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Abstract 

mmmmmmmmmmmmammmmmmmammmmmsmmaKmBrnmammamBmBamammmammmm 

Biometric identification has been a major force since 1990's. There are different types of 

approaches for it; one of the most significant approaches is face recognition. Over the 

past two decades, face recognition techniques have improved significantly, the main 

focus being the development of efficient algorithm. The state of art algorithms with good 

recognition rate are implemented using programming languages such as C++, JAVA and 

MATLAB, these requires a fast and computationally efficient hardware such as 

workstations. 

If the face recognition algorithms could be written in a Hardware Description Language, 

they could be implemented in an FPGA. In this thesis we have choose the eigenfaces 

algorithm, since it is simple and very efficient, this algorithm is first solved analytically, 

and then the architecture is designed for FPGA implementation. We then develop the 

Verilog module for each of these modules and test their functionality using a Verilog 

Simulator and finally we discuss the feasibility of FPGA implementation. 

Implementing the face recognition technology in an FPGA would mean that they 

would require relatively low power and the size is drastically reduced when compared to 

the workstations. They would also be much faster and efficient, since they are 

specifically designed for face recognition. 
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Chapter 1 

Introduction 

1.1 Face Recognition 

Face recognition in humans has always been an enigma, for we can recognize a face with 

facial hair, occlusion, even after several years of separation and in worst possible lighting 

conditions. For two decades now researchers, not only from the field of computer vision 

but also psychologists and neurologists, have been trying to emulate this ability using 

machines, so far we only know that the temporal lobe in the brain is partly responsible for 

face recognition, damage to this region would result in a person losing his ability to 

recognize faces, and this condition is called prosopagnosia. Even after this condition has 

occurred, the perception of face remains unchanged because the human mind would use 

its hearing ability and cognitive ability to analyze the voice and gait of a person for 

recognition, so emulating such an ability will be an herculean task even with the latest 

available technology. This challenge is one reason why face recognition has caught the 

imagination of so many researchers from diverse fields. 
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1. INTRODUCTION 

1.2 Eigenfaces 

The concept of eigenfaces is similar to Fourier decomposition, which is one of the most 

fundamental ideas in mathematics and signal processing. A Fourier series decomposes 

periodic signals into sum of (possibly infinite) set of simple oscillating functions namely 

sine and cosines. 

Eigenfaces technique represents a face as linear composition of the base images 

also known as 'eigenfaces' or 'eigenpictures', these eigenfaces are basically a set of 

eigenvectors used in computer vision problem, they are generated by performing a 

mathematical procedure called 'Principal Component Analysis' [Joll 02] on a large set of 

human face images. In mathematical terms, we are finding the eigenvectors of the 

covariance matrix of a set of faces, where these faces are treated as a vector in a high 

dimensional space. The characteristic features from each face contributes to the 

eigenvectors, which can be represented as a ghostly face as show in Figure 1.1, we call 

this as an eigenface. 

Figure 1.1: Eigenface 
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1. INTRODUCTION 

The approach of using eigenfaces for recognition was developed by Sirovich and Kirby 

(1987) at Brown University [Kirb 87], later was expanded and developed by Matthew 

Turk and Alex Pentland [Turk 91] [Pent 91], which was considered as the first successful 

model of automated face recognition technology. 

1.3 Problem Statement 

Face recognition techniques have improved significantly. The focus of face recognition 

has been to develop the most efficient algorithm; researchers have been striving to 

develop this elusive algorithm with highest recognition rate. Face recognition algorithms 

require computationally efficient and fast hardware with high storage capabilities such as 

mainframes, workstations and server desktop computers. 

If we deploy face recognition technology; we would require the best and efficient 

workstations stationed at every entry points under human supervision, this could be very 

costly and is not feasible in places like a huge organizations, storage facilities, 

multistoried parking areas, residential complexes, warehouses, etc. The majority of the 

areas would go uncovered and vulnerable since they would have many entry points. In 

this thesis we explore the feasibility of implementing face recognition technology in a 

FPGA, which would drastically reduce the size and would only require relatively low 

power without compromising on recognition rate or speed. The reduction in size would 

imply that it could be used in places where we would normally hesitate to use a 

workstation or a server. 

3 



1. INTRODUCTION 

1.4 Objectives 

The work presented in this thesis has the following objectives. 

1. Investigate new and existing algorithms and choosing a computationally efficient, 

simple and accurate method. 

2. Propose a feasible architecture for FPGA implementation based on the chosen 

algorithm. 

3. Developing Verilog HDL module for each individual module and test its 

functionality using a Verilog simulator. 

1.5 Motivation 

Biometric signature is very distinct in verifying identities of an individual; they cannot be 

guessed, stolen, forged or lost. 

Biometric identities are derived from physiological characteristics such as face, 

fingerprint, finger geometry, hand geometry, iris, palm, vein, retina and voice. Behavioral 

traits such as gait, signature and keystroke dynamics can also be used in establishing 

biometric identity. 

Face recognition seems to offer several advantages over other biometric methods; 

also face recognition can be done passively, where the subject need not even raise their 

finger, but the face recognition technologies [Cogn 10] [Ayon 10] [Auro 08] that are 

available now, require computationally efficient workstations and servers, since the 

algorithm used are very complex and computationally intensive, along with the power 

requirements and lack of mobility are a huge drawbacks even though they offer good 

4 



1. INTRODUCTION 

recognition rate. This hurdle could be crossed if we could implement face recognition 

algorithm on an FPGA. 

Currently face recognition algorithms are implemented programming languages 

such as C++, JAVA, MATLAB, Python and Mathematica. They are yet to be written in a 

Hardware Description Language (HDL). This thesis aims at exploring the feasibility of 

FPGA implementation of face recognition using the best and the most efficient algorithm 

implemented using Verilog HDL. 

1.6 Thesis Organization 

Developing from the introduction in Chapter 1, Chapter 2 summarizes the biometric 

systems, types of biometric system, applications and advantages of biometric system. 

Chapter 3 covers face recognition technology's development though history, face 

detection, extraction and classification process, popular face recognition approaches, the 

difficulties involved in implementing face recognition technology and the available 

database for face recognition. 

Chapter 4 of this thesis provides a thorough background, mathematical 

conceptualization and algorithm of principal component analysis and eigenfaces. The 

chapter continues with a discussion on the assumptions and the steps involved in the 

algorithm by presenting a detailed analysis of eigenfaces calculations using a small 

example. 

Chapter 5 builds on the foundation laid in Chapter 4; it proposes a flexible 

architecture for implementing eigenfaces, each and every module from the architecture 

along with their functionality are discussed in detail. 

5 



1. INTRODUCTION 

Chapter 6 presents the ModelSim Simulation results of the functionality of the 

architectural blocks and discusses the feasibility of FPGA Implementation and related 

issues. 

We conclude in Chapter 7 with a discussion of future work. 

6 



Chapter 2 

Biometric Recognition 

2.1 Introduction 

Biometrics consists of methods for uniquely identifying individuals based on physical 

and behavioral traits. This Chapter begins by discussing the history of biometrics and the 

need for biometrics. We also discuss the different types of biometrics and finally the 

advantages and applications of biometrics. 

2.2 What is Biometrics? 

The term "Biometrics" is derived from the Greek word "Bio" (life) and "metrics" (to 

measure). Automated biometric system [Coun 06] has only been available over the last 

few decades due to significant advances in technology. 

Biometric recognition, however fancy the name sounds, was conceived before 

thousands of years ago. In the earliest civilizations the cave walls were said to be adorned 

with paintings and alongside these paintings there were numerous handprints, which were 

believed to be tamper proof signature, by its creators. Face recognition was used by the 

early civilizations to categorize an individual between known and unknown. Human to 

human recognition kept evolving, the mind was unconsciously registering the behavior 
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2. BIOMETRIC RECOGNITION 

patterns such as voice and gait. These physiological and behavioral patterns recognition 

were collectively known as biometric recognition. 

2.3 Need for Biometric Systems 

During the mid 1800s there was rapid growth of cities due to industrial revolution. As 

more and more people were migrating towards the cities, unrest and chaos was a common 

scene, this made it more and more difficult for the justice system, to keep track of the 

repeated offenders. They used a formal system that recorded the offences along with the 

identity trait of the offender; this marked the birth of the official biometric system. 

Personal security is being treated with utmost importance these days and rightly 

so, since the identity thefts are on rise. Unconventional recognition techniques such as 

password and ID card are based on "what you know?" and "what you have?" In contrast 

Biometric technology is based on "who you are?" It is derived from physiological traits 

such as face, fingerprint, iris, palm-print, voice and behavioral traits such as signature, 

gait and keystroke. This technology is extremely difficult to duplicate, steal, copy, 

misplace or forge. 

Since the advent of Internet, everything has gone online, including our day-to-day 

activities such as online banking, social networking, online shopping etc. All our online 

activities start with logging in and logging off the network with our user ID and 

password. These could be easily hacked, stolen and guessed. Once this information falls 

into the wrong hands, they could access your bank account; they could get your personal 

information such as residential address etc. This poses a very serious security threat for 
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2. BIOMETRIC RECOGNITION 

anyone. Therefore to avoid such situations a good solution is to implement an effective 

biometric system. 

2.4 Types of Biometric Recognition 

There were two approaches to the early biometric system, the first approach was called as 

Bertillon System of Measuring Various Body Dimensions, and this originated in France. 

These measurements were written on cards that were sorted by height, weight, arm's 

length etc., this field was called anthropometrics. The second approach was the method of 

taking fingerprint from the index finger; this was introduced in Asia, Europe and South 

America by 1800s. This method was based on the ridges and the finger print pattern on 

the index finger. 

The later half of the 20th century saw the much more advanced phase of biometric 

system, which was helped by development in Computer Systems and Technology, the 

biometric system could be categorized [Saw 11] into two groups, Physiological 

characteristic and Behavioral characteristics, different methodologies have been 

introduced based on these two categories shown in Figure 2.1 
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2. BIOMETRIC RECOGNITION 

jC 

Figure 2.1: Types of Biometric Recognition 

2.5 Applications of Biometric Systems 

The following are some of the applications of biometric systems. 

1. Biometric Fingerprint Identification Systems are widely used in forensics for 

criminal identification. 

2. Biometrics are widely used for Physical Access Control 

3. Logging into Computers 

4. Welfare Disbursement 

5. National ID cards and International Border Crossing 

6. Keyless ignition in Automobiles 

10 



2. BIOMETRIC RECOGNITION 

7. To verify customers during transactions via telephone and Internet. 

8. E-passports are a work in progress for issue in near future, which has an 

embedded chip containing the holder's facial image and other traits. 

2.6 Advantages of Biometric Systems 

The following are some of the advantages of biometric systems 

Uniqueness: 

It is impossible for two people to share the same biometric data, so biometric 

systems are designed around an individual and unique characteristic. 

Cannot be Lost: 

A Biometric data could never be lost, unless the individual is involved in a 

terrible accident. 

Cannot be Copied or Guessed: 

Biometric data cannot be forged or shared or guessed, since the biometric data are 

physiological attributes. 

The fact that biometric system needs "You" to authenticate that the subject is you is the 

advantage of this system. 

11 



Chapter 3 

Face Recognition 

3.1 Introduction 

Face recognition is a form of biometric identification, which uses facial features as the 

basis for identification. This chapter covers face recognition, its development through 

history and the different areas of application. It also talks about the steps involved in face 

recognition; such as face detection, feature extraction and face classification. Finally, it 

describes the different types of approaches for face recognition, list of available face 

databases and the difficulties in face recognition. 

3.2 Primary Tasks of Face Recognition 

Face recognition is used for two primary tasks, which are as follows 

Verification: (one to one matching) 

When an individual presents an identity, the system verifies whether the 

individual is who he claims to be. 

