together by using linear analysis method such as

PCA. Matching to an image involves finding model parameters; AAM fitting is applied

to seek a set of model parameters, which minimize the differences between the image and

a synthesized model example projected into the image.

3.10.2.2 3D Approach

Human face is a surface lying in the 3D space, thus a 3D model is more suitable for

representing faces. Once such method based on 3D approach [Zhan 09] [Bron 04] is 3D

Morphable Model.

3.10.2.2.1 3D Morphable Models

3D models have stronger ability to minimize the problems of head, pose and illumination,

a 3D Morphable model [Vett 03] is extended from 2D Morphable Model.

28

3. FACE RECOGNITION

The Morphable face model is based on a vector space representation of faces,

which is constructed such that any convex combination of shape and texture vectors of a

set of examples describes a realistic human face.

3.10.3 Piecemeal/Holistic Approach

Faces can be identified with minimal information; some algorithms would require only

the independent information for face recognition unlike other algorithms that uses the

whole face or the relationship between individual features and the face. Early researchers

tried to use very little but relevant features [Mais 92] for face recognition. Although

feature processing is important, relation between features is also important. This is one of

the reasons why most face recognition follow holistic approach, one such model that is

based on holistic approach [Nixo 85] is Hidden Markov Model (HMM)

3.10.3.1 Hidden Markov Model

Hidden Markov Models [Sama 93] [Nefi 98] [Raja 98] are a set of statistical models used

to characterize the statistical properties of a signal. Faces are intuitively divided into

regions such as eyes, nose, mouth etc., these regions can be associated with the states of a

Hidden Markov Model, since HMMs require a one dimensional observation sequence

and images are two dimensional, the images should be converted into one dimension

before associating the states.

29

3. FACE RECOGNITION

3.11 Face Recognition Database

Face recognition algorithms keeps on evolving, the best way to test and benchmark an

algorithm is to use a standard test data set, there are many standard databases [Dela 11]

[Grou 97] available, we choose the one that suits our application, in our thesis we have

faces from AT&T database [Camb 02] for the figures, a list of available face database is

as follows

1. The FacE REcognition Technology Database (FERET)

2. Face Recognition Grand Challenger Database (FRGC)

3. AT&T Database of Faces

4. The Yale Face Database

5. CAS -PEAL Face Database

6. BioID Face Database

7. Psychological Image Collection at Stirling (PICS)

8. 3D RMA Database

9. Texas 3D Face Recognition Database

10. Natural Visible and Infrared Facial Expression Database

3.12 Difficulties in Face Recognition

Face Recognition involves more than one dimension, and there could be many faces in an

image and there is also the structures that resemble faces, along with this we have to take

the external conditions into account, the external conditions account for noise when we

project the image in an low dimensional space, all these conditions makes face

recognition more difficult, a list of roadblocks for face recognition is listed below.

30

3. FACE RECOGNITION

1. Lighting - Difference in lighting conditions could cause error in recognition. This

could be avoided to an extent by using a standard grey scale image. But this might

not be of any help for algorithms that works with color images.

2. Pose & Expression - The orientation of the head and the expression can affect the

recognition rate, this could be avoided by having multiple images for a single

person with different poses and expression

3. Occlusion - Facial hair, glasses, headgear could occlude the face resulting in poor

recognition rate.

4. Ageing Problem - A face would undergo major changes with time, especially

during the age group of 10-25 years and also during 40-50 years, this affects the

accuracy of the algorithm, and this could be avoided by constantly updating the

database with the latest face images.

5. Image Quality - The images used for the database should be of a good quality.

The best result could be obtained, if the background of the image could be

cropped and the image is fit to size as per the requirements of the algorithm.

31

Chapter 4

Eigenfaces

4.1 Introduction

This chapter discusses Principal Component Analysis (PCA) and the related

mathematical concepts. It then proceeds with an example calculation that clearly

illustrates the concept of PCA and its role in face recognition. It also thoroughly

examines eigenfaces approach and its procedure. Lastly, face space is defined and

different possible cases of where an image could lie in the face space are discussed.

4.2 Principal Component Analysis

Invented by Karl Pearson in 1901, PCA is a powerful tool for analyzing data. It is

considered as one of the most valuable tools used in mathematics and computer vision.

PCA is widely used as a tool in exploratory data analysis and for making predictive

models. It is very simple and has a non-parametric method of extracting relevant

information from complex datasets.

PCA is the simplest of the true eigenvector based tools for multivariate analysis. It

has the ability to reveal the internal structure of the data in a way that best explains the

variance of the data. When a dataset with multiple variables with co-ordinates in multi

32

4. EIGENFACES

dimensional space is given to PCA, it can show us the equivalent lower dimensional

picture that is easier to understand.

PCA is a mathematical procedure that uses an orthogonal transformation to

convert a set of observations of possibly correlated variables into a set of values of

uncorrelated variables called principal components. The number of principal components

is less than or equal to the number of original values, so we can say that PCA is a

statistical method for reducing the dimensionality of a dataset while retaining the

majority of the variations present in the dataset [Joll 02].

4.3 Background Mathematics

To understand PCA [Smit 02] [Shle 05] [Rorr 04] better, we use a small example dataset.

We begin with some definitions.

4.3.1 Standard Deviation

Standard deviation (SD) is a widely used measure of variability, which shows how much

variation exists from the average, it tells us how spread out the data is.

For a uni dimensional data set, SD is given by Eq. (4.1)

n

(4.1)

33

4. EIGENFACES

4.3.2 Variance

Variance is a measure of how far the data set is spread out; it is almost identical to

standard deviation.

2>,-3C)2

V = —
(w_1) (4.2)

Variance is the square of standard deviation

4.3.3 Covariance

Covariance is the measure of how much two random variables change together. With

variance we can measure one-dimensional dataset, but if we have two or more

dimensions, we use covariance. This tells us whether there is any relationship between

the dimensions.

The covariance between x and y is given by Eq. (4.3)

n

Cov(x,y) =
»-l (4.3)

If covariance is positive, it signifies that both the dimensions increase together. If

covariance is negative, then as one-dimension increases, other dimension decreases. If the

covariance is zero, it indicates that the two dimensions are independent of each other.

34

4. EIGENFACES

If we have a dataset with more than two dimensions, for example (x, y, z), then

we calculate Cov (x, y), Cov (y, z) and Cov (z, x). The best way to represent this is to put

it into a matrix as shown in Eq. (4.4)

Cov (x,y,z) =

Cov(x,x) Cov{x,y) Cov(x,z)

Cov(y,x) Cov(y,y) Cov(y,z)

Cov(z,x) Cov(z,y) Cov(z,z)
y3*3 (4.4)

In the above matrix, we can notice that along the diagonal, the covariance value is

between one dimension and itself; this gives the variance of that dimension. The

covariance matrix is symmetrical about the main diagonal, since

Cov(a, b) = Cov(b, a) (4_5)

4.3.4 Eigenvectors and Eigenvalues

The Eigenvectors of a square matrix are the non-zero vectors that after being multiplied

by a matrix, remains parallel to its original vector.

For each eigenvector the corresponding eigenvalue is the factor by which the

eigenvector is scaled when multiplied by the matrix, the mathematical expression of this

idea is as follows.

If 'A' is a square matrix, a non-zero vector V is an eigenvector of 'A' if there is a

scalar A, such that

Av = Av (4.6)

The scalar A is said to be the eigenvalue of 'A' corresponding to 'v'

The following are some of the properties of eigenvectors

35

4. EIGENFACES

1. Eigenvectors can only be found for square matrix and not every square matrix has

eigenvectors.

2. If a given n x n matrix does have eigenvectors, then there are 'n' of them.

3. All eigenvectors are perpendicular.

4. Eigenvectors and Eigenvalues always come in pairs.

In order to keep the eigenvectors standard, we scale all the eigenvectors to a length of 1.

4.4 PCA Example Calculation

The above-discussed mathematical concepts are enough to understand PCA. The

following example calculation and graphs will help us to understand PCA even better.

Consider the data shown in Table 4.1.

Table 4.1: Original Data

X Y

10 20

35 60

40 80

11 10

5 90

6 4

50 15

22 45

36 70

36

4. EIGENFACES

The above data is plotted in a graph, which is shown in Figure 4.1. This graph does not

convey any relationship between the elements in the data set.

100 •

90 '

SO
70 •

60

30

20 •

10 •

0

OrigifudOftU

10 15 20 25 50 35 40 45 50

X Axis

Figure 4.1: Plot of Original Data

The mean of the variable x and variable y are found and they are represented by x and y

respectively. Then we subtract the mean value from the original value, and the result is

shown in Table 4.2.

Table 4.2: Mean Adjusted Data

X X Y-F

-13.88 -23.77

11.11 16.22

16.11 36.22

-12.88 -33.77

-18.88 46.22

-17.88 -39.77

26.11 -28.77

-1.88 1.22

12.11 26.22

37

4. EIGENFACES

The above mean adjusted data is plotted in a graph shown in Figure 4.2.

Y-Ybtr axis Mmti Adjusted dflU

X - Xbara>

-25 -20 -10 -5

-10

-20

-30

-40

-50

Figure 4.2

10 is

Mean Adjusted Data

20 2S 30

The covariance matrix of x and y is found using the formula from Eq. (4.3)

Cov(x,y) = ' 250.09 103.53 ^
103.53 946.39

(4.7)

The Eigenvectors and Eigenvalues are calculated from the given covariance matrix.

Eigenvalues are: 235.02, 961.45

Eigenvectors are: v± = , v2 = [ig 99] (4-8>

The mean adjusted data is plotted along with the eigenvectors, which are represented by

dotted lines, as shown in Figure 4.3.

38

4. EIGENFACES

70
• ~> Eigenvectors vl,v2 (represented by dotted lines)

60

50

40

30

20

10

Y-Ybar
Mean Adjusted data with Bgenveciors

x —

x

X

X-Xbar

25 -20 -15 -10 -5 5 10 IS 20 25 30
-10

-20
x -

-30 X

_ * -40

-SO

-60

-70

Figure 4.3: Mean Adjusted Data with Eigenvectors

A feature vector is formed from the obtained eigenvectors. The eigenvectors are

concatenated together based on their eigenvalues, the eigenvector with the highest

eigenvalue is added first, then the eigenvector with second highest value and so on.

Feature vector = (eigenvector1(eigenvector eigenvector^n) (4.9)

Feature vector = (~°£9 ~^) (4.10)

The final data is obtained using Eq. (4.11)

Final data =

(Transpose of feature vector) x (Transpose of Mean adjusted data) (4.11)

39

4. EIGENFACES

Table 4J: Final Data

Final data

X

Final data

Y

25.53 10.31

-17.66 -8.67

-38.17 -10.73

35.27 7.88

-43.03 25.34

41.93 11.97

24.71 -29.99

-0.95 2.04

-27.7 -8.22

The final data shown in Table 4.3 is plotted in a graph as shown in Figure 4.4. The

eigenvectors are represented as black dots in Figure 4.4.

Final d«u pkx with B«cnvKtors u thtir Axes

• — >Bgamcton vj.vj

I Eigenvector 1

Eigenvector 2

Figure 4.4: Final Data with Eigenvectors

40

4. EIGENFACES

The Eigenvectors form the axes for the final data as shown in Figure 4.4. Incase we have

more eigenvectors; we would have more than two axes. The axes of eigenvectors are

always perpendicular which makes it more efficient to express the data set.

Fundamentally we have transformed our data set so that it is expressed in terms of

patterns between them. The patterns are the lines that can efficiently describe the

relationship between the data.

Comparing the original dataset with the final data set, as shown in Figure 4.5,

gives us an idea about the meaningful result produced by PC A for a random data set.

41

4. EIGENFACES

Comparing original data with the final data

Original Data

10 2S 30 45 SO

X Axis

Final data plot with Eigenvectors as their Axes

+ — >Bgenvtctors vj,v2

{Eigenvector 1

Eigenvector 2

X

Figure 4.5: Comparison between Original Data and Final Data

We can see that representing the data set in terms of their eigenvectors can efficiently

describe the relationship between the elements in the dataset. It clearly describes the

pattern in the dataset, whereas the original dataset can only represent the scattered

42

4. EIGENFACES

elements that do not give us any indication about the relationship between the elements.

This type of data analysis technique from PCA is used in eigenfaces method to classify

the image vectors.

4.5 PCA in Face Recognition

PCA is a statistical dimensionality reduction tool, Kirby and Sirovich (1990) [Kirb 87]

applied PCA for representing faces, Turk and Pentland (1991) [Pent 91] extended PCA to

recognize faces. To understand the role of PCA in face recognition, we should first

consider the representation of images.

Images are represented as a matrix of pixels. Consider an image of dimension

N x N\ this can be represented as N2 dimensional vectors by concatenating all the rows

into a single column. Similarly for 5 different images, each of dimension N x N, we will

have 5 different image vectors. Then we concatenate all these vectors together to get a

matrix. We then apply PCA on this matrix, which gives us the original data in terms of

eigenvectors. Once we get the test image, we project the test image on the image space.

Then we find the difference between the test image and the images in the database using

a distance classifier. This effectively discriminates the images in the database that

resemble the test image. Figure 4.6 illustrates the role of PCA and distance classifier in

face recognition.

43

4. EIGENFACES

Training Pha»« Twt Phaw

Database of Training Image*

[*v*2.i3...jg

'*1' *2* *3— *r>!

[yi.y2.V3-Vn)
lXl.K2.*3-*nI

Distance:**
: i*1« *2* *3"* *n»

Eigenfaces are obtained after scaflng ami projecting Eigenvector*

Feature \fector of "tart knag*

RESULT

Best Match tor
Teat Image la Image 2

(with leaat distance between the feature vectors)

Figure 4.6: PCA in Face Recognition

PC A is a statistical analysis tool. To personalize PCA for face recognition, we need a

new algorithm. The EA developed by Turk and Pentland [Turk 91] [Pent 91] is one such

algorithm.

4.6 Eigenfaces

An Input image consists of many characteristic features. PCA is a mathematical tool that

we use to highlight and differentiate these features. Once we have these features for a set

of images, we find their feature vectors or eigenvectors. These eigenvectors are also

called as eigenfaces when they are projected into the image space.

44

4. EIGENFACES

Once we have a set of eigenfaces for the database of images, we find the weights

that are required for the eigenfaces to reconstruct each image in the database. When we

are presented with a test image, we find the weight vector of the test face by projecting it

into the eigenfaces. We then compare the weight of the test face with the weight of the

images in the database using a distance classifier. This tells us how closely each

particular image in the database resembles the test image. This procedure is an extension

of PC A called as eigenfaces.

Sirovich and Kirby's efficient representation of faces using PC A was the

motivation for the concept of eigenfaces. Turk and Pentland extended PCA and arrived at

a method "that would build up the characteristic features by experience over time and

recognize a particular face by comparing the feature weights needed to (approximately)

reconstruct them with the weights associated with the known individuals" [Turk 91] [Pent

91].

With EA the individual images could be represented compactly as eigenfaces

based on their features. From these eigenfaces we can also reconstruct an image from the

database, since all we need are only the eigenfaces and since it is very compact,

eigenfaces would use very less memory.

Since the publication of eigenfaces many new algorithms have been proposed.

However, even today eigenfaces remains the benchmark for face recognition algorithms.

45

4. EIGENFACES

4.7 Eigenface Approach

The steps used in EA [Turk 91] [Pent 91] [Triv 09] [Carm 09] for face recognition are as

follows:

1. Initialization - The Images that constitute the database are assimilated

2. Calculation - The eigenfaces are calculated from the images in the database. The

M eigenvectors that correspond to the highest eigenvalues are kept. They

constitute the face space, and this is constantly updated as we obtain more images

for the database.

3. Finding Weights - The weight vectors of the known images are found by

projecting them into the face space. These weight vectors can be used to

reconstruct a face in the database using the eigenfaces.

The process mentioned above is done offline (back end process); we are required to

calculate the weights only when the database needs to be updated. The following are the

steps for recognition process; they used to be done online (front end process) whenever

the test image is produced.

1. When the test image is produced for identification, the weight vectors associated

with the test image are found by projecting them on the face space.

2. Once we have the weight vector of the test image, we compare it with the weight

vectors of the known images in the database, so that we can ascertain whether the

test face is a known face or an unknown face.

3. If the weight vector lies with in the face space, we can conclude that the given

image is a face, and then we find if there is any closest neighbor to the test vector.

46

4. EIGENFACES

Once we find the closest neighbor and if it satisfies the threshold condition, we

can say that the face is a know face from the database and its identity can be

established.

4. The eigenfaces and weight pattern are updated once we get new images for the

database. If there is an unknown face that is seen constantly, it could be labeled as

a known face and added to the database.

The eigenfaces method [Piss 02] is illustrated using a flowchart as shown in figure 4.7.

47

4. EIGENFACES

Unknow n Image

'

Normalize t
Im

te unknown
age

f
Project the normalized

image on to the eigenspace
and find out weights

Origini
(Training

il faces
database)

'

Calculate eigei
Training

lfaces for the
images

r

Calculate the Weight vectors of
Training images by projection

it into the eigenspace

Calculate the distance between
the weight vector of the unknown

image and the weight vector of
training images

If the distance <
threshold value (0)

Face does not belong in the
database

Face is recognized in the
database

Figure 4.7: Flowchart - Eigenfaces

48

4. EIGENFACES

4.8 Assumptions in EA

The following are the assumptions that are made in eigenfaces procedure

1. There are M images in the training database

2. There are 'k' most significant eigenfaces, using which we can satisfactorily

approximate a face, where (k < M)

3. All images are N x N matrices, which can be represented as N2 x 1 dimensional

vectors. Same logic applies for images with unequal length and breadth.

4.9 EA

The figure 4.8 illustrates the concept of eigenfaces.

Figure 4.8: Eigenfaces Concept

49

4. EIGENFACES

The first step of EA [Zaba 09] is to obtain the training set; this consists of M grey-scale

face images Ii, I2 ••• Im they must be face centered images of same scale. Figure 4.9

illustrates few of the faces obtained from AT&T database

Figure 4.9: Face Images from AT&T Database

An image Ij can be represented as

I ,=

a, a\2 ^ a\N

a
2\ a22 D a2N

aN\ aN2 ^ aNN

Concatenation

N x N

a.

a, ijv
a

21

a IN

a N\

a NN

=r.

N x l (4.12)

The values in the matrix above are the pixel values ranging from 0-255, once we have the

pixel values; we change the N x N matrix to N2 x 1 but concatenating the rows into a

single column, this makes the image as a vector in N2 dimension. The characteristic

features of the images are of prime focus, so we have to subtract all the common

50

4. EIGENFACES

elements between them. So we begin by finding the average face and then we subtract

each face from the average face so we can find the difference face.

The average face is give by

, M
£r,

(4.13)

Figure 4.10 represents an average face, which was obtained from the image set in AT&T

database.

Figure 4.10: Average Face

Now, each face differs from the average face by the vector

O =r -vp
' ' (4.14)

Figure 4.11 illustrates few the difference faces obtained using EA

Figure 4.11: Difference Faces

51

4. EIGENFACES

A set of orthonormal vectors are to be found, these vectors best describe the distribution

of the data, we begin with finding the covariance matrix

C=—Yo,®? = A Ar

M m

where 4>„] (4.i5)) (416)

The next step is to find the eigenvectors uk and eigenvalues Ak of C

However, we can see that A is of the size N2 x M, hence the matrix C is of the size

N2 x N2, to assess things, assume the image of size 120 x 120, then the size of the

resulting matrix would be 14400 X 14400. Determining eigenvectors and eigenvalues

for a matrix of this Size would be extremely difficult, but this hurdle could be easily

crossed by a simple mathematical trick.

Lets take L = A T A , then the size of L matrix would be M xM, we then solve the L

matrix to find the eigenvectors vt where i = 1... M of L

Now Lv, = Aivi then multiplying A on both sides we get

=> A L v, = A.,Avi

=> A A7A v, = XiAvi

=> C A v, = XiAvl (4 | (4 j g)> (4 j 9)

Hence «, = Avi and are respectively the M eigenvectors and eigenvalues of C

When we get the eigenvectors they are generally normalized to 1, such that ||u.|j = 1

52

4. EIGENFACES

These eigenvectors w, are called as eigenfaces, when we scale these vectors by 255 and

project them on the face space, we will get a ghostly face called eigenfaces, as shown in

the figure 4.12.

Figure 4.12: Eigenfaces

The eigenvectors with smallest eigenfaces can be excluded, so we are only left with k

eigenvectors, where (fc < M). The reason for excluding the eigenvectors with smallest

eigenfaces is that, the eigenvectors with highest eigenvalues are the ones that contribute

most to the eigenfaces.

These eigenvectors are grouped together as U = [u x , u 2 • • •u k] N 2 x k (4.20)

Once the basis vector (U) for the face space has been constructed, all that remains is to

project all the images in the training set onto the 'face space'. This can be done by the

following operation

a = i / r(r-*F) =

(Oi

(O,

tol
-fcxl (4.21)

53

4. EIGENFACES

The weights mi e Q describes the contribution of each eigenface in representing the

input face image, once we have the weights of the known images (fl^ fl2 the

test images (ft), we can find the smallest Euclidean distance erec between the test face

and training face weight vectors from the following expression:

erec = min||n —njl Where i = 1... M (4.22)

If erec < 9rec, then we can say that the test face is identified as the image which gives the

lowest score, where 9rec is chosen heuristically.

If erec > 6rec, then we can say that the face is not identified in the database.

4.10 Face Space

The space in which the image vectors could be mapped is known as Image space, the

space in which the face vectors could be mapped is known as the face space, the image

space contains the face space. Figure 4.13 illustrates the idea of image space and face

space [Triv 09].

54

4. EIGENFACES

B Image Spact
• FnSpan

Figure 4.13: Image Space and Face Space

When we project the weight vector of the test image onto the face space, there are four

possibilities on where an image could lie

1. Near a face class and near a face space - This case happens when the test image

is of a known individual from the database.

2. Near a face space but away from face class - This case happens when the test

image consists of a face that is not present in the database.

3. Distant from face space near face class - This case happens when the test image

is not a face, however it sill resembles a particular face class stored in the

database

4. Distant from both face space and face space - when the probe is not a face image,

i.e., away from the face space and is nothing like any face class that is stored in

the database.