Identification: (one to many matching) 

If an image of an unknown individual should be identified, the system verifies the 

image with other images in the database to establish the identity. 
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3. FACE RECOGNITION 

3.3 Disadvantages of Other Biometric Systems: 

When using other biometric systems, there are a few disadvantages, which are as follows 

1. Finger print of people working in chemical industry can be affected 

2. Voice recognition system would fail when a person has a sore throat and also 

voice of a person would change with age, which would complicate the system. 

3. For people with diabetes, the eyes would get affected resulting in failure to 

authenticate, also iris recognition is very costly to implement. 

4. Digital Signatures could be modified or forged. 

The above disadvantages could be overcome by using face recognition method with an 

effective algorithm. 

3.4 Advantages of Face Recognition System: 

Face recognition system is advantageous over other biometric systems; some of the 

advantages are as follows, 

1. Almost all of the biometric systems require the user to perform an action like 

placing their hand or finger for finger print reading, speaking into the microphone 

for voice recognizer etc. However face recognition does not require any explicit 

action from the user. 

2. Face recognition technology is cheaper when compared to other biometric 

systems. 

3. It is non intrusive 

14 



3. FACE RECOGNITION 

4. Face recognition system does not cause any health risk to the user, whereas other 

biometric technology that requires multiple users to use the same equipment can 

potentially expose them to germs from previous users. 

3.5 Evolution of Face Recognition 

Face recognition technology has been extensively researched over the years. Researchers 

are still working on algorithms that can provide high accuracy and portability. Face 

recognition is a challenging task because of factors like change in expression, scale, 

location, occlusion, pose and lighting conditions. 

Many algorithms have evolved over the years [Coun 06] The Earliest Work on 

Face Recognition was from the Field of Psychology during the 1950s. "The perception of 

people, a handbook of social psychology" [Tagi 54] by J.S Bruner and R. Tagiuri. 

Engineer's interest in face recognition resulted in the first semi automated face 

recognition system during the 1960s. Woodrow W. Bledose and other researchers 

developed the first semi automated face recognition system at Panoramic Research Inc., 

in Palo Alto, California [Bled 66]; the US Department of Defense (DOD) funded this 

work. This system required human interference to locate the feature points such as eyes, 

nose and mouth in photographs and the distance and ratios are calculated so that it can be 

later compared to test image for recognition. 

During the 1970s face recognition moved forward from semi automation. A. J. 

Goldstein, Leon D. Harmon and Ann B. Lesk's [Gold 71] research in Bell Laboratories 

described a vector, containing 21 specific features such as lip thickness, ear protrusion, 

nose length etc., to recognize faces, nevertheless they were all manually measured and 
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3. FACE RECOGNITION 

compared. In 1973 face recognition with template matching was introduced. Martin A. 

Fischler and Robert A. Elschlager [Fisc 73] measured the similar features as in the earlier 

papers but they made it automatically, they described an algorithm that used local feature 

template matching approach. In the same year Kanade developed the First Fully 

Automated Face Recognition system [Kana 73]. Kanade used pattern classification 

technique to match test faces to a known set of faces, this was a purely statistical 

approach. Template matching technique was improved during the 1980s. Mark Nixon's 

[Agua 02] Eye spacing measurement improved template-matching approach by 

introducing 'deformable templates'. 

The first semi-automatic facial recognition system was deployed during 1988. 

The Lakewood division of Los Angeles county sheriffs department began using 

composite drawings of suspects to conduct a Mug shot database search using this system. 

In the same year eigenfaces technique was developed for face recognition. L. Sirovich 

and M. Kirby [Kirb 90] applied Principal Component Analysis, a linear algebra technique 

on face images, they represented an image in a lower dimension as principal component 

vectors without losing much information, and then reconstruction them. 

In 1991 face detection technique was mastered, making real time face 

Recognition was possible, Matthew Turk and Alex Pentland of MIT [Turk 91] [Pent 91] 

extended the work on eigenfaces technique and made this a state of art face recognition 

technique; this was the first successfully available industrial application, this paved way 

for a new era in Face recognition systems. In 1993 FacE REcognition Technology 

(FERET) program was initiated. The Defense Advanced Research Products Agency 

(DARPA) and Department of Defense (DoD) sponsored the FacE REcognition 
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3. FACE RECOGNITION 

Technology (FERET) [Phil 97] in an effort to develop face recognition algorithm and 

technology to commercialize the product. Face Detection based on Neural Networks was 

introduced in 1988. Henry A. Rowley, Shumeet Baluja and Takeo Kanade [Rowl 98] 

came up with face detection technique using Neural Networks. 

Face Recognition using Elastic Bunch Graph Method was introduced in 1999, 

Laurenz Wiskott, Jean-Mark Fellous, Norbert Kruger, Christoph Von Der Malsburg 

[Wisk 97] presented a system for recognizing human faces using Gabor wavelets 

transform on images. A face graph is created from an image, it consists of sparse 

collection of jets at the edges where eyes, nose mouth are located, the face bunch graph 

has a stack like structure and combines graphs of individual sample faces. Comparing the 

similarities between the graphs can recognize a new face. 

In 2000 First Face Recognition Vendor Test was held. Multiple US Government 

agencies sponsored the Face Recognition Vendor Test (FVRT) [Phil 03], this served as 

the first open large-scale technology evaluation of multiple commercially available 

biometric systems. 

In the following decade face recognition systems has seen several changes and is being 

Sponsored and promoted by many government and private organizations. 
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3.6 Applications of Face Recognition 

There are numerous areas where face recognition could be employed; a few are outlined 

below. 

1. Criminal Justice system - Mug shot database, witness face reconstruction, video 

surveillance and Forensics reconstruction of face from remains. 

2. Network security - User authentication, database access, e-commerce and online 

banking. 

3. National Security - National IDs, Voter Registration, Border Crossing, etc., 

4. Personal Security - Home Video Surveillance, Driver Monitor system. 

5. Access Control - Access control in areas like Warehouse, Seaports and Airports. 

6. Entertainment - PlayStation, Digital cameras, etc. 

3.7 Face Detection 

Facial Recognition System [Grgi 07] is a whole package that consists of steps such as 

face detection, feature extraction and face classification. Figure 3.1 illustrates the steps 

involved a face recognition system 

Face Detection Feature 
Extraction Face Classification 

Figure 3.1: Steps in Face Recognition System 

The first step in any face recognition system is the detection of faces in images, since the 

image might have multiple faces or structures similar to faces, but nowadays most face 
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recognition algorithm would not require to detect faces in images, since the images are 

normalized and fit to size according to the need of the algorithm, incase if the image is 

too complex and is not normalized then we might have to detect the face from the image, 

these images are mostly taken under uncontrolled environments, the following are the 

factors that challenge face detection 

1. Pose variation 

2. Facial Expression 

3. Background Environment 

4. Occlusion 

3.7.1 Face Detection Scenarios 

There are two basic scenarios in face detection, first is when an image is taken under 

controlled condition; the face is detected using edge detection technique. Second scenario 

is when an image is taken under uncontrolled condition [Leun 95], if it is a color image 

[Naka 96] then the skin color [Kend 96] could be used to identify the face, incase if it's a 

grey scale image then the position of features like eyes, nose and mouth could be 

identified in order to detect the face. 
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3.7.2 Face Detection Methods 

Face detection methods [Ahuj 02] are detected in to four categories, which are as follows. 

3.7.2.1 Knowledge Based Method 

In knowledge-based method [Teka 98] we try to apply a set of rules, which are derived 

from our knowledge of faces, some of the rules are, a face usually has two symmetrical 

eyes, the distance between the eyes, the color difference between the cheeks and the area 

under the eyes, etc., while making these rules we have to make sure that they are not too 

vague (generalized), if they are then there would be many false positives, on the other 

hand false negatives would be generated if the rules are too fine (detailed). This method 

of face detection has its own limitations and the detection rate depends on the rules 

applied for this method. 

3.7.2.2 Template Matching 

Template matching [Pogg 92] method tries to define a face as a function; each feature 

such as eyes, nose, mouth and ears can be defined independently in a face. Face contour 

and relationship between different templates are identified as patterns, these standard 

patterns are compared to images to detect faces, this type of detection is very simple to 

implement, but these methods are limited to faces that are frontal and un-occluded, 

variation in shape and pose would result in poor recognition rate. 
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3.7.2.3 Appearance Based Method 

Appearance based/ View based [Lew 96] [Pogg 98] method rely on techniques from 

statistical analysis and machine learning methods, Appearance based method is said to 

have a probabilistic nature, such that it finds if an image vector would belong to a face or 

not, it depends on the discerning ability to identify a face class from a non face class. 

Comparing with the other two face detection methods, appearance based method 

has higher detection rate, few tools [Mite 96] that are based on appearance-based 

methods [Turk 91] [Pent 91] [Sama 93] [Guo 00] [Phil 99] [Osun 97] [Sebe 02] are 

listed below 

1. Eigenfaces 

2. Neural Networks 

3. Hidden Markov Models 

4. Naive Bayes Classifier 

5. Support vector machines 

3.8 Feature Extraction 

Facial features [Craw 06] [Yow 97] are the essence of a face, for they make a face 

distinct from one another, many face recognition algorithms incorporate feature 

extraction, this must be optimized so that it takes much less memory and has reduced 

computation time. 
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An input face image is reduced to a feature set; this feature set is reduced to a 

subset by discarding the non-relevant features and choosing the best of the feature set, the 

following are few methods [Rowl 98] of feature extraction. 

1. Generic method based on lines, curves and edges 

2. Principal Component Analysis 

3. Template based method 

4. Neural Network based method 

5. Self Organizing Maps 

The number of features that are to be extracted from a face should be carefully chosen, if 

it is too low, this might lead to loss in accuracy, if it is too high, then it might result in 

more false positives and might take more memory and processing time. 

3.9 Face Classification 

Face classification is the step that follows feature extraction; classifiers when used in 

combination with other classifiers outperform individual classifiers. 

The basic classifier [Jain 00] is the one that classifies face based on similarity, it 

classifies the similar class from the non-similar class, and an example of such classifier is 

Euclidean Distance Classifier [Mite 96], some feature extractors could also be used as a 

classifier, following are the list of few of the classifiers 

1. Euclidean Distance Classifier 

2. Vector Quantization 

3. Self Organizing Maps 

4. Template matching 
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Since a classifier could be used in combination with other classifiers [Roli 01] [Kitt 98], 

we can use a classifier to recognize the eyes, another classifier to recognize the nose and 

another classifier to recognize the mouth, all these classifiers could be combined [Tuly 

08] [Wang 03] [Heis 03] for an effective classification, these combinations could be 

divided into three types 

1. Parallel - All the classifiers are executed independently, and then they are finally 

combined together. 

2. Serial - Classifiers run one after another, where each classifier would refine the 

previous classifier result. 

3. Hierarchical - Classifiers are arranged in a tree like structure. 

Choosing the best classifier impacts the processing speed and the accuracy, choosing a 

very simple classifier would produce less accurate but a quicker result, whereas choosing 

a complex classifier would produce a more accurate result but it takes more processing 

time, so its important to strike the right balance to choose the best classifier. 

3.10 Different Approaches in Face Recognition 

Face Recognition methods [Arab 09] [Rose 03] evolved over time, it can be seen as a 

process, which includes many steps. These steps could overlap or change their order to 

best suit the application. This makes it hard to definitively categorize the approaches of 

face recognition, but still they could be generally categorized [Lu 03] [Marq 10] [Tolb 

06] as shown in Figure 3.2 
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Figure 3.2: Face Recognition - Approaches 

3.10.1 Appearance based Approach 

An Image is considered to be a point in high dimensional vector space; an appearance 

based or view based approach uses statistical technique to analyze the distribution of 

image vector in the vector space and classifies the essential features for efficient 

recognition. The Appearance based method can be divided into Linear and Non-Linear 

Analysis. 

3.10.1.1 Linear Analysis 

Three of the widely used linear analysis classifications are 

1. Principal Component Analysis (PCA) 

2. Linear Discriminant Analysis (LDA) 
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3. Independent Component Analysis (ICA) 

3.10.1.1.1 Principal Component Analysis 

PCA is one of the most widely used classifiers; it is based on Karhunen-Loeve 

transformation [Kirb 87] [Pent 97] [Turk 01]. PCA performs a dimensionality reduction 

by extracting the principal components of high dimensional data, these principal 

component vectors defines the face space, which is a subspace in the image space. 

The face images are projected onto the face space and their weights are identified, 

and the test image is projected onto the face space, the weight coefficient of the test face 

image is compared with the weights of the face images from the database, using a 

distance classifier will give us the closest possible match to the test face. 

3.10.1.1.2 Linear Discriminant Analysis 

Linear Discriminant Analysis [Belh 97] finds the vector in the underlying space that best 

discriminates the classes, for all samples of all classes the between-class scatter matrix 

and within-class scatter matrix are defined. 

LDA is closely related to PCA, it explicitly attempts to model the difference 

between the classes of data; PCA on the other hand does not take into account any 

difference in class. 
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3.10.1.1.3 Independent Component Analysis 

Independent Component Analysis [Bart 02] [Como 92] [Liu 99] minimizes both second 

order and higher order dependencies in the input data and attempts to find the basis along 

which the data are statistically independent. ICA is generalization of PCA. 

3.10.1.2 Non Linear Analysis 

The face manifold in subspace need not be linear; kernel methods are a generalization of 

linear methods. 

Linear analysis are not very sensitive to relationships among multiple pixels in an 

image, to extract the non linear features of the image linear analysis methods was 

extended to non linear analysis [Yang 02] such as Kernel PCA [Scho 98] [Zhou 04], 

Kernel ICA [Jord 02] and Kernel LDA. 

3.10.2 Model based Approach 

A model of human face is constructed to capture the features, facial variations and texture 

of a face. 

Prior knowledge of facial features are used to construct a model, a model based 

approach [Lani 95] derives distance and relative positions from the placement of facial 

elements such as eyes, nose, ears and mouth, a constructed model is often called as 

Morphable Model, a model based approach is divided into two types 

1. 2D Approach 

2. 3D Approach 
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3.10.2.1 2D Approach 

Two-dimensional approach can be divided into two categories 

1. Elastic Bunch Graphing 

2. Active Appearance Model 

3.10.2.1.1 Elastic Bunch Graphing 

A face is represented as a graph, considering the fact that all human faces have the 

similar topographical structure, the graph is constructed with nodes positioned at eyes, 

nose edge, mouth, etc., these positions are called as fiducial points, the edges are labeled 

with a 2D distance vector, with these vectors a face graph is constructed. 

The face bunch graph has a stack like structure and it combines graphs of 

individual sample faces, it is crucial that the individual graphs all have the same structure 

and that the nodes refer to the same fiducial points. 

A jet is a condense and robust representation of a local grey value distribution, it 

is based on Gabor Wavelet Transform, which is a convolution with a family of complex 

gabor wavelets having the shape of plane waves restricted by Gaussian envelope 

function. All jets referring to the same fiducial points, for example, all the right eye jets 

are bundled together in a bunch, the right eye bunch might contain a male eye, a female 

eye, both closed and open etc., from which we can select any jet as an alternate 

description. To recognize a new face by elastic bunch graph matching [Wisk 97] [Kela 

06], the fiducial points are positioned so as to extract a graph, after the nodes have been 

located on the new face, the face can be recognized by comparing the similarities 
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between the graph of this face and the graph of every face stored in Face Bunch Graph 

(FBG). 

3.10.2.1.2 Active Appearance Model 

An Active Appearance Model (AAM) [Tayl 01] [Walk 00] is an integrated statistical 

model, which combines a model of shape variation with a model of the appearance 

variation in a shape-normalized frame. 

The Active Appearance Model is constructed based on a set of labeled images, 

where landmark points are marked on each example face at key positions to describe the 

facial features, models are combined together by using linear analysis method such as 

PCA. Matching to an image involves finding model parameters; AAM fitting is applied 

to seek a set of model parameters, which minimize the differences between the image and 

a synthesized model example projected into the image. 

3.10.2.2 3D Approach 

Human face is a surface lying in the 3D space, thus a 3D model is more suitable for 

representing faces. Once such method based on 3D approach [Zhan 09] [Bron 04] is 3D 

Morphable Model. 

3.10.2.2.1 3D Morphable Models 

3D models have stronger ability to minimize the problems of head, pose and illumination, 

a 3D Morphable model [Vett 03] is extended from 2D Morphable Model. 
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The Morphable face model is based on a vector space representation of faces, 

which is constructed such that any convex combination of shape and texture vectors of a 

set of examples describes a realistic human face. 

3.10.3 Piecemeal/Holistic Approach 

Faces can be identified with minimal information; some algorithms would require only 

the independent information for face recognition unlike other algorithms that uses the 

whole face or the relationship between individual features and the face. Early researchers 

tried to use very little but relevant features [Mais 92] for face recognition. Although 

feature processing is important, relation between features is also important. This is one of 

the reasons why most face recognition follow holistic approach, one such model that is 

based on holistic approach [Nixo 85] is Hidden Markov Model (HMM) 

3.10.3.1 Hidden Markov Model 

Hidden Markov Models [Sama 93] [Nefi 98] [Raja 98] are a set of statistical models used 

to characterize the statistical properties of a signal. Faces are intuitively divided into 

regions such as eyes, nose, mouth etc., these regions can be associated with the states of a 

Hidden Markov Model, since HMMs require a one dimensional observation sequence 

and images are two dimensional, the images should be converted into one dimension 

before associating the states. 
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3.11 Face Recognition Database 

Face recognition algorithms keeps on evolving, the best way to test and benchmark an 

algorithm is to use a standard test data set, there are many standard databases [Dela 11] 

[Grou 97] available, we choose the one that suits our application, in our thesis we have 

faces from AT&T database [Camb 02] for the figures, a list of available face database is 

as follows 

1. The FacE REcognition Technology Database (FERET) 

2. Face Recognition Grand Challenger Database (FRGC) 

3. AT&T Database of Faces 

4. The Yale Face Database 

5. CAS -PEAL Face Database 

6. BioID Face Database 

7. Psychological Image Collection at Stirling (PICS) 

8. 3D RMA Database 

9. Texas 3D Face Recognition Database 

10. Natural Visible and Infrared Facial Expression Database 

3.12 Difficulties in Face Recognition 

Face Recognition involves more than one dimension, and there could be many faces in an 

image and there is also the structures that resemble faces, along with this we have to take 

the external conditions into account, the external conditions account for noise when we 

project the image in an low dimensional space, all these conditions makes face 

recognition more difficult, a list of roadblocks for face recognition is listed below. 
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1. Lighting - Difference in lighting conditions could cause error in recognition. This 

could be avoided to an extent by using a standard grey scale image. But this might 

not be of any help for algorithms that works with color images. 

2. Pose & Expression - The orientation of the head and the expression can affect the 

recognition rate, this could be avoided by having multiple images for a single 

person with different poses and expression 

3. Occlusion - Facial hair, glasses, headgear could occlude the face resulting in poor 

recognition rate. 

4. Ageing Problem - A face would undergo major changes with time, especially 

during the age group of 10-25 years and also during 40-50 years, this affects the 

accuracy of the algorithm, and this could be avoided by constantly updating the 

database with the latest face images. 

5. Image Quality - The images used for the database should be of a good quality. 

The best result could be obtained, if the background of the image could be 

cropped and the image is fit to size as per the requirements of the algorithm. 
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Chapter 4 

Eigenfaces 

4.1 Introduction 

This chapter discusses Principal Component Analysis (PCA) and the related 

mathematical concepts. It then proceeds with an example calculation that clearly 

illustrates the concept of PCA and its role in face recognition. It also thoroughly 

examines eigenfaces approach and its procedure. Lastly, face space is defined and 

different possible cases of where an image could lie in the face space are discussed. 

4.2 Principal Component Analysis 

Invented by Karl Pearson in 1901, PCA is a powerful tool for analyzing data. It is 

considered as one of the most valuable tools used in mathematics and computer vision. 

PCA is widely used as a tool in exploratory data analysis and for making predictive 

models. It is very simple and has a non-parametric method of extracting relevant 

information from complex datasets. 

PCA is the simplest of the true eigenvector based tools for multivariate analysis. It 

has the ability to reveal the internal structure of the data in a way that best explains the 

variance of the data. When a dataset with multiple variables with co-ordinates in multi 
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dimensional space is given to PCA, it can show us the equivalent lower dimensional 

picture that is easier to understand. 

PCA is a mathematical procedure that uses an orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of values of 

uncorrelated variables called principal components. The number of principal components 

is less than or equal to the number of original values, so we can say that PCA is a 

statistical method for reducing the dimensionality of a dataset while retaining the 

majority of the variations present in the dataset [Joll 02]. 

4.3 Background Mathematics 

To understand PCA [Smit 02] [Shle 05] [Rorr 04] better, we use a small example dataset. 

We begin with some definitions. 

4.3.1 Standard Deviation 

Standard deviation (SD) is a widely used measure of variability, which shows how much 

variation exists from the average, it tells us how spread out the data is. 

For a uni dimensional data set, SD is given by Eq. (4.1) 

n 

(4.1) 
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4.3.2 Variance 

Variance is a measure of how far the data set is spread out; it is almost identical to 

standard deviation. 

2>,-3C)2 

V = — 
(w_1) (4.2) 

Variance is the square of standard deviation 

4.3.3 Covariance 

Covariance is the measure of how much two random variables change together. With 

variance we can measure one-dimensional dataset, but if we have two or more 

dimensions, we use covariance. This tells us whether there is any relationship between 

the dimensions. 

The covariance between x and y is given by Eq. (4.3) 

n 

Cov(x,y) = 
»-l (4.3) 

If covariance is positive, it signifies that both the dimensions increase together. If 

covariance is negative, then as one-dimension increases, other dimension decreases. If the 

covariance is zero, it indicates that the two dimensions are independent of each other. 
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If we have a dataset with more than two dimensions, for example (x, y, z), then 

we calculate Cov (x, y), Cov (y, z) and Cov (z, x). The best way to represent this is to put 

it into a matrix as shown in Eq. (4.4) 

Cov (x,y,z) = 

Cov(x,x) Cov{x,y) Cov(x,z) 

Cov(y,x) Cov(y,y) Cov(y,z) 

Cov(z,x) Cov(z,y) Cov(z,z) 
y3*3 (4.4) 

In the above matrix, we can notice that along the diagonal, the covariance value is 

between one dimension and itself; this gives the variance of that dimension. The 

covariance matrix is symmetrical about the main diagonal, since 

Cov(a, b) = Cov(b, a) (4_5) 

4.3.4 Eigenvectors and Eigenvalues 

The Eigenvectors of a square matrix are the non-zero vectors that after being multiplied 

by a matrix, remains parallel to its original vector. 

For each eigenvector the corresponding eigenvalue is the factor by which the 

eigenvector is scaled when multiplied by the matrix, the mathematical expression of this 

idea is as follows. 

If 'A' is a square matrix, a non-zero vector V is an eigenvector of 'A' if there is a 

scalar A, such that 

Av = Av (4.6) 

The scalar A is said to be the eigenvalue of 'A' corresponding to 'v' 

The following are some of the properties of eigenvectors 
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1. Eigenvectors can only be found for square matrix and not every square matrix has 

eigenvectors. 