Out of these four cases, case 3 is responsible for most false positives, but still the false

recognition might be detected since there is significant distance between the weights of

55

4. EIGENFACES

the test image and the face image from the database. Figure 4.14 illustrates all the four

cases.

Figure 4.14: Different Possibilities of Face Space & Face Class

The concept of PCA and its role in face recognition were clearly illustrated. We then

examined the EA in detail. Architecture for FPGA implementation of EA is proposed in

the following chapter.

56

Chapter 5

Proposed Architecture for FPGA Implementation

of EA

5.1 Introduction

In this chapter we describe an architecture for EA. This chapter begins with a discussion

of the data representation used in the architecture and the assumptions in the EA. It then

proceeds to describe the architecture for implementing the EA and divides it into two

phases. Finally it elucidates the input, output and functionality of each and every module

of Phase I and Phase II with the help of a model calculation based on eigenfaces.

FPGA is a digital Integrated Circuit (IC) that contains configurable blocks of

logic along with configurable interconnects between these blocks. Design Engineers can

program such a device to perform a variety of tasks.

The proposed architecture is designed flexibly around the face images, which are

used to build our database. These images are taken under controlled conditions, so that

they are of same scale and have similar lighting conditions.

57

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

5.2 Data Representation

A grey-scale image for representing a face is sufficient, since eigenfaces method does not

depend on the color of the image. This is advantageous, since it would require less

memory. The pixel values of the grey scale images are in the range 0-255, where 0 is

black and 255 is white, and the rest are different shades of grey [Work 10]. Each pixel of

the grey-scale image is represented by an 8 bit signed binary value using 2's complement

representation.

In EA arithmetic calculations are widely used, so the number of bits to represent

the data will keep on changing from one module to other, therefore to compensate, we

increase or decrease the number of bits as per need, so the data width keeps changing

from one module to another [Cory 03] [Cory 05].

5.3 Assumptions

Solving EA mathematically helps in understanding the building blocks of the

architecture. The dimensions of the image are 92 x 112. Solving a matrix of size

92 x 112 would be improbable, so a smaller example matrix of size 3 x 3 is assumed to

be an image. The mathematical calculations of EA are applied on these example matrices.

Analyzing the model mathematical calculations helps in designing the modules and their

functionalities using Verilog HDL.

While applying EA on the example matrix, we would obtain values with

fractional component, but in the proposed deign we have excluded any fractional

component, since excluding the fractional part [Fish 04] would not have any considerable

58

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

effect other than increasing or decreasing the brightness of the grey scale image, and also

including the fractional part would complicate the architecture for FPGA.

In our proposed architecture, we have 3 images that make up the database; these

images are of the size (92 x 112), so we would have 10304 pixels (since 92 x 112 =

10304). We are also introducing an unknown image during the EA; this is the test image

that is to be recognized. The test image is of the same size as the other images from the

database, so we will be working with 41216 pixels (10304 x 4 = 41216). As per the EA

the images are represented as follows

1. Known Image 1 - r\

2. Known Image 2 - T2

3. Known Image 3 - r3

4. Unknown Image - T

As we proceed we will simultaneously discuss both the 'model calculations' and their

corresponding 'architecture' step by step.

5.4 Proposed Architecture

The proposed architecture in Figure 5.1 can divided in to two phases

1. Phase I

2. Phase II

59

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Phase I

Begins by uploading the known images into the RAM. It continues with the

mathematical operations on the image vectors and ends when the eigenvectors and

eigenvalues are obtained.

Phase II

Begins from the eigenvectors and eigenvalues module, proceeding to the weight vector

module, where the test face is introduced and it ends when the identity of the test face has

been established as a known or an unknown face.

60

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Figure 5.1 illustrates the proposed architecture for FPGA Implementation of EA

Block Diagram of Overall Architecture of Face Recognition Using EJgenfac**

Q RAM/Internal Register

£ Parallel Adder

QP Divide by 3

j|p Normalization

• MSB Check

|0 Control to control Location and Poeltkxi

Multiplier

Q MATLAB

Final Display

Figure 5.1: Proposed Architecture for FPGA Implementation of EA

61

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

5.4.1 Phase I

Figure 5.2 illiistrates Phase I of the architecture.

Architecture Data Flow - Phase 1

internal
Register

> u; Internal
Register

V

MJ f
Internal
Register

V

L Matrix

o
RAM / Internal Register

Parallel Adder

MSB Check

Internal
Register

MATLAB

v1 & k,

V 2 &x2

->• v3 & *3

Divide by 3

Normalization

Multiplier

MATLAB

Figure 5.2: Architecture Dataflow - Phase I

62

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Model calculation

Step 1: Let the assumed smaller matrix of known faces be r1(V2 and f3

9x3

10 35 40 20 60 80 40 25 92
r,= 11 5 6 r2 = 10 90 4 r3 = 3 80 42

50 22 36 15 45 70 22 5 10
3x3 3x3

(5.1), (5.2), (5.3)

Step 2: To apply eigenfaces method, we should first convert the above matrices into

vectors

r,=

10

35
40
11

5
6

50
22
36

r,=

-9x1

20
60
80
10

90
4

15
45
70

r,=

-9x1

40
25
92
3
80
42
22
5

10
-9x1 (5.4), (5.5), (5.6)

Architecture design for Step 1 and Step 2

We start off with four grey scale images of equal dimension (92 x 112), three of which

are the known images that constitute the database, the fourth is used as the unknown test

image, which would be introduced once the eigen faces are found.

A RAM block is required to store these images; we have 4 images (3known and 1

test image), so we are dividing the RAM into 4 blocks namely RAMI, RAM2, RAM3

and RAM4, where each block corresponds to Image 1, 2,3 and test image respectively.

63

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

The dimensions of the image is (92 x 112), each pixel is represented as 8 bit

signed binary value. The total number of bits in one image:

= (92 x 112 x 8) = 82432 bits => 84KB

The data width would increase or decrease as we move on from one module to another

[Cory 03] [Cory 05]. The data widths for the following modules are indicated in their

corresponding block diagram.

5.4.1.1 RAM Controller

A RAM Controller is required to read, write and control all the RAM Blocks. This

controller would send in 736 bits [735:0] per cycle for 112 cycles (736x112 =

82432 bits) to successfully upload the pixels of one image into the RAM block. Table

5.1 illustrates the HDL port names of the RAM controller, its direction and description.

Figure 5.3 illustrates the RAM controller block diagram.

Table 5.1: RAM Controller - Port Names and Description

HDL Port Names Direction Description

din_l [735:0] Output Output data

din_yalid_l Output Data valid signal

Wa [6:0] Output Write address

Ce_n_l Output Chip select for RAMI

ra [6:0] Output Read address

rel Output Read enable

64

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

row_n[6:0] Output Row address selection

wel Output Write enable

elk Input Clock signal

reset Input Asynchronous master reset

65

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

736
X a

7 "V r

7 v ,
\ *

7 ^ r
\ *

736

V *

7 \
\ "

7 \ ,

7 \ ,
\

RAM
Controller 736

\ .
\ "

7 v v

7 \ ,

7 - , -v *

736
\ ,

N

7 \ r N *

7 - r
\ "

7 -v ,
\

elk rejetn

Figure 53: RAM Controller

66

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

5.4.1.2 RAM Blocks

Each RAM stores 82Kb of information, which is the size of the Images in the database;

these images are transferred to the RAM blocks from the RAM controller. There they are

stored as an array, which can be easily represented by a matrix. Figure 5.4 illustrates the

block diagram of the individual RAM blocks.

dl_l|735:0j

ee_n_l •
r«!6:@)

rtl

row_l|6:0|

weJ

T
<Btanf2tll2hMC*)

State-1I2*92*«-
124)2 Mtt -91K*

KNOWN IMAGE -1

TT

do_l|7:0)
do_vaHd I

di.2|735:«| •
dia_v*Md_2

w»|4:0)

ce_i_2
raft*!

r*2

row_2|6:0]

we2

x~
(Mm Willi ina|t) Sin- I12**2*»«

t24J2 Mia -«2Kk

KNOWN IMAGE-2

do valid 2

JT

di_3(73S:0] •
din_vaUd_3

wafi:0)
«*_n_3
r>|t:0|

rc3

r»wj|i:0|

weJ

736
N. -

RAM3
8

\ *

RAM3
8

RAM3
8 r V m

RAM3
8

7V „
(•ttre 92x112 lesge)

Sbc-U2*92*«-
V •2432 M* -«2KJ>

KNOWN IMAGE-J

•2432 M* -«2KJ>

KNOWN IMAGE-J
r V m

•2432 M* -«2KJ>

KNOWN IMAGE-J

•2432 M* -«2KJ>

KNOWN IMAGE-J

do_3(7:0|
do valid 3

734

di_4|733:0| X:
dia__valld_4

W.ffc«|
c«_n_4
r»|6«|

rc4

row_4|6:9|

Th

RAM4
(Mar* 92x112 langi)

Sbc- 112*f2*l -
12432 bits -«2Kk

UNKNOWN IMAGE

736 » do_4(73S:#|

Th

Figure 5.4: RAM Blocks

Most of the calculations in eigenfaces method are based on vectors, so it is important to

convert the image matrix into a vector, this is done by concatenating the rows of the

matrix into a single column, this vector is stored in the internal register, we will have one

vector per image, so we will have 3 vectors in the internal register.

Each vector is of the size (10304 x 1), the image from RAMI is stored pixel-by-

pixel in the internal register as a single column, since we have 3 images in the database,

67

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

we store all the three matrix as 3 different vectors side by side, each pixel is 8 bit wide, so

in a single row, we will have 3 pixels or 24 bits, therefore the size of the internal register

would be [10303:0] mem [0:23]. Table 5.2 illustrates the HDL port names of the internal

register, its direction and description. Figure 5.5 illustrates the block diagram of the

internal register.

Table 5.2: Internal Register - Port Name and Description

HDL Port Names Direction Description

img^n [7:0] Output Data from internal register

add_n Input Read address

loc add [13:0] Input Read address row location

mem n [2:0] Input Write address

loc [13:0] Input Write address row location

do_n Input Input data from RAM

do_valid_n Input Valid signal from RAM

68

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

do_l[7:0|

d o v a l i d l

do_2[7:0]

do_valid_2

do_3[7:01

do valid 3

Internal register reg
[10303:0]mem[23:0]

img 317:01

Img_2r7:01

inig_117:0]

add_3[2:0)

add_2(2:0]

add_l(2:0)

loc_add[13:0]

mem_3(2:OI

mem_2[2:0]

mcm_l[2:0]

locf13:0]

elk reset n

Figure 5.5: Internal Register

5.4.1.3 Controller to Control Address Location and Position

Similar to a RAM controller which controls the address for reading and writing in the

RAM block, we need a controller to control the address location and position for internal

register, the signal 'mem n' controls where the data should be written in the memory

location, 'add n' controls the read address memory and the signals 'loc' and 'loc add'

are for write address row location and read address row location respectively. Figure 5.6

illustrates the block diagram of the controller to control the location and position

selection.

69

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

i
©
rn

J

14S

ST
<s.

E1

8

<N

i'
a

Sk 3N

o" <N

§'
a

0

1
, J

ET «N

l' ad
d_

2[
2:

0]

L 1

N

Controller to control the location and position selection

£
E

Figure5.6: Controller to Control the Address Location and position

Model Calculation Continued

Step 3: The Average face vector is given by Eq. (4.13)

70
120

212
24

175

52

87

72
116

-9x1

23.33
40

70.66
8

58.33
17.33

29
24

38.66
-9x1

23
40
71
8
58
17
29

24
39

-9x1 (5.7), (5.8)

70

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Architecture Design for Step 3

To find the average face, we have to add the face vectors and divide them by the total

number of faces.

Once the image vectors are stored in the internal register, we are using a parallel-

pipelined adder to add all 3 image vectors pixel by pixel. Conventional methods are not

sufficient for computationally intensive circuits, so using a parallel-pipelined adder

instead of a normal adder would greatly reduce delay of the adder.

5.4.1.4 Pipelining

In traditional approach processes such as add, subtract and multiply etc., are treated as a

single process, which may take considerable amount of time for processing.

In pipelining we have data flowing though combinational logic and registers

driven by system clock.

Pipelining approach basically divides an entire process into small and equal sub-

processes, such that the total processing time is substantially reduced due to concurrent

execution of sub-processes. This provides much faster speed and throughput.

Lets consider a process of adding two 12bit numbers, this will be a time

consuming process if the addition is carried out on 12bits, since the bit-wise carry needs

to propagate though all the bits. A better way of doing this is to divide it into four, this

will be very efficient than adding 12 bits at one go. This can be effectively carried out by

pipelining, the LSBs of the two numbers are added first and stored in a pipeline register

71

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

along with the generated carry at the rising edge of the clock, in the next rising edge of

the clock, the next 3 bits of the two numbers are added along with the carry generated

while adding the LSBs. In this manner we process entire data width. Figure 5.7 illustrates

the addition of two 12bit numbers using pipeline approach.

no

—* 0 QQQ QQQQ 0

— 0 Q Q Q Q Q Q Q Q Q Q Q C 3
Figure 5.7: Pipelined Addition of 'Two' 12bit Data

72

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

5.4.1.5 Parallel-Pipelined Adder

The data width of the output data coming from the internal register is 8 bits. Since we

replicate the MSB to avoid overflow, in our case we replicate the MSB 4 times, so now

the input coming into the parallel adder [Piur 96] would be a 12 bit data. So we need a

signed parallel adder that adds eight signed input numbers each of width 12 bits and

delivers the sum of these numbers as output. Even thought in our case we only need to

add three numbers each of width 12 bits (since we only have 3 images in the database),

designing a parallel adder for 8 numbers, makes it more flexible, in case if we decide to

add more images to our database our parallel adder would remain flexible and we can add

up to a maximum of 8 images to our database. For now we only need to use the inputs

img l, img_2 and img_3 of the internal register (since our database has only 3 images),

the rest (img_4 to img_8) are not used. Figure 5.8 illustrates the parallel-pipelined adder

design.

Img 3f7:0|

img_2[7:0J

img_l[7:0]

Parallel Pipelined Adder Module

reset n

img avg nt[14:01

Figure 5.8: Parallel-Pipelined Adder

73

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

This signed addition can be realized with seven two input adders and 14 pipeline stages,

in the first stage we have Eight numbers of 12bit two's complement adder to add all the

eight numbers, they work concurrently, there by speeding up the process, they have

pipeline registers internally, the clock input is marked as clkl, clk2, etc., corresponding to

the internal pipelined register, we will add the LSBs at the first clock pulse and the MSBs

at the next clock pulse along with the carry generated from the LSB, in the second stage

we will add the four outputs, each of size 13bits generated from the first stage, In the

second stage two numbers of two input adders are used, First the LSBs and then the

MSBs are added subsequently with the arrival of each rising edge clock pulse, finally in

the last stage, we will add the two inputs of size 14bits, which was obtained from the

second stage, and then in the same fashion we add the MSBs along with the carry

generated from the LSB addition, finally to produce a 15 bit final sum, we have 3 major

stages in our design, each stage adds one bit growth, so we finally end up with 15 bits.

The Three image vectors are added pixel by pixel, each pixel is 8 bit wide.

Imgl[7:0] + Img[7:0] + Img[7:0] = img_avg_nt[14:0] (5.9)

Table 5.3 illustrates the HDL port names of the parallel-pipelined adder, its direction and

description.

74

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Table 5.3: Parallel-Pipelined Adder - Port Name and Description

HDL Port Names Direction Description

img^n [7:0] Input Data from internal register

img_avg_nt [14:0] Output Output Sum

5.4.1.6 Divider Module

After finding the output of the parallel adder, we need to divide the result by 3 (M = 3,

since we have 3 known images in our database) to obtain the average.

The output img_avg_nt [14:0] from the parallel-pipelined adder is sent to the

divide by 3-module; the output obtained from this module is the average vector

img_avg[14:0], the start and end of the average signal is signaled by imgstart and

img_end respectively, the img valid signal validates the average output from this

module. Table 5.4 illustrates the HDL port names of the divide by-3 module, its direction

and description.

Table 5.4: Divide by 3-Module - Port Name and Description

HDL Port Names Direction Description

img_avg_nt [14:0] Input Sum of image vectors

img_avg[14:0] Output Average of image vectors

img_valid Output Validates the signal

img_start Output Indicates start of the signal

img_end Output Indicates end of the signal

75

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Figure 5.9 illustrates the block diagram of the Divide by-3 module.

img «vg PtlI4;01

Divided by 3 [since m»3)
Each co-efificient is divided by the

value of "3" , because we are using a
lota] of 3 images to make our

database.

\m-i]

*lmg_avg| 14:01

^ Ime valid

"Img start

• Img end

elk

Figure 5.9: Divide by 3-Module

The average image resulting vector (img avg) is stored in an internal register, the average

vector V is of dimension 10304 x 1, here we again use the controller to control the

address location and position to read and write data.

Figure 5.10 illustrates the block diagram of the average information module.

76

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Img avgl 14:01-

img valid

img start

img_end

Store the average image information

Internal register
reg [10303:0]mem

[44:0]

The is a vector of dimension
=10304x1

Img avgt 14:01

rd_add|6:0|
wr_add(6:0]

rd_loc_add[13:0)

w r l o c a d d [1 3 : 0 1

read_enable

write_enable

hold

elk reset n

Figure 5.10: Average Information Module

The average information (img_avg) from the internal register (f) has a data width of 15

bits; because of the bit growth most of the MSBs would be zero, and because division is

involved there is a possibility of fractional result, since we are only using the integer

values, we are rounding off each coefficient to its nearest integer value represented by

1 Obits.

The output signals from RAMI, RAM2 and RAM3 are do_l, do_2 and do_3 each

are of 8 bits, since we would use these signals along with the average information signal,

we are normalizing all these signals to 1 Obits.

Figure 5.11 illustrates the block diagram of the Normalization module.

77

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

do_3|7:0)

do_2|7:0|

do_l [7:0|

imgLavg[14:01

Store the average image information

Normalization is done here
"img-avg[14:0]" signal - Each co
efficient rounded off nearest integer

value, represented as 10 bits of
width

"do_l"do_2" & "do_3" signals
are represented by 10 bits. 8 bits for
signal and 2bits for sign extension.

do_l[9:0]

do_2{9:0]

do_3[9:0]

img avg out[9:0|

elk reset n

Figure 5.11: Normalization Module

Figure 5.12 illustrates the block diagram of the Controller to control the location and position

selection for the average information module.

78

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

-1 "A

!'
£

•

w

wr
_lo

c_
ad

d[
13

:0]

O*

i i

O* rn

!
•E1

l i

SO

f
•H1

•

Controller to control the location and position selection

sa
U res

et_
n

Figure 5.12: Controller to Control the Address Location and Position

Table 5.5 illustrates the HDL port names of the controller to control the address location and

position, its direction and description.

Table 5.5: Controller for Address Location and Position - Port Names and Description

HDL Port Names Direction Description

write_enable Output Enables write signal

readenable Output Enables read signal

hold Output Holds the data transfer

wr_add Output Write address

wr_loc_add Output Write address row location

rd_add Output Read address

rd_loc_add Output Read address row location

79

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Model Calculation Continued

Step 4: Find the difference face

Each face differs from the average face, which is called as the difference face.

<D,=r(-¥ where i = 0, ID M (5 10)

M = 3, since we have 3 known images in our database.

o.-r.-v (5.1D

(5.12)
o2 = r2-^

<&3=r3-y
(5.13)

Subtracting the mean face from the known face images 1, 2 and 3, we get the following

difference faces.

o,=

-13
-5
-31

3
-53
-11

21

-2

-3
-9x1

-3
20
9
2

32
-13
-14

21

31

o,=

-9x1

17
-15
21
-5
22
25
-7

-19

-29
-"9x1 (5.14), (5.15), (5.16)

^ = [0„<D2D <Dm] here M = 3

A (5 . 1 7) , (5 . 1 8)

The difference face vectors are concatenated to obtain the 'A' matrix of dimension 9x3

80

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

-13 -3 17
-5 20 -15
-31 9 21

3 2 -5
-53 32 22
-11 -13 25
21 -14 -7
-2 21 -19
-3 31 -29

(5.19)

Architecture Design for Step 4

Difference face is the difference between the average face and the known face, since we

have 3 known faces in the database, we would get 3 difference-face vectors, namely

and <t>3.

As seen in the above model calculation, we would encounter negative values

during eigenfaces process, taking this into consideration while designing the architecture,

we would use a bit check module to convert the average face data and individual face

data into its equivalent two's complement form and then we add the individual face and

the average face together using a parallel-pipelined adder.

5.4.1.7 Bit check Module

In the bit check Module, we convert the incoming data into its equivalent two's

complement form. Then we finally send this data to the parallel adder, to avoid any

overflow in the parallel adder stage, we would add a two-bit sign extension in the bit

81

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

check module, and the inputs for the bit check module are the average face vector and the

individual face vector. Figure 5.13 illustrates the block diagram for the bit check module.

do_l|9:0)
Cheek the MSB bit of the first operand.
If it is "0" no need to do any thing just

pass the same
If it is "1" evaluate 2's compliment and

pass to the next stage
Same procedure follow for second

operand and 2 bits sign extension is
added by this module

do_l(ll:0|

».

Cheek the MSB bit of the first operand.
If it is "0" no need to do any thing just

pass the same
If it is "1" evaluate 2's compliment and

pass to the next stage
Same procedure follow for second

operand and 2 bits sign extension is
added by this module

lmg_av&_out[11:0|

irag_avg_out|9:0|

Cheek the MSB bit of the first operand.
If it is "0" no need to do any thing just

pass the same
If it is "1" evaluate 2's compliment and

pass to the next stage
Same procedure follow for second

operand and 2 bits sign extension is
added by this module

i

elk

i i

reset_n

Figure 5.13: Bit Check Module

5.4.1.8 Pipelined adder

Once we have the outputs from the bit check module, all we have to do is to add them

using a pipelined adder, the parallel adder that were using here is similar to the one that

we have used earlier in this architecture, but we would require only one stage, and in that

stage we are adding the two's complement of the known image 1 (do_l) and the average

image (img_avg_out) to obtain the difference face 1 - Oj (diff_face_l), similarly we can

obtain difference face 2 - Oz (diff_face_2) and difference face 3 - <t»3 (diff_face_3) by

using known image 2 and 3 respectively.