2. If a given n x n matrix does have eigenvectors, then there are 'n' of them. 

3. All eigenvectors are perpendicular. 

4. Eigenvectors and Eigenvalues always come in pairs. 

In order to keep the eigenvectors standard, we scale all the eigenvectors to a length of 1. 

4.4 PCA Example Calculation 

The above-discussed mathematical concepts are enough to understand PCA. The 

following example calculation and graphs will help us to understand PCA even better. 

Consider the data shown in Table 4.1. 

Table 4.1: Original Data 

X Y 

10 20 

35 60 

40 80 

11 10 

5 90 

6 4 

50 15 

22 45 

36 70 
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The above data is plotted in a graph, which is shown in Figure 4.1. This graph does not 

convey any relationship between the elements in the data set. 

100 • 

90 ' 

SO 
70 • 

60 

30 

20 • 

10 • 

0 

OrigifudOftU 

10 15 20 25 50 35 40 45 50 

X Axis 

Figure 4.1: Plot of Original Data 

The mean of the variable x and variable y are found and they are represented by x and y 

respectively. Then we subtract the mean value from the original value, and the result is 

shown in Table 4.2. 

Table 4.2: Mean Adjusted Data 

X X  Y-F 

-13.88 -23.77 

11.11 16.22 

16.11 36.22 

-12.88 -33.77 

-18.88 46.22 

-17.88 -39.77 

26.11 -28.77 

-1.88 1.22 

12.11 26.22 
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The above mean adjusted data is plotted in a graph shown in Figure 4.2. 

Y-Ybtr axis Mmti Adjusted dflU 

X - Xbara> 
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Figure 4.2 

10 is 

Mean Adjusted Data 

20 2S 30 

The covariance matrix of x and y is found using the formula from Eq. (4.3) 

Cov(x,y) = ' 250.09 103.53 ^ 
103.53 946.39 

(4.7) 

The Eigenvectors and Eigenvalues are calculated from the given covariance matrix. 

Eigenvalues are: 235.02, 961.45 

Eigenvectors are: v± = , v2 = [ig 99] (4-8> 

The mean adjusted data is plotted along with the eigenvectors, which are represented by 

dotted lines, as shown in Figure 4.3. 
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70 
• ~> Eigenvectors vl,v2 (represented by dotted lines) 
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Figure 4.3: Mean Adjusted Data with Eigenvectors 

A feature vector is formed from the obtained eigenvectors. The eigenvectors are 

concatenated together based on their eigenvalues, the eigenvector with the highest 

eigenvalue is added first, then the eigenvector with second highest value and so on. 

Feature vector = (eigenvector1( eigenvector eigenvector^n) (4.9) 

Feature vector = (~°£9 ~^) (4.10) 

The final data is obtained using Eq. (4.11) 

Final data = 

(Transpose of feature vector) x (Transpose of Mean adjusted data) (4.11) 
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Table 4J: Final Data 

Final data 

X 

Final data 

Y 

25.53 10.31 

-17.66 -8.67 

-38.17 -10.73 

35.27 7.88 

-43.03 25.34 

41.93 11.97 

24.71 -29.99 

-0.95 2.04 

-27.7 -8.22 

The final data shown in Table 4.3 is plotted in a graph as shown in Figure 4.4. The 

eigenvectors are represented as black dots in Figure 4.4. 

Final d«u pkx with B«cnvKtors u thtir Axes 

• — >Bgamcton vj.vj 

I Eigenvector 1 

Eigenvector 2 

Figure 4.4: Final Data with Eigenvectors 
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The Eigenvectors form the axes for the final data as shown in Figure 4.4. Incase we have 

more eigenvectors; we would have more than two axes. The axes of eigenvectors are 

always perpendicular which makes it more efficient to express the data set. 

Fundamentally we have transformed our data set so that it is expressed in terms of 

patterns between them. The patterns are the lines that can efficiently describe the 

relationship between the data. 

Comparing the original dataset with the final data set, as shown in Figure 4.5, 

gives us an idea about the meaningful result produced by PC A for a random data set. 
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Comparing original data with the final data 

Original Data 

10 2S 30 45 SO 

X Axis 

Final data plot with Eigenvectors as their Axes 

+ — >Bgenvtctors vj,v2 

{Eigenvector 1 

Eigenvector 2 

X 

Figure 4.5: Comparison between Original Data and Final Data 

We can see that representing the data set in terms of their eigenvectors can efficiently 

describe the relationship between the elements in the dataset. It clearly describes the 

pattern in the dataset, whereas the original dataset can only represent the scattered 
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elements that do not give us any indication about the relationship between the elements. 

This type of data analysis technique from PCA is used in eigenfaces method to classify 

the image vectors. 

4.5 PCA in Face Recognition 

PCA is a statistical dimensionality reduction tool, Kirby and Sirovich (1990) [Kirb 87] 

applied PCA for representing faces, Turk and Pentland (1991) [Pent 91] extended PCA to 

recognize faces. To understand the role of PCA in face recognition, we should first 

consider the representation of images. 

Images are represented as a matrix of pixels. Consider an image of dimension 

N x N\ this can be represented as N2 dimensional vectors by concatenating all the rows 

into a single column. Similarly for 5 different images, each of dimension N x N, we will 

have 5 different image vectors. Then we concatenate all these vectors together to get a 

matrix. We then apply PCA on this matrix, which gives us the original data in terms of 

eigenvectors. Once we get the test image, we project the test image on the image space. 

Then we find the difference between the test image and the images in the database using 

a distance classifier. This effectively discriminates the images in the database that 

resemble the test image. Figure 4.6 illustrates the role of PCA and distance classifier in 

face recognition. 
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Figure 4.6: PCA in Face Recognition 

PC A is a statistical analysis tool. To personalize PCA for face recognition, we need a 

new algorithm. The EA developed by Turk and Pentland [Turk 91] [Pent 91] is one such 

algorithm. 

4.6 Eigenfaces 

An Input image consists of many characteristic features. PCA is a mathematical tool that 

we use to highlight and differentiate these features. Once we have these features for a set 

of images, we find their feature vectors or eigenvectors. These eigenvectors are also 

called as eigenfaces when they are projected into the image space. 
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Once we have a set of eigenfaces for the database of images, we find the weights 

that are required for the eigenfaces to reconstruct each image in the database. When we 

are presented with a test image, we find the weight vector of the test face by projecting it 

into the eigenfaces. We then compare the weight of the test face with the weight of the 

images in the database using a distance classifier. This tells us how closely each 

particular image in the database resembles the test image. This procedure is an extension 

of PC A called as eigenfaces. 

Sirovich and Kirby's efficient representation of faces using PC A was the 

motivation for the concept of eigenfaces. Turk and Pentland extended PCA and arrived at 

a method "that would build up the characteristic features by experience over time and 

recognize a particular face by comparing the feature weights needed to (approximately) 

reconstruct them with the weights associated with the known individuals" [Turk 91] [Pent 

91]. 

With EA the individual images could be represented compactly as eigenfaces 

based on their features. From these eigenfaces we can also reconstruct an image from the 

database, since all we need are only the eigenfaces and since it is very compact, 

eigenfaces would use very less memory. 

Since the publication of eigenfaces many new algorithms have been proposed. 

However, even today eigenfaces remains the benchmark for face recognition algorithms. 
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4.7 Eigenface Approach 

The steps used in EA [Turk 91] [Pent 91] [Triv 09] [Carm 09] for face recognition are as 

follows: 

1. Initialization - The Images that constitute the database are assimilated 

2. Calculation - The eigenfaces are calculated from the images in the database. The 

M eigenvectors that correspond to the highest eigenvalues are kept. They 

constitute the face space, and this is constantly updated as we obtain more images 

for the database. 

3. Finding Weights - The weight vectors of the known images are found by 

projecting them into the face space. These weight vectors can be used to 

reconstruct a face in the database using the eigenfaces. 

The process mentioned above is done offline (back end process); we are required to 

calculate the weights only when the database needs to be updated. The following are the 

steps for recognition process; they used to be done online (front end process) whenever 

the test image is produced. 

1. When the test image is produced for identification, the weight vectors associated 

with the test image are found by projecting them on the face space. 

2. Once we have the weight vector of the test image, we compare it with the weight 

vectors of the known images in the database, so that we can ascertain whether the 

test face is a known face or an unknown face. 

3. If the weight vector lies with in the face space, we can conclude that the given 

image is a face, and then we find if there is any closest neighbor to the test vector. 

46 



4. EIGENFACES 

Once we find the closest neighbor and if it satisfies the threshold condition, we 

can say that the face is a know face from the database and its identity can be 

established. 

4. The eigenfaces and weight pattern are updated once we get new images for the 

database. If there is an unknown face that is seen constantly, it could be labeled as 

a known face and added to the database. 

The eigenfaces method [Piss 02] is illustrated using a flowchart as shown in figure 4.7. 

47 



4. EIGENFACES 
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Figure 4.7: Flowchart - Eigenfaces 
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4.8 Assumptions in EA 

The following are the assumptions that are made in eigenfaces procedure 

1. There are M images in the training database 

2. There are 'k' most significant eigenfaces, using which we can satisfactorily 

approximate a face, where (k < M) 

3. All images are N x N matrices, which can be represented as N2 x 1 dimensional 

vectors. Same logic applies for images with unequal length and breadth. 

4.9 EA 

The figure 4.8 illustrates the concept of eigenfaces. 

Figure 4.8: Eigenfaces Concept 
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The first step of EA [Zaba 09] is to obtain the training set; this consists of M grey-scale 

face images Ii, I2 ••• Im they must be face centered images of same scale. Figure 4.9 

illustrates few of the faces obtained from AT&T database 

Figure 4.9: Face Images from AT&T Database 

An image Ij can be represented as 

I ,= 

a, a\2 ^ a\N 

a
2\ a22 D a2N 

aN\ aN2 ^ aNN 

Concatenation 

N x N  

a. 

a, ijv 
a 

21 

a IN 

a N\ 

a NN 

=r. 

N x l  (4.12) 

The values in the matrix above are the pixel values ranging from 0-255, once we have the 

pixel values; we change the N x N matrix to N2 x 1 but concatenating the rows into a 

single column, this makes the image as a vector in N2 dimension. The characteristic 

features of the images are of prime focus, so we have to subtract all the common 
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elements between them. So we begin by finding the average face and then we subtract 

each face from the average face so we can find the difference face. 

The average face is give by 

, M 
£r,  

(4.13) 

Figure 4.10 represents an average face, which was obtained from the image set in AT&T 

database. 

Figure 4.10: Average Face 

Now, each face differs from the average face by the vector 

O =r  -vp 
' ' (4.14) 

Figure 4.11 illustrates few the difference faces obtained using EA 

Figure 4.11: Difference Faces 
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A set of orthonormal vectors are to be found, these vectors best describe the distribution 

of the data, we begin with finding the covariance matrix 

C=—Yo,®? = A Ar 

M m  

where 4>„] (4.i5)) (416) 

The next step is to find the eigenvectors uk and eigenvalues Ak of C 

However, we can see that A is of the size N2 x M, hence the matrix C is of the size 

N2 x N2, to assess things, assume the image of size 120 x 120, then the size of the 

resulting matrix would be 14400 X 14400. Determining eigenvectors and eigenvalues 

for a matrix of this Size would be extremely difficult, but this hurdle could be easily 

crossed by a simple mathematical trick. 

Lets take L = A T A ,  then the size of L matrix would be M xM, we then solve the L 

matrix to find the eigenvectors vt where i = 1... M of L 

Now Lv, = Aivi then multiplying A on both sides we get 

=> A L v, = A.,Avi 

=> A A7A v, = XiAvi 

=> C A v, = XiAvl (4 | (4 j g)> (4 j 9) 

Hence «, = Avi and are respectively the M eigenvectors and eigenvalues of C 

When we get the eigenvectors they are generally normalized to 1, such that ||u.|j = 1 
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These eigenvectors w, are called as eigenfaces, when we scale these vectors by 255 and 

project them on the face space, we will get a ghostly face called eigenfaces, as shown in 

the figure 4.12. 