Figure 5.14 illustrates the block diagram for the pipelined adder module.

82

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

do_l|ll:0|

11:01

•M»*l j
—IIIJI J
•I|lli)| J

/ *

•«»>*» ,

i *• i *•

-/—*

diff_face_ I112:0|

Figure 5.14: Pipelined Adder

Figure 5.15 illustrates the block diagram for the difference face module.

dlfff_face_1 112:0|

dirr_r*ce_2|12:0|

dtff_face_3|12:0|

DlfTercncc Face

The Oj has a dimension of
10304X1

re» 110303:0jmem[38 0j

Form "A" matrix Concatenating the
difference image vector form*

matrix A
A-[4>, «>2 *3]

i.e (difTJacc I [12:0] ,diff_facc_2
[12:0], diir_face_3[l2:0] }

A_trampo*«_matrlxa.next[3R:0]

A_raatrtxwnext|38:0]

rd_add_l |2:0|

rd_add_2|2.©J

rd_loc_add_l 113:0}

rd_loc_add_2|I3:0|

wr_add|2:0]

wr_l©c_add 113:0 J

read_enable

wrltc_cnable

bold

Figure 5.15: Difference Face

83

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

The difference faces are stored in an internal register; each difference face is a vector of

size 10304 x 1, since we have three images in our database, we would obtain three

difference faces, concatenating all 3 vectors would form a matrix of size 10304 x 3, this

matrix is represented by 'A', the controller to control the location and position would

provide the address to read and write the data to and from the internal register.

Model Calculation Continued

Step 5: Obtain the Covariance matrix C

1 M
C = —Y<S>l<&T

i=AAT

(5.20)

WhereA=[<bvQ>2U <DJ (521)

The covariance matrix C is solved to obtain the eigenvectors Uj and eigenvalues A£. In

our model calculation, the dimension of 'A' matrix is 9 x 3, so multiplying A * A7 would

give us the covariance matrix of dimension 9x9, which would yield 9 eigenvalues and 9

eigenvectors, instead we can use a mathematical backdoor to reduce he matrices as

follows, lets take L = ArA (5-22)

-> / - AT A ' L, — si9xJ (5.23)

=>Lm (5.24)

Now we have reduced the matrix down from 9 x 9 to 3 x 3, this step is very important,

because looking at the bigger picture, we would have huge values, for example if we

have 10 images of dimension 92 x 112, then we will end up with the following data.

84

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

— A * AT
~ 10304x10 10x10304

=> ^-10304x10304 (5.25)

Solving the covariance matrix C with dimension 10304 x 10304 would yield 10304

eigenvectors and 10304 eigenvalues; this is a very huge value and could possibly crash a

processor, so it is essential to solve the matrix 'L' instead of matrix C.

L = A A (5.26)

4548 -2316 -2275
-2316 3285 -993
-2275 -993 3340

-0x3 (5.27)

Architecture design for Step 5

Once we have our difference faces, we concatenate them to obtain the 'A' matrix; this

matrix is stored in an internal register, to obtain 'A ' we should read the rows of 'A'

matrix as column and the columns as rows, then we multiply AT and A.

5.4.1.9 Multiplier

The multiplier we use here is a normal multiplier rather than a pipeline multiplier, since

the multiplier and the multiplicand are of 39 bits each, this would require excessive

pipelining, which would increase latency and also would require more resources (circuit

elements) thereby increasing the chip area. Figure 5.16 illustrates the block diagram for

the multiplier module.

85

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

A_t raaspose_matrfx_Bex t(38:0|

A_matrtx_next|38:0|

Multiplier Module

reset a

covari*nce_inatrix__aextf4S:0]

Figure S.I6: Multiplier Module - ('A' matrix and 'AT' matrix)

In the multiplier module, multiplying AT and A would give us L matrix, once we have the

'L' matrix, each and every element of the matrix is normalized using a normalization

module. Figure 5.17 illustrates the block diagram of the Normalization module for L-

Matrix.

covarfance_matrix_next|48:0|

wr_add|2:0|

rd_*dd_![2:01

rd_loc_«dd-l 11 J:®|

w r_toc_add 113:0]

read_enablc •

write enable

L-M»trtx
Normalization is done by this

module.

49 bits of each co-efficient
rounded of to nearest integer

value and no of bits are mapped
to 32 bits of each co- efficient reg

[3:0]raem
[95:0]

L_Matrix|31:0|

Figure 5.17: L Matrix - Normalization Module

86

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Model Calculation Continued

Step 6: Find the eigenvectors U, and eigenvalues Aj of C

Now if, Lvj - A,v. (5.28)

where vt is the eigenvectors of L and Aj are eigenvalues of L, then

Multiplying A on both sides of the above equation gives us

=> A L v, = A. A v; I f /

=> A ATA v. = X. A v
I I I

=> CAv, = XiAvj

(5.29)

(5.30)

(5.31)

Hence u, = Avt and are respectively the M eigenvectors and eigenvalues of C.

To find the eigenvalues and eigenvectors of C, we should first find the eigenvectors v* of

L Matrix.

4548 -2316 -2275
-2316 3285 -993
-2275 -993 3340

5x3 (5.32)

To find the eigenvalues and eigenvectors [Hami 1990] of L matrix, we should introduce A

and an Identity matrix 'I' and then we must find the determinant for [L — LI], this would

give us a cubic equation in terms of A,

A3 + 2077A2 + 29576870 X -1.06 x 1010 = 0 (5 33)

Solving the above equation for A would give us 3 eigenvalues,

At = 6866, A2 = 4306, A3 = 1 (5.34)

Then we have to substitute each eigenvalue in [L — A. /] and multiply it with vector v,

(L - XvOvv

87

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Where Vjis , solving (I — Xx .I)v, would give us three simultaneous equations in

terms of x, y and z, solving them would give the eigenvector of A1# similarly solving the

matrix and the result ing simultaneous equations for (L — A2 . /)v2 and (L — A3 .1)v3

would give us the eigenvectors of A2and A3 respectively.

Finally the eigenvalues and their corresponding eigenvalues are as follow

= 6866, vt =

A2 = 4306, v2 =

^•3 — 1< v3 —

-2
1
1

0
-1
. 1

T
1
.1.

(5.35)

(5.36)

(5.37)

Architecture design for Step 6

5.4.1.10 MATLAB Module

The eigenvalues and eigenvectors are to be found from the 'L' Matrix. Solving this

matrix for eigenvalues and eigenvectors using Verilog HDL for FPGA implementation

would be a difficult task. The above model calculations clearly explain the intricate steps

involved in solving them. This is currently being researched [Brav 08] [Brav 06]. Due to

lack of time, we could not complete its implementation, so we have used MATLAB to

88

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

solve the covariance matrix to obtain the eigenvalues and the eigenvectors. Figure 5.18

illustrates the block diagram of the MATLAB module.

L_Matrix|31:0|

rd_add_t|2:0|

wr_add[2:0|

rdjoc_»dd_l(2:0|

wr_toc__add[2:0|

read_eoabk
write_enable

bold

MATLAB out_ftaal_m*trix|38:0|

Figure 5.18: MATLAB Module

The eigenvalues A* and eigenvectors vL are found using MATLAB. This concludes the

architecture for Phase I.

89

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

5.4.2 Phase II

Figure 5.19 illustrates Phase II of Architecture

MATLAB
V1

MATLAB
v2

MATLAB

V3

Known Images

Architecture Date Row - PImm 2

Internal
Register

A Internal
Register

(r-u»)
(lym)
(ivf)
(r,-ui)

Unknown Image

o RAM I Internal Register

Parallel Adder

MSB Check

"'litift hi' -CHI, * "'litift hi' -n-n2 *
n-n3 "

Multiplier

o MATLAB

final Display

Figure 5.19: Architecture Date Flow - Phase II

Model Calculation Continued

Step 7: Find the eigenvector uf of C

U[= A. Vi (5.38)

Multiplying the eigenvectors vt of L with A, would give us the eigenvectors u, of C,

generally the eigenvectors with the smallest eigenvalues could be neglected, since they

90

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

don't contribute to too much to the eigenface. But in our case since we only have 3

eigenvectors, there is no need to neglect the eigenvector with lowest eigenvalue, each of

these eigenvectors are normalized, scaled by 255 and then projected on the image space,

they would render a ghostly face image called as 'Eigenface', since we have 3

eigenvectors, we would have 3 eigenfaces. The following eigenvectors ut given below

are normalized and are scaled by 255.

48
18
115
-10

199
41

-79
5
8

=

53
-94
31

-18

-25
102

18

-110

-163

Mi =

51
0

-51
0
51
51
0
0

-51
-*9x1 -*9xl -9x1 (5.39), (5.40), (5.41)

u = [u l tu2 ...uMi]N2xM> where M < M (5.42)

48 53 51
18 -94 0
115 31 -51
-10 -18 0
119 -25 51
41 102 51

-79 18 0
5 -110 0
8 -163 -51

-fc* (5.43)

91

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Architecture design for Step 7

5.4.2.1 Multiplier

We need to multiply 'A' matrix with the eigenvectors vx, v2 and v3, we are using the

same multiplier module as used in Phase I of this Architecture. Figure 5.20 illustrates the

block diagram of the multiplier module.

ont_finsl_matrix[38:0|

A_m*tra_next|38:0]

MULTIPLIER U_M»trix|49:0|

*•

Figure 5.20: Multiplier Module - ('A' Matrix and Eigenvectors Vj, V2 and V3)

The resulting 'U' matrix is then stored in an internal register and since we would be only

be using with 'UT' matrix, it is better to take transpose oi'U' matrix and save it in the

internal register, the controller to control the location and position provides the address

for reading from and writing to the internal register. Figure 5.21 illustrates the block

T
diagram of the Internal Register for U and U Matrix.

92

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

rd_ftdd{2:0|

rd_l«x_*ddjp:0|

rd_l«c_»dd_l{3:0|

hold hold

elk elk rnet_a rwetn

U Matrix U Matrix

Figure 5.21: Internal Register ('U* and *U Matrix)

Model Calculation Continued

Step 8: Face classification

Once the eigenfaces were created, a new face image T can be transformed into its

eigenface component by a simple operation.

w ,

w,

W,
>kxl (5.44)

where k = 1,2 ... M'

The weight wf e ft describes the contribution of each eigenface in representing the input

face image, once the weight vector (H) of the test image T is found; we also find the

weight vector of the known images from the database, since we have 3 known images,

93

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

we will get (ft^ fl2, Xl3) and then we use the Euclidean distance classifier to find the

smallest distance between the weight vectors of the test face and the known faces in the

database.

erec= min||ft - Hill (5.45)

If Erec< &rec> where 6rec is chosen heuristically, then we can say that the input test

image is recognized as the image with which it gives the lowest score.

Since in our model calculation we have assumed smaller matrices to be our

known images, here we are assuming our test image to be a similar matrix, for

convenience, we are assuming the test image to be the same as the matrix of known

image 1.

10 23 -13
35 40 -5
40 71 -31
11 8 3
5 ¥ = 58 (T-¥) = -53
6 17 -11

50 29 21
22 24 -2
36 39 -3

(5.46), (5.47), (5.48)

Multiplying U T matrix with (f — 40 will give us ft

Q =
-17000

56
-2193

-9x1 (5.49)

94

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Multiplying UT matrix with (rx — 40 will give us flj

Q, =
-17000

56
-2193

9x1 (5.50)

The weight vectors SI and f^are similar, since we have assumed the test image and the

known image 1 to be the same.

Multiplying UT matrix with (f2 — V) will give us fl2

Q,
8525

-11537
-1224

•3x1 (5.51)

Multiplying UT matrix with (f3 - 40 will give us

Q3 =

8640
11743
3672

3x1 (5.52)

The Euclidean distance classifier is applied to find the distance between the weight

vectors Grec= min||H — we would get

l i n - H i H = > € r e c = 0 (5 . 5 3)

||n - n2|| => Erec= 28051 (5.54)

lift -n31| =>e r e c= 28781 (5.55)

The minimum distance is '0' for known image 1; hence the test image(T) is recognized

as known image 1 (T x).

95

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

Architecture design for Step 8

The new face image T can be transformed into its eigenface component by a simple

operation

q = U t (r - T) (5 5 6)

The test face that is stored in RAM 4 and the average face vector from the internal

register are the inputs for the bit check module, once the two's complement

representation of test face and average face vector are obtained using the bit check

module, we then add these data using a parallel-pipelined adder module, then the result

obtained is multiplied with UT matrix to obtain fl. Figure 5.22 illustrates the block

diagram of the bit check module.

imy avgH4:01

do_4|735:0|

Cheek the MSB bit of the first operand.
If it is "0" then no need to do any thing

just pass the same
If it is " 1" then evaluate 2's compliment

and pass to the next stage
Same procedure is followed for other

operands.

elk

img_>avg|14:0|

d©_4|735:0]

Figure 5.22: Bit Check Module

Figure 5.23 illustrates the block diagram of the Parallel-pipelined adder module.

96

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

img avg

do 4

Parallel Pipelined Adder
(Sum of Average Image and Unknown

Image)

diff_un

—•

reset n elk

Figure 5.23: Parallel-Pipelined Adder - Average Face and Unknown Test Face

Once we have found the weight vector for the test image, we proceed to find the weight

vectors of the known images, we start off by finding the two's complement for the

average face vector OF) and the known faces (I\), (r2) and (r3) using the bit check

module, and then using the parallel adder module to find the (r\ — ¥), (r2 — V) and

(r3 — HO. Figure 5.24 illustrates the block diagram of the Parallel-pipelined adder

module.

97

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

img avg

Parallel Pipelined Adder
(Sum of the Average Image & Known Image)

do 1 Img mat 1

diff_l

-«*•

reset n elk

Figure 5.24: Parallel-Pipelined Adder - Average Face and Known Face

We use the multiplier module to multiply the result from the parallel-pipelined adder with

UT, which would give us the weight vectors of the known face fll5 fl2 andft3. Figure

5.25 illustrates the block diagram of the multiplier module.

Once we have the weight vectors of the test image and the known images, we then

find the Euclidean distance between the weight vectors to identify the weight vector that

likes closest to the test weight vector, so we subtract the weight vectors of the known face

with the weight vector of the test face, (ft — flj), (ft — ft2), and (ft — ^3)

98

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

ohm I oka 2

res« n reset a

diff on
(r-iD)

ohm_3 ohm

MULTIPUER

dHf1*U*
MULTIPUER

dunru*

(Ik met • elk relet g

Figure 5.25: Multiplier Module (UT * (r, - V))

The bit check module is used to convert the weight vectors into their 2's complement

representation, and then the pipelined adder module is used to add the weight vector of

the test face and the weight vector of the known face. Figure 5.26 illustrates the bit check

module for the weight vectors and the Figure 5.27 illustrates the pipelined adder for the

weight vectors.

99

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

o h m l -

o h m -

Check the MSB bit of (he first operand.
If it is "0" no need to do any thing just

pass the same
If it it" I™ evaluate 2"» compliment and

pus to the next stage
Same procedure is followed for other

operands.

• o h m l

- ohm

elk reset n

Check the MSB bit of die first operand.
If it is "0" no need to do any thing just

pass the same
if it is "P evaluate 2's compliment and

pass to the next stage
Same procedure is followed for other

operands.

Check the MSB bit of die first operand.
If it is "0" no need to do any thing just

pass the same
if it is "P evaluate 2's compliment and

pass to the next stage
Same procedure is followed for other

operands.

Check the MSB bit of die first operand.
If it is "0" no need to do any thing just

pass the same
if it is "P evaluate 2's compliment and

pass to the next stage
Same procedure is followed for other

operands.

elk reset_n

Check the MSB bit of the first operand.
If it is "0" no need to do any thing just

pass the same
ohm_3

If it is evaluate 2's compliment and
pass to the next stage

Same procedure is followed for other
operands.

If it is evaluate 2's compliment and
pass to the next stage

Same procedure is followed for other
operands. ohm

elk reset_n

Figure 5.26: Bit Check Module for Weight Vectors

100

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

ohm

ohm 1

$0 ont

-f*
nl|ll:3]

•11)2:01

no|2:0|

no_llb_l|4|

nl|ll:6|

no|ll:6]

«o_kb_l|6]

nl|ll:»|

nohbl|9|

nl|ll:9]

reset n

result 1

elk

Figure 5.27: Pipelined Adder -for Weight Vectors

resultlO

result_2_0 Final Result and Display
result

result_3_0

Module

Figure 5.28: Compare and Display module

101

5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA

The weight vector from the known image database that has the lowest distance to the

weight vector of the test face is identified in the compare and display module, this

minimum distance is represented as Erec, when Erec< 6rec, where Qrec is chosen

heuristically, then we can say that the input test image is recognized as the image with

which it gives the lowest score, then this recognition result is displayed in the display

module. Figure 5.28 illustrates the block diagram for the compare and display module.

This concludes the phase II of the architecture, combining the architecture of Phase I and

Phase II gives us the complete architecture for implementing EA.

Architecture for FPGA implementation of EA was proposed and the individual modules

were discussed. The simulation results of the basic modules are presented and the FPGA

implementation issues of EA are discussed in the following chapter.

102

Chapter 6

Simulation and FPQA Implementation Issues

6.1 Introduction

This chapter presents the simulation results of the main modules of EA using ModelSim

HDL Simulator and proceeds to discuss the feasibility of FPGA implementation. It

concludes with discussion of issues related to FPGA implementation of eigenfaces

architecture.

6.2 Simulation

Following the discussion of EA in chapter 4, and its architecture description in chapter 5,

we discuss the verification of the functionality of main architecture modules using

ModelSim HDL Simulator.

ModelSim SE PLUS 6.2 C version [Soft 11] was used to compile and simulate

the Verilog modules and its corresponding test benches for the main architecture

modules.

6.2.1 Basic Simulation Flow

To simulate the Verilog modules, we developed the required test benches. The basic

simulation flow [Alte 11] [Mode 05] using ModelSim is shown in Figure 6.1

103

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

Compile a Design File

Debug Result

Load and Run Simulation

Create a Working Library

Figure 6.1: Basic Simulation Flow

• All the designs in ModelSim are compiled into the library, all the design

simulation are under the 'work' library, this is the default system library.

• Once the work library is created, the design in the library is compiled, if there are

any no errors, the compilation would be successful.

• After compiling the design, the simulator is loaded by invoking the simulator on

the top-level module (Verilog), once the simulator is loaded successfully, the

simulation is run.

• Incase the expected result is not obtained; the ModelSim debugging environment

is used to track down the problem.

104

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

6.2.2 Simulation Results

All the modules in the eigenfaces architecture excluding the MATLAB module were

developed in Verilog HDL. We now briefly describe the various models and their

simulation. The list of modules developed is given below.

1. Parallel-Pipelined Adder Module

2. Divide by 3-Module

3. Read and Write Address Generator Module

4. Read and Write Data to the RAM Module

6.2.2.1 Parallel-Pipelined Adder Module

The simulation in this section is for parallel-pipelined adder, which was discussed in

section 5.4.1.4. Figure 6.2 illustrates the interface diagram for the parallel-pipelined adder

module

n
0 111:01

nj |11:0]

n2 (11:0]

n3 (11:0]

n4 [11:01

n5 [11:0]

ng [11:0]

n? [11:0]

elk

Parallel Pipelined
Adder Module

Sum [14:0]

Figure 6.2: Parallel-Pipelined Adder Interface Module

105

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

The parallel-pipelined adder module is designed to add 8 different inputs (no-n7), 12 bits

each. The output is a 15-bit Sum. This module was tested with random 12 bit input

values, and the simulation was successful.

6.2.2.2 Divide by 3-Module

The simulation in this section is for divide by 3-module, which was discussed in section

5.4.1.6. Figure 6.3 illustrates the interface diagram for divide by 3-module.

elk

reset__n

djn [15:0]

d invalid

Divide by 3
Module

•
Divide by 3

Module

•
Divide by 3

Module

• -• d_out [15:0]

Figure (J: Divide by 3-Interface Module

The divide by 3-module is designed to divide the input din by 3. To find the average face

it is required to divide the sum obtained from the parallel-pipelined adder by the total

number of faces in the database. In our architecture we are using the divide by 3-module

since we have used a total of 3 images in out database. The divide by 3-module was

tested with different 15bit values for d_in, and the simulation was successful.

106

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

6.2.2.3 Read and Write Address Generator Module

The simulation in this section is for read and write address generator module, which was

discussed in section 5.4.1.3. Figure 6.4 illustrates the interface diagram for read and write

address generator module.

elk

reset_n

d inva l id

dout valid

R/W Address
Generator

Module Module

-• wa[2:0]

-• ra[2:0]

Figure 6.4: Read and Write Address Generator Module Interface

The read and write address generator module is a 3 bit controller that generates the read

and write addresses. When the din valid signal is high, the write counter is incremented

and when the dout valid signal is high, the read counter is incremented. This module was

tested and the simulation was successful.

6.2.2.4 Read and Write Data to RAM Module

The simulation in this section is to read and write data to RAM module, which was

discussed in section 5.4.1.2. Figure 6.5 illustrates the interface for data read and write to

RAM module.

107

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

din [735:0]

din_valid

wr_add [6:0]

rd_add [6:0]

rden

wren

elk

Synchronous R/W to Synchronous R/W to Synchronous R/W to Synchronous R/W to Synchronous R/W to
RAM Module RAM Module RAM Module RAM Module

-• dout [7:0]

-• dout valid

Figure 6.S: Read and Write Data to RAM Module Interface

The size of the image used in our architecture is 82kb. The number of bits for the input

din, read address rd add and write address wr add were designed according to the size of

the image used in our architecture. When wren (write enable) is high and din_valid is

high, the data d in is written into the RAM. When rden (read enable) is high, the data is

read out of the memory (dout) and dout valid is set high. This module was tested and the

simulation was successful.

6.3 FPGA Implementation - Feasibility Issues

In the proposed architecture (Fig. 5.1), all modules can be implemented in FPGA except

the MATLAB module. Due to lack of time we could not complete its implementation.