Figure 4.12: Eigenfaces 

The eigenvectors with smallest eigenfaces can be excluded, so we are only left with k 

eigenvectors, where (fc < M). The reason for excluding the eigenvectors with smallest 

eigenfaces is that, the eigenvectors with highest eigenvalues are the ones that contribute 

most to the eigenfaces. 

These eigenvectors are grouped together as U = [u x ,  u 2  • • •u k ] N 2 x k  (4.20) 

Once the basis vector (U) for the face space has been constructed, all that remains is to 

project all the images in the training set onto the 'face space'. This can be done by the 

following operation 

a  = i / r(r-*F) = 

(Oi 

(O, 

tol 
-fcxl (4.21) 
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The weights mi e Q describes the contribution of each eigenface in representing the 

input face image, once we have the weights of the known images (fl^ fl2 the 

test images (ft), we can find the smallest Euclidean distance erec between the test face 

and training face weight vectors from the following expression: 

erec = min||n —njl Where i = 1... M (4.22) 

If erec < 9rec, then we can say that the test face is identified as the image which gives the 

lowest score, where 9rec is chosen heuristically. 

If erec > 6rec, then we can say that the face is not identified in the database. 

4.10 Face Space 

The space in which the image vectors could be mapped is known as Image space, the 

space in which the face vectors could be mapped is known as the face space, the image 

space contains the face space. Figure 4.13 illustrates the idea of image space and face 

space [Triv 09]. 
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B Image Spact 
• FnSpan 

Figure 4.13: Image Space and Face Space 

When we project the weight vector of the test image onto the face space, there are four 

possibilities on where an image could lie 

1. Near a face class and near a face space - This case happens when the test image 

is of a known individual from the database. 

2. Near a face space but away from face class - This case happens when the test 

image consists of a face that is not present in the database. 

3. Distant from face space near face class - This case happens when the test image 

is not a face, however it sill resembles a particular face class stored in the 

database 

4. Distant from both face space and face space - when the probe is not a face image, 

i.e., away from the face space and is nothing like any face class that is stored in 

the database. 

Out of these four cases, case 3 is responsible for most false positives, but still the false 

recognition might be detected since there is significant distance between the weights of 
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the test image and the face image from the database. Figure 4.14 illustrates all the four 

cases. 

Figure 4.14: Different Possibilities of Face Space & Face Class 

The concept of PCA and its role in face recognition were clearly illustrated. We then 

examined the EA in detail. Architecture for FPGA implementation of EA is proposed in 

the following chapter. 
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Chapter 5 

Proposed Architecture for FPGA Implementation 

of EA 

5.1 Introduction 

In this chapter we describe an architecture for EA. This chapter begins with a discussion 

of the data representation used in the architecture and the assumptions in the EA. It then 

proceeds to describe the architecture for implementing the EA and divides it into two 

phases. Finally it elucidates the input, output and functionality of each and every module 

of Phase I and Phase II with the help of a model calculation based on eigenfaces. 

FPGA is a digital Integrated Circuit (IC) that contains configurable blocks of 

logic along with configurable interconnects between these blocks. Design Engineers can 

program such a device to perform a variety of tasks. 

The proposed architecture is designed flexibly around the face images, which are 

used to build our database. These images are taken under controlled conditions, so that 

they are of same scale and have similar lighting conditions. 
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5.2 Data Representation 

A grey-scale image for representing a face is sufficient, since eigenfaces method does not 

depend on the color of the image. This is advantageous, since it would require less 

memory. The pixel values of the grey scale images are in the range 0-255, where 0 is 

black and 255 is white, and the rest are different shades of grey [Work 10]. Each pixel of 

the grey-scale image is represented by an 8 bit signed binary value using 2's complement 

representation. 

In EA arithmetic calculations are widely used, so the number of bits to represent 

the data will keep on changing from one module to other, therefore to compensate, we 

increase or decrease the number of bits as per need, so the data width keeps changing 

from one module to another [Cory 03] [Cory 05]. 

5.3 Assumptions 

Solving EA mathematically helps in understanding the building blocks of the 

architecture. The dimensions of the image are 92 x 112. Solving a matrix of size 

92 x 112 would be improbable, so a smaller example matrix of size 3 x 3 is assumed to 

be an image. The mathematical calculations of EA are applied on these example matrices. 

Analyzing the model mathematical calculations helps in designing the modules and their 

functionalities using Verilog HDL. 

While applying EA on the example matrix, we would obtain values with 

fractional component, but in the proposed deign we have excluded any fractional 

component, since excluding the fractional part [Fish 04] would not have any considerable 
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effect other than increasing or decreasing the brightness of the grey scale image, and also 

including the fractional part would complicate the architecture for FPGA. 

In our proposed architecture, we have 3 images that make up the database; these 

images are of the size (92 x 112), so we would have 10304 pixels (since 92 x 112 = 

10304). We are also introducing an unknown image during the EA; this is the test image 

that is to be recognized. The test image is of the same size as the other images from the 

database, so we will be working with 41216 pixels (10304 x 4 = 41216). As per the EA 

the images are represented as follows 

1. Known Image 1 - r\ 

2. Known Image 2 - T2 

3. Known Image 3 - r3 

4. Unknown Image - T 

As we proceed we will simultaneously discuss both the 'model calculations' and their 

corresponding 'architecture' step by step. 

5.4 Proposed Architecture 

The proposed architecture in Figure 5.1 can divided in to two phases 

1. Phase I 

2. Phase II 
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Phase I 

Begins by uploading the known images into the RAM. It continues with the 

mathematical operations on the image vectors and ends when the eigenvectors and 

eigenvalues are obtained. 

Phase II 

Begins from the eigenvectors and eigenvalues module, proceeding to the weight vector 

module, where the test face is introduced and it ends when the identity of the test face has 

been established as a known or an unknown face. 
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Figure 5.1 illustrates the proposed architecture for FPGA Implementation of EA 

Block Diagram of Overall Architecture of Face Recognition Using EJgenfac** 

Q RAM/Internal Register 

£ Parallel Adder 

QP Divide by 3 

j|p Normalization 

• MSB Check 

|0 Control to control Location and Poeltkxi 

Multiplier 

Q MATLAB 

Final Display 

Figure 5.1: Proposed Architecture for FPGA Implementation of EA 
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5.4.1 Phase I 

Figure 5.2 illiistrates Phase I of the architecture. 

Architecture Data Flow - Phase 1 

internal 
Register 

> u; Internal 
Register 

V 

MJ f 
Internal 
Register 

V 

L Matrix 

o 
RAM / Internal Register 

Parallel Adder 

MSB Check 

Internal 
Register 

MATLAB 

v1 & k, 

V 2 &x2  

->• v3 & *3 

Divide by 3 

Normalization 

Multiplier 

MATLAB 

Figure 5.2: Architecture Dataflow - Phase I 
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Model calculation 

Step 1: Let the assumed smaller matrix of known faces be r1( V2 and f3 

9x3 

10 35 40 20 60 80 40 25 92 
r,= 11 5 6 r2 = 10 90 4 r3 = 3 80 42 

50 22 36 15 45 70 22 5 10 
3x3 3x3 

(5.1), (5.2), (5.3) 

Step 2: To apply eigenfaces method, we should first convert the above matrices into 

vectors 

r,= 

10 

35 
40 
11 

5 
6 

50 
22 
36 

r,= 

-9x1 

20 
60 
80 
10 

90 
4 

15 
45 
70 

r,= 

-9x1 

40 
25 
92 
3 
80 
42 
22 
5 

10 
-9x1 (5.4), (5.5), (5.6) 

Architecture design for Step 1 and Step 2 

We start off with four grey scale images of equal dimension (92 x 112), three of which 

are the known images that constitute the database, the fourth is used as the unknown test 

image, which would be introduced once the eigen faces are found. 

A RAM block is required to store these images; we have 4 images (3known and 1 

test image), so we are dividing the RAM into 4 blocks namely RAMI, RAM2, RAM3 

and RAM4, where each block corresponds to Image 1, 2,3 and test image respectively. 
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The dimensions of the image is (92 x 112), each pixel is represented as 8 bit 

signed binary value. The total number of bits in one image: 

= (92 x 112 x 8) = 82432 bits => 84KB 

The data width would increase or decrease as we move on from one module to another 

[Cory 03] [Cory 05]. The data widths for the following modules are indicated in their 

corresponding block diagram. 

5.4.1.1 RAM Controller 

A RAM Controller is required to read, write and control all the RAM Blocks. This 

controller would send in 736 bits [735:0] per cycle for 112 cycles (736x112 = 

82432 bits) to successfully upload the pixels of one image into the RAM block. Table 

5.1 illustrates the HDL port names of the RAM controller, its direction and description. 

Figure 5.3 illustrates the RAM controller block diagram. 

Table 5.1: RAM Controller - Port Names and Description 

HDL Port Names Direction Description 

din_l [735:0] Output Output data 

din_yalid_l Output Data valid signal 

Wa [6:0] Output Write address 

Ce_n_l Output Chip select for RAMI 

ra [6:0] Output Read address 

rel Output Read enable 
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row_n[6:0] Output Row address selection 

wel Output Write enable 

elk Input Clock signal 

reset Input Asynchronous master reset 
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Figure 53: RAM Controller 

66 



5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA 

5.4.1.2 RAM Blocks 

Each RAM stores 82Kb of information, which is the size of the Images in the database; 

these images are transferred to the RAM blocks from the RAM controller. There they are 

stored as an array, which can be easily represented by a matrix. Figure 5.4 illustrates the 

block diagram of the individual RAM blocks. 
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Figure 5.4: RAM Blocks 

Most of the calculations in eigenfaces method are based on vectors, so it is important to 

convert the image matrix into a vector, this is done by concatenating the rows of the 

matrix into a single column, this vector is stored in the internal register, we will have one 

vector per image, so we will have 3 vectors in the internal register. 

Each vector is of the size (10304 x 1), the image from RAMI is stored pixel-by-

pixel in the internal register as a single column, since we have 3 images in the database, 
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we store all the three matrix as 3 different vectors side by side, each pixel is 8 bit wide, so 

in a single row, we will have 3 pixels or 24 bits, therefore the size of the internal register 

would be [10303:0] mem [0:23]. Table 5.2 illustrates the HDL port names of the internal 

register, its direction and description. Figure 5.5 illustrates the block diagram of the 

internal register. 

Table 5.2: Internal Register - Port Name and Description 

HDL Port Names Direction Description 

img^n [7:0] Output Data from internal register 

add_n Input Read address 

loc add [13:0] Input Read address row location 

mem n [2:0] Input Write address 

loc [13:0] Input Write address row location 

do_n Input Input data from RAM 

do_valid_n Input Valid signal from RAM 

68 



5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA 

do_l[7:0| 

d o v a l i d l  

do_2[7:0] 

do_valid_2 

do_3[7:01 

do valid 3 
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mcm_l[2:0] 

locf13:0] 

elk reset n 

Figure 5.5: Internal Register 

5.4.1.3 Controller to Control Address Location and Position 

Similar to a RAM controller which controls the address for reading and writing in the 

RAM block, we need a controller to control the address location and position for internal 

register, the signal 'mem n' controls where the data should be written in the memory 

location, 'add n' controls the read address memory and the signals 'loc' and 'loc add' 

are for write address row location and read address row location respectively. Figure 5.6 

illustrates the block diagram of the controller to control the location and position 

selection. 
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Figure5.6: Controller to Control the Address Location and position 

Model Calculation Continued 

Step 3: The Average face vector is given by Eq. (4.13) 

70 
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Architecture Design for Step 3 

To find the average face, we have to add the face vectors and divide them by the total 

number of faces. 