In eigenfaces method, we are required to find the eigenvalues and eigenvectors of

the covariance matrix, now moving back to Eq. (5.32) the covariance matrix from the

model calculation in chapter 5, we have.

108

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

4548 -2316 -2275
1= -2316 3285 -993

-2275 -993 3340
0x3

To find the eigenvectors of L matrix, we should introduce a new variable X and an

Identity matrix T, we then find the determinant for [L — X. /], this would give us a cubic

equation in terms of X. Here we are getting a cubic equation since our covariance matrix

is of the dimension 3x3, this 3x3 dimension of the covariance matrix is because we

have used 3 images in our database, for instance, if we have used 10 images in our

database, then we would have a 10 x 10 matrix, that would give us an equation raised to

the power of 10, solving this would be an intractable task.

Once we solve the cubic equation, we would get X l f X 2 and X 3 , these are the

eigenvalues of the covariance matrix, Then we have to substitute the eigenvalue in

[L — X . I] and multiply it with vector v x , (L — X x . I) v x , Where vxis , solving (L —

I) v u would give us three simultaneous equations in terms of x, y and z, solving them

would give the eigenvector Vjof Xx, as shown in Eq. (5.35). Similarly solving (L —

X2.1)v2 and (L — X3. l)v3 and their resulting simultaneous equations, we would arrive at

eigenvectors v2 and v 3of A2and X3 respectively as shown in Eq. (5.36) and Eq. (5.37)

-2
= 6866, vx = 1

1 .

0
X 2 = 4306, v 2 = — 1

1 .

1
X 3 — 1 , v 3 = 1

.1.

109

6. SIMULATION AND FPGA IMPLEMENTATION ISSUES

From this above model calculation (an excerpt from chapter 5), it can be seen that solving

the covariance matrix for the eigenvalues and eigenvectors using Verilog HDL for FPGA

would be a difficult task. This requires a novel architecture [Brav 08] [Brav 06]. Solving

eigenvectors and eigenvalues from the covariance matrix is presently being extensively

researched for a simple, unique and efficient solution for FPGA implementation.

110

Chapter 7

Conclusion and Future Work

7.1 Dissertation Summary

Current security systems based on password and ID card could be lost, forgotten or

stolen. To avoid such situations a good solution is to implement an effective biometric

system. Face recognition system is advantageous over other biometric systems. They are

non-intrusive, cheaper and they do not require any explicit action from the user.

The state of art face recognition technologies [Cogn 10] [Ayon 10] [Auro 08] are

implemented using powerful server computers and workstations with large memories.

This type of hardware can only be placed in secure location with human supervision. This

is a huge drawback even though they offer good recognition rate. This hurdle could be

crossed if we could implement face recognition algorithm on FPGA. Currently face

recognition algorithms are implemented using programming languages such as C++,

Java, MATLAB, Python and Mathematica. They are yet to be written in a HDL.

This thesis explored the feasibility of FPGA implementation of face recognition

using eigenfaces and an architecture has been proposed and was elucidated module by

module, along with the simulation results for the main modules, using ModelSim Verilog

simulator. The limitations of the architecture and the feasibility of FPGA implementation

were also discussed.

I l l

7. CONCLUSION AND FUTURE WORK

7.2 Future Work

This thesis is an initial step towards exploring the feasibility of implementing face

recognition algorithm on FPGA. This would enable a new generation of face recognition

technology that is mobile, flexible and cost effective . These advantages will open up new

avenues for the every increasing applications of face recognition technology.

112

fl

References

[Agua 02] Mark Nixon and Alberto Aguado. Feature Extraction and Image Processing.

First. Oxford: Academic Press is an imprint of Elsevier, 2002.

[Ahuj 02] Ming-Hsuan Yang, D. J, Kriegman and N. Ahuja. "Detecting faces in images: a

survey." IEEE - Pattern Analysis and Machine Intelligence 24, no. 1 (January

2002): 34 - 58.

[Alte 11] Altera . "Mentor Graphics ModelSim and QuestaSim Support." Vers. 11.1.

Altera. November 2011.

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf.

[Arab 09] Rabia Jafri and Hamid R. Arbina "A Survey of Face Recognition Techniques."

Journal of Information Processing Systems 5, no. 2 (June 2009): 41-68.

[Auro 08] Aurora . Aurora - The Face of Biometrics.

http://www.auroracs.co.uk/best_solution.html.

[Ayon 10] Ayonix . Face Recognition SDK. http://ayonix.com/en/products/face-recognition-

sdk.html.

[Bart 02] M. S. Bartlett, J. R. Movellan and T. J. Sejnowski. "Face recognition by

independent component analysis." IEEE, Neural Networks 13, no. 6 (November

2002): 1450 - 1464.

[Belh 97] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman. "Eigenfaces vs.

Fisherfaces: Recognition Using Class Specific Linear Projection." IEEE - Pattern

Analysis and Machine Intelligence 19, no. 7 (July 1997): 711 - 720.

[Bled 66] Bledsoe, W. W. "The Model Method in Facial Recognition,." Palo Alto, CA:

Panaromic Research Inc.,, August 1966.

[Brav 06] I. Bravo, P. Jimenez, M. Mazo, J. L. Lazaro and A. Gardel. "Implementation in

FPGA's of Jacobi Method to Solve the Eigenvalue and Eigenvector Problem."

Field Programmable Logic and Applications, August 2006: 1 - 4.

[Brav 08] I. Bravo, M. Mazo, J. L. Lazaro, P. Jimenez, A. Gardel and M. Marron. "Novel

HW Architecture Based on FPGAs Oriented to Solve the Eigen Problem." IEEE -

113

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.auroracs.co.uk/best_solution.html

REFERENCES

Very Large Scale Integration (VLSI) Systems 16, no. 12 (December 2008): 1722

1725.

[Bron 04] Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel and Alon Spira.

"3D Face Recognition Without Facial Surface Reconstruction." 8th European

Conference on Computer Vision. Prague: Springer, 2004.

[Camb 02] Cambridge University Computer Laboratory . AT&T Laboratories Cambridge .

2002. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

[Carm 09] Carmen Au, Jean Sebastien and Reehan Shaikh. "Face Recognition: Robustness

of'Eigenface' Approach." School of Computer Science & Center for Intelligent

Machines, McGill University, Montreal.

[Cogn 10] Cognitec Systems. FaceVACS-SDK. http://www.cognitec-

systems.de/FaceVACS-SDK. 19.0.html.

[Como 92] Comon, Pierre. "Independent component analysis, A new concept?" Elsevier -

Signal Processing 36, no. 3 (1992): 287-314.

[Cory 03] Warren E. Cory, Hare K. Verma, Atul V. Ghia, Paul T. Sasaki and Suresh M.

Menon. Variable Data Width Operation in Multi-Gigabit Transceivers on a

Programmable Logic Device. US Patent 6,617,877 Bl. September 9, 2003.

[Cory 05] Cory, Warren E. Variable Data Width Converter. US Patent 6,970,013 Bl.

November 29,2005.

[Coun 06] National Science and Technology Council. "Biometric History." Office of

Science, Technology and Innovation, Goverment of USA, August 7, 2006. 1-27.

[Craw 06] Ian Craw, David Tock and Alan Bennett. "Finding Face Features." ECCV

(Springer Berlin), January 2006: 92-96.

[Dela 11] Prof. Mislav Grgic and Kresimir Delac Databases, http://www.face-

rec.org/databases/.

[Fisc 73] Fischer, M. A. and Elschlager, R. A. "The Representation and Matching of

Pictorial Structures." IEEE Transaction on Computers C-22, no. 1 (January

1973): 67-92.

[Fish 09] Robert Fisher, Simon Perkins, Ashley Walker and Erick Wolfart. Pixel Division.

2004. http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm.

[Gold 71] A. J. Goldstein, L. D. Harmon and A. B. Lesk. "Identification of Human Faces."

Proceedings of IEEE. 1971.748-760.

114

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixdiv.htm

REFERENCES

[Grgi 07] Kresimir Delac and Mislav Grgic. Face Recognition. InTech, 2007.

[Grou 97] Face Databases From Other Research Groups.

http://www.ecse.rpi.edu/~cvrl/database/other_Face_Databases.htm.

[Guo 00] Guodong Guo, Kapluk Chan and S. Z. Li. "Face Recognition by Support Vector

Machines." Automatic Face and Gesture Recognition, Fourth IEEE Proceeding.

2000. 196-201.

[Hami 90] Hamilton, A. G. Linear Algebra: An Introduction with Concurrent Examples.

Vol. 2. Cambridge University Press, 1990.

[Heis 03] Bernd Heisele, Thomas Serre, Sam Prentice and Tomaso Poggio. "Hierarchical

Classification and Feature Reduction for Fast Face Detection with Support

Vector Machines." ELSEVIER - Pattern Recognition (ELSEVIER) 36, no. 9

(September 2003): 2007-2017.

[Jain 00] A. K. Jain, R. P. W Duin and Jianchang Mao. "Statistical Pattern Recognition: A

Review." IEEE - Pattern Analysis and Machine Intelligence 22, no. 1 (January

2000): 4 - 37.

[Joll 02] JollifFe, I. T. Principal Component Analysis. Second. Aberdeen: Springer Series

in Statistics, 2002.

[Jord 02] F. R. Bach and M. I. Jordan "Kernel Independent Component Analysis." Edited

by John Shawe -Taylor. The Journal of Machine Learning Research 3 (July

2002): 1-48.

[Kana 73] Kanade, Takeo. "Picture Processing System by Computer Complex and

Recognition of Human Faces." Doctoral dissertation, Department of Information

Science, Kyoto University, 1973.

[Kela 06] N. Kela, A. Rattani and P. Gupta. "Illumination Invariant Elastic Bunch Graph

Matching for Efficient Face Recognition." IEEE - Computer Vision and Pattern

Recognition Workshop, June 2006: 42-42.

[Kend 96] R. Kjeldsen and J. Kender "Finding Skin in Color Images." IEEE - Automatic

Face and Gesture Recognition, October 1996: 312-317.

[Kirb 87] L. Sirovich and M. Kirby "Low Dimensional Procedure for the Characterization

of Human Faces." Journal of Optical Society of America 4, no. 3 (1987): 519-

524.

115

http://www.ecse.rpi.edu/~cvrl/database/other_Face_Databases.htm

REFERENCES

[Kirb 90] M. Kirby and L. Sirovich. "Application of the Karhunen-Loeve Procedure for the

Characterization of Human Faces." IEEE - Pattern Analysis and Machine

Intelligence 12, no. 1 (January 1990): 103 - 108.

[Kitt 98] J. Kittler, M. Hatef, R.P.W Duin and J. Matas. "On Combining Classifiers."

IEEE - Pattern Analysis and Machine Intelligence 20, no. 3 (March 1998): 226 -

239.

[Lani 95] A. Lanitis, C. J. Taylor and T. F. Cootes. "Automated Face Identification System

Using Flexible Apperance Models." Image and Vision Computing - Machine

Vision Conference (ELSEVIER) 13, no. 5 (June 1995): 393—401.