Once the image vectors are stored in the internal register, we are using a parallel-

pipelined adder to add all 3 image vectors pixel by pixel. Conventional methods are not 

sufficient for computationally intensive circuits, so using a parallel-pipelined adder 

instead of a normal adder would greatly reduce delay of the adder. 

5.4.1.4 Pipelining 

In traditional approach processes such as add, subtract and multiply etc., are treated as a 

single process, which may take considerable amount of time for processing. 

In pipelining we have data flowing though combinational logic and registers 

driven by system clock. 

Pipelining approach basically divides an entire process into small and equal sub-

processes, such that the total processing time is substantially reduced due to concurrent 

execution of sub-processes. This provides much faster speed and throughput. 

Lets consider a process of adding two 12bit numbers, this will be a time 

consuming process if the addition is carried out on 12bits, since the bit-wise carry needs 

to propagate though all the bits. A better way of doing this is to divide it into four, this 

will be very efficient than adding 12 bits at one go. This can be effectively carried out by 

pipelining, the LSBs of the two numbers are added first and stored in a pipeline register 
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along with the generated carry at the rising edge of the clock, in the next rising edge of 

the clock, the next 3 bits of the two numbers are added along with the carry generated 

while adding the LSBs. In this manner we process entire data width. Figure 5.7 illustrates 

the addition of two 12bit numbers using pipeline approach. 

no 

—* 0 QQQ QQQQ 0 

— 0  Q Q Q Q Q Q Q Q  Q Q Q C 3  
Figure 5.7: Pipelined Addition of 'Two' 12bit Data 
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5.4.1.5 Parallel-Pipelined Adder 

The data width of the output data coming from the internal register is 8 bits. Since we 

replicate the MSB to avoid overflow, in our case we replicate the MSB 4 times, so now 

the input coming into the parallel adder [Piur 96] would be a 12 bit data. So we need a 

signed parallel adder that adds eight signed input numbers each of width 12 bits and 

delivers the sum of these numbers as output. Even thought in our case we only need to 

add three numbers each of width 12 bits (since we only have 3 images in the database), 

designing a parallel adder for 8 numbers, makes it more flexible, in case if we decide to 

add more images to our database our parallel adder would remain flexible and we can add 

up to a maximum of 8 images to our database. For now we only need to use the inputs 

img l, img_2 and img_3 of the internal register (since our database has only 3 images), 

the rest (img_4 to img_8) are not used. Figure 5.8 illustrates the parallel-pipelined adder 

design. 

Img 3f7:0| 

img_2[7:0J 

img_l[7:0] 

Parallel Pipelined Adder Module 

reset n 

img avg nt[14:01 

Figure 5.8: Parallel-Pipelined Adder 
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This signed addition can be realized with seven two input adders and 14 pipeline stages, 

in the first stage we have Eight numbers of 12bit two's complement adder to add all the 

eight numbers, they work concurrently, there by speeding up the process, they have 

pipeline registers internally, the clock input is marked as clkl, clk2, etc., corresponding to 

the internal pipelined register, we will add the LSBs at the first clock pulse and the MSBs 

at the next clock pulse along with the carry generated from the LSB, in the second stage 

we will add the four outputs, each of size 13bits generated from the first stage, In the 

second stage two numbers of two input adders are used, First the LSBs and then the 

MSBs are added subsequently with the arrival of each rising edge clock pulse, finally in 

the last stage, we will add the two inputs of size 14bits, which was obtained from the 

second stage, and then in the same fashion we add the MSBs along with the carry 

generated from the LSB addition, finally to produce a 15 bit final sum, we have 3 major 

stages in our design, each stage adds one bit growth, so we finally end up with 15 bits. 

The Three image vectors are added pixel by pixel, each pixel is 8 bit wide. 

Imgl[7:0] + Img[7:0] + Img[7:0] = img_avg_nt[14:0] (5.9) 

Table 5.3 illustrates the HDL port names of the parallel-pipelined adder, its direction and 

description. 
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Table 5.3: Parallel-Pipelined Adder - Port Name and Description 

HDL Port Names Direction Description 

img^n [7:0] Input Data from internal register 

img_avg_nt [14:0] Output Output Sum 

5.4.1.6 Divider Module 

After finding the output of the parallel adder, we need to divide the result by 3 (M = 3, 

since we have 3 known images in our database) to obtain the average. 

The output img_avg_nt [14:0] from the parallel-pipelined adder is sent to the 

divide by 3-module; the output obtained from this module is the average vector 

img_avg[14:0], the start and end of the average signal is signaled by imgstart and 

img_end respectively, the img valid signal validates the average output from this 

module. Table 5.4 illustrates the HDL port names of the divide by-3 module, its direction 

and description. 

Table 5.4: Divide by 3-Module - Port Name and Description 

HDL Port Names Direction Description 

img_avg_nt [14:0] Input Sum of image vectors 

img_avg[14:0] Output Average of image vectors 

img_valid Output Validates the signal 

img_start Output Indicates start of the signal 

img_end Output Indicates end of the signal 
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Figure 5.9 illustrates the block diagram of the Divide by-3 module. 

img «vg PtlI4;01 

Divided by 3 [ since m»3) 
Each co-efificient is divided by the 

value of "3" , because we are using a 
lota] of 3 images to make our 

database. 

\m-i] 

*lmg_avg| 14:01 

^ Ime valid 

"Img start 

• Img end 

elk 

Figure 5.9: Divide by 3-Module 

The average image resulting vector (img avg) is stored in an internal register, the average 

vector V is of dimension 10304 x 1, here we again use the controller to control the 

address location and position to read and write data. 

Figure 5.10 illustrates the block diagram of the average information module. 
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Img avgl 14:01-

img valid 

img start 

img_end 

Store the average image information 

Internal register 
reg [10303:0]mem 

[44:0] 

The is a vector of dimension 
=10304x1 

Img avgt 14:01 

rd_add|6:0| 
wr_add(6:0] 

rd_loc_add[13:0) 

w r l o c a d d  [  1 3 : 0 1  

read_enable 

write_enable 

hold 

elk reset n 

Figure 5.10: Average Information Module 

The average information (img_avg) from the internal register (f) has a data width of 15 

bits; because of the bit growth most of the MSBs would be zero, and because division is 

involved there is a possibility of fractional result, since we are only using the integer 

values, we are rounding off each coefficient to its nearest integer value represented by 

1 Obits. 

The output signals from RAMI, RAM2 and RAM3 are do_l, do_2 and do_3 each 

are of 8 bits, since we would use these signals along with the average information signal, 

we are normalizing all these signals to 1 Obits. 

Figure 5.11 illustrates the block diagram of the Normalization module. 
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do_3|7:0) 

do_2|7:0| 

do_l [7:0| 

imgLavg[14:01 

Store the average image information 

Normalization is done here 
"img-avg[14:0]" signal - Each co
efficient rounded off nearest integer 

value, represented as 10 bits of 
width 

"do_l"do_2" & "do_3" signals 
are represented by 10 bits. 8 bits for 
signal and 2bits for sign extension. 

do_l[9:0] 

do_2{9:0] 

do_3[9:0] 

img avg out[9:0| 

elk reset n 

Figure 5.11: Normalization Module 

Figure 5.12 illustrates the block diagram of the Controller to control the location and position 

selection for the average information module. 
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Figure 5.12: Controller to Control the Address Location and Position 

Table 5.5 illustrates the HDL port names of the controller to control the address location and 

position, its direction and description. 

Table 5.5: Controller for Address Location and Position - Port Names and Description 

HDL Port Names Direction Description 

write_enable Output Enables write signal 

readenable Output Enables read signal 

hold Output Holds the data transfer 

wr_add Output Write address 

wr_loc_add Output Write address row location 

rd_add Output Read address 

rd_loc_add Output Read address row location 
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Model Calculation Continued 

Step 4: Find the difference face 

Each face differs from the average face, which is called as the difference face. 

<D,=r(-¥ where i = 0, ID M (5 10) 

M = 3, since we have 3 known images in our database. 

o.-r.-v (5.1D 

(5.12) 
o2  = r2-^ 

<&3=r3-y 
(5.13) 

Subtracting the mean face from the known face images 1, 2 and 3, we get the following 

difference faces. 

o,= 

-13 
-5 
-31 

3 
-53 
-11 

21 

-2 

-3 
-9x1 

-3 
20 
9 
2 

32 
-13 
-14 

21 

31 

o,= 

-9x1 

17 
-15 
21 
-5 
22 
25 
-7 

-19 

-29 
-"9x1 (5.14), (5.15), (5.16) 

^ = [0„<D2D <Dm] here M = 3 

A ( 5 . 1 7 ) ,  ( 5 . 1 8 )  

The difference face vectors are concatenated to obtain the 'A' matrix of dimension 9x3 
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-13 -3 17 
-5 20 -15 
-31 9 21 

3 2 -5 
-53 32 22 
-11 -13 25 
21 -14 -7 
-2 21 -19 
-3 31 -29 

(5.19) 

Architecture Design for Step 4 

Difference face is the difference between the average face and the known face, since we 

have 3 known faces in the database, we would get 3 difference-face vectors, namely 

and <t>3. 

As seen in the above model calculation, we would encounter negative values 

during eigenfaces process, taking this into consideration while designing the architecture, 

we would use a bit check module to convert the average face data and individual face 

data into its equivalent two's complement form and then we add the individual face and 

the average face together using a parallel-pipelined adder. 

5.4.1.7 Bit check Module 

In the bit check Module, we convert the incoming data into its equivalent two's 

complement form. Then we finally send this data to the parallel adder, to avoid any 

overflow in the parallel adder stage, we would add a two-bit sign extension in the bit 
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check module, and the inputs for the bit check module are the average face vector and the 

individual face vector. Figure 5.13 illustrates the block diagram for the bit check module. 

do_l|9:0) 
Cheek the MSB bit of the first operand. 
If it is "0" no need to do any thing just 

pass the same 
If it is "1" evaluate 2's compliment and 

pass to the next stage 
Same procedure follow for second 

operand and 2 bits sign extension is 
added by this module 

do_l(ll:0| 

». 

Cheek the MSB bit of the first operand. 
If it is "0" no need to do any thing just 

pass the same 
If it is "1" evaluate 2's compliment and 

pass to the next stage 
Same procedure follow for second 

operand and 2 bits sign extension is 
added by this module 

lmg_av&_out[ 11:0| 

irag_avg_out|9:0| 

Cheek the MSB bit of the first operand. 
If it is "0" no need to do any thing just 

pass the same 
If it is "1" evaluate 2's compliment and 

pass to the next stage 
Same procedure follow for second 

operand and 2 bits sign extension is 
added by this module 

i 

elk 

i i 

reset_n 

Figure 5.13: Bit Check Module 

5.4.1.8 Pipelined adder 

Once we have the outputs from the bit check module, all we have to do is to add them 

using a pipelined adder, the parallel adder that were using here is similar to the one that 

we have used earlier in this architecture, but we would require only one stage, and in that 

stage we are adding the two's complement of the known image 1 (do_l) and the average 

image (img_avg_out) to obtain the difference face 1 - Oj (diff_face_l), similarly we can 

obtain difference face 2 - Oz (diff_face_2) and difference face 3 - <t»3 (diff_face_3) by 

using known image 2 and 3 respectively. 

Figure 5.14 illustrates the block diagram for the pipelined adder module. 
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do_l|ll:0| 

11:01 

•M»*l j 
—IIIJI J 
•I|lli)| J 

/ * 

•«»>*» , 

i *• i *• 

-/—* 

diff_face_ I112:0| 

Figure 5.14: Pipelined Adder 

Figure 5.15 illustrates the block diagram for the difference face module. 

dlfff_face_1 112:0| 

dirr_r*ce_2|12:0| 

dtff_face_3|12:0| 

DlfTercncc Face 

The Oj has a dimension of 
10304X1 

re» 110303:0jmem[38 0j 

Form "A" matrix Concatenating the 
difference image vector form* 

matrix A 
A-[4>, «>2 *3] 

i.e (difTJacc I [ 12:0] ,diff_facc_2 
[12:0], diir_face_3[l2:0] } 

A_trampo*«_matrlxa.next[3R:0] 

A_raatrtxwnext|38:0] 

rd_add_l |2:0| 

rd_add_2|2.©J 

rd_loc_add_l 113:0} 

rd_loc_add_2|I3:0| 

wr_add|2:0] 

wr_l©c_add 113:0 J 

read_enable 

wrltc_cnable 

bold 

Figure 5.15: Difference Face 
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The difference faces are stored in an internal register; each difference face is a vector of 

size 10304 x 1, since we have three images in our database, we would obtain three 

difference faces, concatenating all 3 vectors would form a matrix of size 10304 x 3, this 

matrix is represented by 'A', the controller to control the location and position would 

provide the address to read and write the data to and from the internal register. 

Model Calculation Continued 

Step 5: Obtain the Covariance matrix C 

1 M 
C = —Y<S>l<&T

i=AAT 

(5.20) 

WhereA=[<bvQ>2U <DJ (521) 

The covariance matrix C is solved to obtain the eigenvectors Uj and eigenvalues A£. In 

our model calculation, the dimension of 'A' matrix is 9 x 3, so multiplying A * A7 would 

give us the covariance matrix of dimension 9x9, which would yield 9 eigenvalues and 9 

eigenvectors, instead we can use a mathematical backdoor to reduce he matrices as 

follows, lets take L = ArA (5-22) 

-> / - AT A ' L, — si9xJ (5.23) 

=>Lm (5.24) 

Now we have reduced the matrix down from 9 x 9 to 3 x 3, this step is very important, 

because looking at the bigger picture, we would have huge values, for example if we 

have 10 images of dimension 92 x 112, then we will end up with the following data. 
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— A * AT 
~ 10304x10 10x10304 

=> ^-10304x10304 (5.25) 

Solving the covariance matrix C with dimension 10304 x 10304 would yield 10304 

eigenvectors and 10304 eigenvalues; this is a very huge value and could possibly crash a 

processor, so it is essential to solve the matrix 'L' instead of matrix C. 

L = A A (5.26) 

4548 -2316 -2275 
-2316 3285 -993 
-2275 -993 3340 

-0x3 (5.27) 

Architecture design for Step 5 

Once we have our difference faces, we concatenate them to obtain the 'A' matrix; this 

matrix is stored in an internal register, to obtain 'A ' we should read the rows of 'A' 

matrix as column and the columns as rows, then we multiply AT and A. 

5.4.1.9 Multiplier 

The multiplier we use here is a normal multiplier rather than a pipeline multiplier, since 

the multiplier and the multiplicand are of 39 bits each, this would require excessive 

pipelining, which would increase latency and also would require more resources (circuit 

elements) thereby increasing the chip area. Figure 5.16 illustrates the block diagram for 

the multiplier module. 
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A_t raaspose_matrfx_Bex t(38:0| 

A_matrtx_next|38:0| 

Multiplier Module 

reset a 

covari*nce_inatrix__aextf4S:0] 

Figure S.I6: Multiplier Module - ('A' matrix and 'AT' matrix) 

In the multiplier module, multiplying AT and A would give us L matrix, once we have the 

'L' matrix, each and every element of the matrix is normalized using a normalization 

module. Figure 5.17 illustrates the block diagram of the Normalization module for L-

Matrix. 

covarfance_matrix_next|48:0| 

wr_add|2:0| 

rd_*dd_![2:01 

rd_loc_«dd-l 11 J:®| 

w r_toc_add 113:0] 

read_enablc • 

write enable 

L-M»trtx 
Normalization is done by this 

module. 

49 bits of each co-efficient 
rounded of to nearest integer 

value and no of bits are mapped 
to 32 bits of each co- efficient reg 

[3:0]raem 
[95:0] 

L_Matrix|31:0| 

Figure 5.17: L Matrix - Normalization Module 
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Model Calculation Continued 

Step 6: Find the eigenvectors U, and eigenvalues Aj of C 

Now if, Lvj - A,v. (5.28) 

where vt is the eigenvectors of L and Aj are eigenvalues of L, then 

Multiplying A on both sides of the above equation gives us 

=> A L v, = A. A v; I f / 

=> A ATA v. = X. A v 
I I I 

=> CAv, = XiAvj 

(5.29) 

(5.30) 

(5.31) 

Hence u, = Avt and are respectively the M eigenvectors and eigenvalues of C. 

To find the eigenvalues and eigenvectors of C, we should first find the eigenvectors v* of 

L Matrix. 

4548 -2316 -2275 
-2316 3285 -993 
-2275 -993 3340 

5x3 (5.32) 

To find the eigenvalues and eigenvectors [Hami 1990] of L matrix, we should introduce A 

and an Identity matrix 'I' and then we must find the determinant for [L — LI], this would 

give us a cubic equation in terms of A, 

A3 + 2077A2 + 29576870 X -1.06 x 1010 = 0 (5 33) 

Solving the above equation for A would give us 3 eigenvalues, 

At = 6866, A2 = 4306, A3 = 1 (5.34) 

Then we have to substitute each eigenvalue in [L — A. /] and multiply it with vector v, 

(L -  XvOvv  
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Where Vjis , solving (I — Xx .I)v,  would give us three simultaneous equations in 

terms of x, y and z, solving them would give the eigenvector of A1# similarly solving the 

matrix and the result ing simultaneous equations for (L — A2 . / )v2  and (L — A3 .1)v3  

would give us the eigenvectors of A2and A3 respectively. 

Finally the eigenvalues and their corresponding eigenvalues are as follow 

= 6866, vt = 

A2 = 4306, v2 = 

^•3 — 1< v3 — 

-2 
1 
1 

0 
-1 
. 1 

T 
1 
.1. 

(5.35) 

(5.36) 

(5.37) 

Architecture design for Step 6 

5.4.1.10 MATLAB Module 

The eigenvalues and eigenvectors are to be found from the 'L' Matrix. Solving this 

matrix for eigenvalues and eigenvectors using Verilog HDL for FPGA implementation 

would be a difficult task. The above model calculations clearly explain the intricate steps 

involved in solving them. This is currently being researched [Brav 08] [Brav 06]. Due to 

lack of time, we could not complete its implementation, so we have used MATLAB to 
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solve the covariance matrix to obtain the eigenvalues and the eigenvectors. Figure 5.18 

illustrates the block diagram of the MATLAB module. 

L_Matrix|31:0| 

rd_add_t|2:0| 

wr_add[2:0| 

rdjoc_»dd_l(2:0| 

wr_toc__add[2:0| 

read_eoabk 
write_enable 

bold 

MATLAB out_ftaal_m*trix|38:0| 

Figure 5.18: MATLAB Module 

The eigenvalues A* and eigenvectors vL are found using MATLAB. This concludes the 

architecture for Phase I. 
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5.4.2 Phase II 

Figure 5.19 illustrates Phase II of Architecture 

MATLAB 
V1 

MATLAB 
v2 

MATLAB 

V3 

Known Images 

Architecture Date Row - PImm 2 

Internal 
Register 

A Internal 
Register 

(r-u») 
(lym) 
(ivf) 
(r,-ui) 

Unknown Image 

o RAM I Internal Register 

Parallel Adder 

MSB Check 

"'litift hi' -CHI, * "'litift hi' -n-n2 * 
n-n3 " 

Multiplier 

o MATLAB 

final Display 

Figure 5.19: Architecture Date Flow - Phase II 

Model Calculation Continued 

Step 7: Find the eigenvector uf of C 

U[ = A. Vi (5.38) 

Multiplying the eigenvectors vt of L with A, would give us the eigenvectors u, of C, 

generally the eigenvectors with the smallest eigenvalues could be neglected, since they 

90 



5. PROPOSED ARCHITECTURE FOR FPGA IMPLEMENTATION OF EA 

don't contribute to too much to the eigenface. But in our case since we only have 3 

eigenvectors, there is no need to neglect the eigenvector with lowest eigenvalue, each of 

these eigenvectors are normalized, scaled by 255 and then projected on the image space, 

they would render a ghostly face image called as 'Eigenface', since we have 3 

eigenvectors, we would have 3 eigenfaces. The following eigenvectors ut given below 

are normalized and are scaled by 255. 

48 
18 
115 
-10 

199 
41 

-79 
5 
8 

= 

53 
-94 
31 

-18 

-25 
102 

18 

-110 

-163 

Mi = 

51 
0 

-51 
0 
51 
51 
0 
0 

-51 
-*9x1 -*9xl -9x1 (5.39), (5.40), (5.41) 

u = [u l tu2 ...uMi]N2xM> where M < M (5.42) 

48 53 51 
18 -94 0 
115 31 -51 
-10 -18 0 
119 -25 51 
41 102 51 

-79 18 0 
5 -110 0 
8 -163 -51 

-fc* (5.43) 
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Architecture design for Step 7 

5.4.2.1 Multiplier 

We need to multiply 'A' matrix with the eigenvectors vx, v2 and v3, we are using the 

same multiplier module as used in Phase I of this Architecture. Figure 5.20 illustrates the 

block diagram of the multiplier module. 

ont_finsl_matrix[38:0| 

A_m*tra_next|38:0] 

MULTIPLIER U_M»trix|49:0| 

*• 

Figure 5.20: Multiplier Module - ('A' Matrix and Eigenvectors Vj, V2 and V3) 

The resulting 'U' matrix is then stored in an internal register and since we would be only 

be using with 'UT' matrix, it is better to take transpose oi'U' matrix and save it in the 

internal register, the controller to control the location and position provides the address 

for reading from and writing to the internal register. Figure 5.21 illustrates the block 

T 
diagram of the Internal Register for U and U Matrix. 
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rd_ftdd{2:0| 

rd_l«x_*ddjp:0| 

rd_l«c_»dd_l{3:0| 

hold hold 

elk elk rnet_a rwetn 

U Matrix U Matrix 

Figure 5.21: Internal Register ('U* and *U Matrix) 

Model Calculation Continued 

Step 8: Face classification 

Once the eigenfaces were created, a new face image T can be transformed into its 

eigenface component by a simple operation. 

w ,  

w, 

W, 
>kxl (5.44) 

where k = 1,2 ... M' 

The weight wf e ft describes the contribution of each eigenface in representing the input 

face image, once the weight vector (H) of the test image T is found; we also find the 

weight vector of the known images from the database, since we have 3 known images, 
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we will get (ft^ fl2, Xl3) and then we use the Euclidean distance classifier to find the 

smallest distance between the weight vectors of the test face and the known faces in the 

database. 

erec= min||ft - Hill (5.45) 

If Erec< &rec> where 6rec is chosen heuristically, then we can say that the input test 

image is recognized as the image with which it gives the lowest score. 

Since in our model calculation we have assumed smaller matrices to be our 

known images, here we are assuming our test image to be a similar matrix, for 

convenience, we are assuming the test image to be the same as the matrix of known 

image 1. 

10 23 -13 
35 40 -5 
40 71 -31 
11 8 3 
5 ¥ = 58 (T-¥) = -53 
6 17 -11 

50 29 21 
22 24 -2 
36 39 -3 

(5.46), (5.47), (5.48) 

Multiplying U T  matrix with (f — 40 will give us ft 

Q = 
-17000 

56 
-2193 

-9x1 (5.49) 
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Multiplying UT matrix with (rx — 40 will give us flj 

Q, = 
-17000 

56 
-2193 

9x1 (5.50) 

The weight vectors SI and f^are similar, since we have assumed the test image and the 

known image 1 to be the same. 