[Leun 95] T. K. Leung, M. C. Burl and P. Perona. "Finding Faces in Cluttered Scenes Using

Random Labeled Graph Matching." IEEE - Computer Vision, June 1995: 637 -

644.

[Lew 96] Lew, M. S. "Information Theoretic View-based and Modular Face Detection."

IEEE - Automatic Face and Gesture Recognition, October 1996: 198 - 203.

[Liu 99] H. Wechsler and C. Liu "Comparitive Assessment of Independent Component

Analysis (ICA) for Face Recognition." Audio and Video-BasedBiometric Person

Authentication, March 1999: 22-24.

[Lu 03] Lu, X. "Image Analysis for Face Recognition." Personal Notes, Computer

Science and Engineering, Michigan State University, Michigan, 2003.

[Mais 92] B. S. Manjunath and R. Chellappa and C. Von der. Malsburg "A Feature Based

Approach to Face Recognition." IEEE - Computer Vision and Pattern

Recognition, June 1992: 373 - 378.

[Marq 10] Marques, Ion. "Face Recognition Algorithms." Thesis, Universidad del Pais

Vasco, 2010.

[Mite 96] Tom M. Mitchell Machine Learning. Edited by C. L. Liu and A. B. Tucker.

McGraw Hill, 1996.

[Mode 05] ALTERA. "About Using the ModelSim Software with the Quartus II Software."

ALTERA.

http://quartushelp.altera.eom/current/master.htm#mergedProjects/eda/simulation/

modelsim/eda_view_using_msim.htm.

[Naka 96] Ying Dai and Yasuaki Nakano. "Face-Texture Model based on SGLD and its

Application in Face Detection in a Color Scene." ELSEVIER - Pattern

Recognition 29, no. 6 (June 1996): 1007-1017.

116

REFERENCES

[Nefi 98]

[Nixo 85]

[Osun 97]

[Pent 91]

[Pent 97]

[Phil 97]

[Phil 99]

[Phil 03]

[Piss 02]

[Piur 96]

[Pogg 92]

[Pogg 98]

[Raja 98]

[Roli 01]

M. H. Hayes and A. V. Nefian "Hidden Markov models for face recognition."

IEEE - Acoustics, Speech and Signal Processing 5 (May 1998): 2721 - 2724.

Nixon, M. "Eye Spacing Measurment for Facial Recognition." SPIE -

Application of Digital Image Processing 575 (August 1985): 279-285.

E. Osuna, R. Freund and F. Girosit. "Training Support Vector Machines: An

Application to Face Detection." IEEE - Computer Vision and Pattern

Recognition, June 1997: 130 - 136.

Matthew Turk and Alex Pentland "Eigenfaces for Recognition." Journal of

Cognitive Neuroscience 3, no. 1 (1991): 71-86.

B. Moghaddam and A. Pentland "Probabilistic Visual Learning For Object

Representation." IEEE - Pattern Analysis and Machine Intelligence 19, no. 7

(July 1997): 696-710.

P.J. Phillips, Hyeonjoon Moon, P. Rauss, S. A. Rizvi. "The FERET Evaluation

Methodology for Face Recognition Algorithms." IEEE Computer Vision and

Pattern Recognition , June 1997: 137 - 143 .

Phillips, P. J. "Support Vector Machines Applied to Face Recognition." In

Advances in Neural Information Processing, by P. J. Phillips, 803-809.

Gaithersburg: MIT Press, 1999.

P. J. Phillips, P.Grother, R.Micheals, D. M. Blackburn, E. Tabassi, M. Bone.

"Face Recognition Vendor Test 2002." IEEE - Analysis and Modeling of Faces

and Gestures (DARPA, Arlington, VA, USA), October 2003: 44.

Pissarenko, Dimitri. "Eigenface based Facial Recognition." December 2002.

Piuri, L. Dadda and V. "Pipelined adders." IEEE - Computer Society 45, no. 3

(March 1996): 348 - 356.

R. Brunelli and T. Poggio "Face Recognition Through Geometrical Features."

Computer Vision — ECCV (Springer Berlin) 588 (may 1992): 792-800.

K. K. Sung and T. Poggio "Example-based Learning for View-Based Human

Face Detection." IEEE - Pattern Analysis and Machine Intelligence 20, no. 1

(January 1998): 39-51.

A. N. Rajagopalan, K, S. Kumar, J. Karlekar, R. Manivasakan, M. M. Patil, U. B.

Desai, P. G. Poonacha and S. Chaudhuri. "Finding Faces in Photographs." IEEE -

Computer Vision, January 1998: 640 - 645.

F. Roli and J. Kittler "Multiplier Classifier Systems." Cambridge: Springer, 2001.

117

REFERENCES

[Rorr 04] Howard Anton and Chris Rorres Elementary Linear Algebra. Nine. John Wiley

& Sons Inc, 2004.

[Rose 03] W. Zhao, R. Chellappa, P. J. Phillips and A. Rosenfeld. "Face Recognition : A

Literature Survey." ACM Computing Survey 35, no. 4 (December 2003): 399-

458.

[Rowl 98] Henry A. Rowley, Shumeet Baluja and Takeo Kanade. "Neural Network-Based

Face Recognition." Edited by DC, USA IEEE Computer Society Washington.

IEEE Transactions on Pattern Analysis and Machine Intelligence 20, no. 1

(Januaiy 1998): 23 - 38.

[Sama 93] F. Fallside and F. Samaria "Face Identification and Feature Extraction Using

Hidden Markov Model." In Image Processing: Theory and Applications, by F.

Fallside and F. Samaria, 295-298. Cambridge: Elsevier, 1993.

[Saw 11] Dr. Marios Sawides Introduction to Biometric Recognition Technologies and

Applications. Electrical and Computer Engineering, Carnegie Mellon University,

Pittsburgh: Carnegie Mellon Cylab and ECE, 1-54.

[Scho 98] B. Schdlkopf, A. Smola and K. R. Miiller. "Nonlinear Component Analysis as a

Kernel Eigenvalue Problem." MIT Press Journals (Massachusetts Institute of

Technology) 10, no. 5 (July 1998): 1299-1319.

[Sebe 02] N. Sebe, M. S. Lew, I. Cohen, A. Garg and T. S. Huang. "Emotion Recognition

Using a Cauchy Naive Bayes Classifier." IEEE - Pattern Recognition 1 (2002):

17-20.

[Shle 05] Jonathon Shlens "A Tutorial on Principal Component Analysis." 51, no. 10003

(December 2005): 52.

[Smit 02] Lindsey I. Smith "A Tutorial on Principal Component Analysis ." Otago, 2002.

[Soft 11] Altera. ModelSim-Altera Software.

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-

index.html.

[Tagi 54] J. S. Bruner and R. Tagiuri The Perception of People. Vol. 2, in In Handbook of

Social Psychology, by J. S. AND TAGIURI, R. BRUNER, edited by G.Lindzey,

634-654. Reading, MA: Addison-Wesley, 1954.

[Tayl 01] T. F. Cootes, G. J. Edwards, C. J. Taylor. "Active Appearance Models." IEEE -

Pattern Analysis and Machine Intelligence 23, no. 6 (June 2001): 681 - 685.

118

REFERENCES

[Teka 98] Eli Saber and A. Murat Tekalp"Frontal-view Face Detection and Facial Feature

Extraction Using Color, Shape and Symmetry based Cost Functions." ELSEVIER

- Pattern Recognition Letters (ELSEVIER) 19, no. 8 (June 1998): 669-680.

[Tolb 06] A. S. Tolba, A. H. El-Baz and A. A. El-Harby. "Face Recognition: A Literature

Review." World Academy of Science, Engineering and Technology 19(2006):

319-334.

[Triv 09] Trivedi, Shubhendu. Face Recognition using Eigenfaces and Distance

Classifiers: A Tutorial. Feburaiy 11, 2009.

http://onionesquereality.wordpress.eom/2009/02/ll/face-recognition-using-

eigenfaces-and-distance-classifiers-a-tutorial/.

[Tuly 08] Sergey Tulyakov, Stefan Jaeger, Venu Govindaraju and David Doermann.

"Review of Classifier Combination Methods." Machine Learning in Document

Analysis and Recognition (Springer Berlin) 90 (2008): 361-386.

[Turk 91] Matthew Alan Turk, Alexander Pentland. "Eigenfaces for Recognition." IEEE -

Computer Vision cmdPattern Recognition, June 1991: 586 - 591.

[Turk 01] Turk, Matthew. "A Random Walk Through the Eigenspace." IEICE Transaction

on Information and Systems 84, no. 12 (December 2001): 1586-1595.

[Vett 03] V. Blanz and T. Vetter "Face Recognition Based on Fitting a 3D Morphable

Model." IEEE - Pattern Analysis and Machine Intelligence 25, no. 9 (September

2003): 1063 - 1074.

[Walk 00] T. F. Cootes, K. Walker, C. J. Taylor. "View-based Active Appearance Models."

IEEE - Automatic Face and Gesture Recognition, March 2000: 227 - 232.

[Wang 03] X. Lu, Y. Wang and A. K. Jain. "Combining Classifiers for Face Recognition."

ICME Proceedings - Multimedia and Expo 3 (July 2003): 13-16.

[Wisk 97] Laurenz Wiskott, Jean-Marc Fellous, Norbert Kriiger, Christopher von der

Malsburg. "Face Recognition by Elastic Bunch Graph Matching." IEEE

Transactions on Pattern Analysis and Machine Intelligence (IEEE Computer

Society Washington, DC, USA) 19, no. 7 (July 1997): 115 - 779.

[Work 10] MathWorks . Getting Information about the Pixels in an Image.

http://www.mathworks.com/help/toolbox/images/fl0-40600.html.

[Yang 02] Yang, M H. "Face recognition using kernel methods." Advances in neural

information processing systems 2 (2002): 1457-1464.

119

http://www.mathworks.com/help/toolbox/images/fl0-40600.html

REFERENCES

[Yow 97] Cipolla .R and Kin Choong Yow "Feature-based Human Face Detection." Image

and Vision Computing (ELSEVIER) 15, no. 9 (September 1997): 713-735.

[Zaba 09] Zabarauska, Manfredas. Eigenfaces Tutorial. October 2, 2009.

http://blog.zabarauskas.com/eigenfaces-tutorial/.

[Zhan 09] M. Mayo and E. Zhang "3D Face Recognition Using Multiview Keypoint

Matching." IEEE - Advanced Video and Signal Based Surveillance, September

2009: 290 - 295.

[Zhou 04] S. Zhou, R. Chellappa and B. Moghaddam. "Intra-Personal Kernel Space for

Face Recognition." IEEE- Automatic Face and Gesture Recognition, May 2004:

235 - 240 .

120

http://blog.zabarauskas.com/eigenfaces-tutorial/

Vita Auctoris

Vinod Anbalagan was born in Chennai, Tamil Nadu, India, in 1986. He received

his B.E. degree in electronics and computer engineering in 2004 form Anna University.

He is currently a candidate in the electrical and computer engineering M.A.Sc. program

at the Universtiy of Windsor. His research interest include Image Processing, FPGAs and

Digital Systems.

121

	An Exploration of the Feasibility of FPGA Implementation of Face Recognition Using Eigenfaces
	Recommended Citation

	tmp.1572905107.pdf.wLt45