Multiplying UT matrix with (f2 — V) will give us fl2 

Q, 
8525 

-11537 
-1224 

•3x1 (5.51) 

Multiplying UT matrix with (f3 - 40 will give us 

Q3 = 

8640 
11743 
3672 

3x1 (5.52) 

The Euclidean distance classifier is applied to find the distance between the weight 

vectors Grec= min||H — we would get 

l i n - H i H  = >  € r e c =  0  ( 5 . 5 3 )  

||n - n2|| => Erec= 28051 (5.54) 

lift -n31| =>e r e c= 28781 (5.55) 

The minimum distance is '0' for known image 1; hence the test image( T) is recognized 

as known image 1 (T x). 
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Architecture design for Step 8 

The new face image T can be transformed into its eigenface component by a simple 

operation 

q = U t (  r - T )  ( 5  5 6 )  

The test face that is stored in RAM 4 and the average face vector from the internal 

register are the inputs for the bit check module, once the two's complement 

representation of test face and average face vector are obtained using the bit check 

module, we then add these data using a parallel-pipelined adder module, then the result 

obtained is multiplied with UT matrix to obtain fl. Figure 5.22 illustrates the block 

diagram of the bit check module. 

imy avgH4:01 

do_4|735:0| 

Cheek the MSB bit of the first operand. 
If it is "0" then no need to do any thing 

just pass the same 
If it is " 1" then evaluate 2's compliment 

and pass to the next stage 
Same procedure is followed for other 

operands. 

elk 

img_>avg|14:0| 

d©_4|735:0] 

Figure 5.22: Bit Check Module 

Figure 5.23 illustrates the block diagram of the Parallel-pipelined adder module. 
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img avg 

do 4 

Parallel Pipelined Adder 
(Sum of Average Image and Unknown 

Image) 

diff_un 

—• 

reset n elk 

Figure 5.23: Parallel-Pipelined Adder - Average Face and Unknown Test Face 

Once we have found the weight vector for the test image, we proceed to find the weight 

vectors of the known images, we start off by finding the two's complement for the 

average face vector OF) and the known faces (I\), (r2) and (r3) using the bit check 

module, and then using the parallel adder module to find the (r\ — ¥), (r2 — V) and 

(r3 — HO. Figure 5.24 illustrates the block diagram of the Parallel-pipelined adder 

module. 
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img avg 

Parallel Pipelined Adder 
(Sum of the Average Image & Known Image) 

do 1 Img mat 1 

diff_l 

-«*• 

reset n elk 

Figure 5.24: Parallel-Pipelined Adder - Average Face and Known Face 

We use the multiplier module to multiply the result from the parallel-pipelined adder with 

UT, which would give us the weight vectors of the known face fll5 fl2 andft3. Figure 

5.25 illustrates the block diagram of the multiplier module. 

Once we have the weight vectors of the test image and the known images, we then 

find the Euclidean distance between the weight vectors to identify the weight vector that 

likes closest to the test weight vector, so we subtract the weight vectors of the known face 

with the weight vector of the test face, (ft — flj), (ft — ft2), and (ft — ^3) 
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ohm I oka 2 

res« n reset a 

diff on 
(r-iD) 

ohm_3 ohm 

MULTIPUER 

dHf1*U* 
MULTIPUER 

dunru* 

(Ik met • elk relet g 

Figure 5.25: Multiplier Module (UT * (r, - V)) 

The bit check module is used to convert the weight vectors into their 2's complement 

representation, and then the pipelined adder module is used to add the weight vector of 

the test face and the weight vector of the known face. Figure 5.26 illustrates the bit check 

module for the weight vectors and the Figure 5.27 illustrates the pipelined adder for the 

weight vectors. 
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o h m l -

o h m  -

Check the MSB bit of (he first operand. 
If it is "0" no need to do any thing just 

pass the same 
If it it" I™ evaluate 2"» compliment and 

pus to the next stage 
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Figure 5.26: Bit Check Module for Weight Vectors 
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Figure 5.27: Pipelined Adder -for Weight Vectors 
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Figure 5.28: Compare and Display module 
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The weight vector from the known image database that has the lowest distance to the 

weight vector of the test face is identified in the compare and display module, this 

minimum distance is represented as Erec, when Erec< 6rec, where Qrec is chosen 

heuristically, then we can say that the input test image is recognized as the image with 

which it gives the lowest score, then this recognition result is displayed in the display 

module. Figure 5.28 illustrates the block diagram for the compare and display module. 

This concludes the phase II of the architecture, combining the architecture of Phase I and 

Phase II gives us the complete architecture for implementing EA. 

Architecture for FPGA implementation of EA was proposed and the individual modules 

were discussed. The simulation results of the basic modules are presented and the FPGA 

implementation issues of EA are discussed in the following chapter. 
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Chapter 6 

Simulation and FPQA Implementation Issues 

6.1 Introduction 

This chapter presents the simulation results of the main modules of EA using ModelSim 

HDL Simulator and proceeds to discuss the feasibility of FPGA implementation. It 

concludes with discussion of issues related to FPGA implementation of eigenfaces 

architecture. 

6.2 Simulation 

Following the discussion of EA in chapter 4, and its architecture description in chapter 5, 

we discuss the verification of the functionality of main architecture modules using 

ModelSim HDL Simulator. 

ModelSim SE PLUS 6.2 C version [Soft 11] was used to compile and simulate 

the Verilog modules and its corresponding test benches for the main architecture 

modules. 

6.2.1 Basic Simulation Flow 

To simulate the Verilog modules, we developed the required test benches. The basic 

simulation flow [Alte 11] [Mode 05] using ModelSim is shown in Figure 6.1 
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Compile a Design File 

Debug Result 

Load and Run Simulation 

Create a Working Library 

Figure 6.1: Basic Simulation Flow 

• All the designs in ModelSim are compiled into the library, all the design 

simulation are under the 'work' library, this is the default system library. 

• Once the work library is created, the design in the library is compiled, if there are 

any no errors, the compilation would be successful. 

• After compiling the design, the simulator is loaded by invoking the simulator on 

the top-level module (Verilog), once the simulator is loaded successfully, the 

simulation is run. 

• Incase the expected result is not obtained; the ModelSim debugging environment 

is used to track down the problem. 
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6.2.2 Simulation Results 

All the modules in the eigenfaces architecture excluding the MATLAB module were 

developed in Verilog HDL. We now briefly describe the various models and their 

simulation. The list of modules developed is given below. 

1. Parallel-Pipelined Adder Module 

2. Divide by 3-Module 

3. Read and Write Address Generator Module 

4. Read and Write Data to the RAM Module 

6.2.2.1 Parallel-Pipelined Adder Module 

The simulation in this section is for parallel-pipelined adder, which was discussed in 

section 5.4.1.4. Figure 6.2 illustrates the interface diagram for the parallel-pipelined adder 

module 

n
0 111:01 

nj |11:0] 

n2 (11:0] 

n3 (11:0] 

n4 [11:01 

n5 [11:0] 

ng [11:0] 

n? [11:0] 

elk 

Parallel Pipelined 
Adder Module 

Sum [14:0] 

Figure 6.2: Parallel-Pipelined Adder Interface Module 
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The parallel-pipelined adder module is designed to add 8 different inputs (no-n7), 12 bits 

each. The output is a 15-bit Sum. This module was tested with random 12 bit input 

values, and the simulation was successful. 

6.2.2.2 Divide by 3-Module 

The simulation in this section is for divide by 3-module, which was discussed in section 

5.4.1.6. Figure 6.3 illustrates the interface diagram for divide by 3-module. 

elk 

reset__n 

djn [15:0] 

d invalid 

Divide by 3 
Module 

• 
Divide by 3 

Module 

• 
Divide by 3 

Module 

• -• d_out [15:0] 

Figure (J: Divide by 3-Interface Module 

The divide by 3-module is designed to divide the input din by 3. To find the average face 

it is required to divide the sum obtained from the parallel-pipelined adder by the total 

number of faces in the database. In our architecture we are using the divide by 3-module 

since we have used a total of 3 images in out database. The divide by 3-module was 

tested with different 15bit values for d_in, and the simulation was successful. 
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6.2.2.3 Read and Write Address Generator Module 

The simulation in this section is for read and write address generator module, which was 

discussed in section 5.4.1.3. Figure 6.4 illustrates the interface diagram for read and write 

address generator module. 

elk 

reset_n 

d inva l id  

dout valid 

R/W Address 
Generator 

Module Module 

-• wa[2:0] 

-• ra[2:0] 

Figure 6.4: Read and Write Address Generator Module Interface 

The read and write address generator module is a 3 bit controller that generates the read 

and write addresses. When the din valid signal is high, the write counter is incremented 

and when the dout valid signal is high, the read counter is incremented. This module was 

tested and the simulation was successful. 

6.2.2.4 Read and Write Data to RAM Module 

The simulation in this section is to read and write data to RAM module, which was 

discussed in section 5.4.1.2. Figure 6.5 illustrates the interface for data read and write to 

RAM module. 
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din [735:0] 

din_valid 

wr_add [6:0] 

rd_add [6:0] 

rden 

wren 

elk 

Synchronous R/W to Synchronous R/W to Synchronous R/W to Synchronous R/W to Synchronous R/W to 
RAM Module RAM Module RAM Module RAM Module 

-• dout [7:0] 

-• dout valid 

Figure 6.S: Read and Write Data to RAM Module Interface 

The size of the image used in our architecture is 82kb. The number of bits for the input 

din, read address rd add and write address wr add were designed according to the size of 

the image used in our architecture. When wren (write enable) is high and din_valid is 

high, the data d in is written into the RAM. When rden (read enable) is high, the data is 

read out of the memory (dout) and dout valid is set high. This module was tested and the 

simulation was successful. 

6.3 FPGA Implementation - Feasibility Issues 

In the proposed architecture (Fig. 5.1), all modules can be implemented in FPGA except 

the MATLAB module. Due to lack of time we could not complete its implementation. 

In eigenfaces method, we are required to find the eigenvalues and eigenvectors of 

the covariance matrix, now moving back to Eq. (5.32) the covariance matrix from the 

model calculation in chapter 5, we have. 
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4548 -2316 -2275 
1= -2316 3285 -993 

-2275 -993 3340 
0x3 

To find the eigenvectors of L matrix, we should introduce a new variable X  and an 

Identity matrix T, we then find the determinant for [L — X. /], this would give us a cubic 

equation in terms of X. Here we are getting a cubic equation since our covariance matrix 

is of the dimension 3x3, this 3x3 dimension of the covariance matrix is because we 

have used 3 images in our database, for instance, if we have used 10 images in our 

database, then we would have a 10 x 10 matrix, that would give us an equation raised to 

the power of 10, solving this would be an intractable task. 

Once we solve the cubic equation, we would get X l f  X 2  and X 3 ,  these are the 

eigenvalues of the covariance matrix, Then we have to substitute the eigenvalue in 

[ L  —  X . I ] and multiply it with vector v x ,  (L —  X x . I ) v x ,  Where vxis , solving (L — 

I ) v u  would give us three simultaneous equations in terms of x, y and z, solving them 

would give the eigenvector Vjof Xx, as shown in Eq. (5.35). Similarly solving (L — 

X2.1)v2 and (L — X3. l)v3 and their resulting simultaneous equations, we would arrive at 

eigenvectors v2 and v 3of A2and X3 respectively as shown in Eq. (5.36) and Eq. (5.37) 

-2 
= 6866, vx = 1 

1 . 

0 
X 2  = 4306, v 2  =  — 1  

1 . 

1 
X 3  —  1 ,  v 3  =  1  

.1. 
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From this above model calculation (an excerpt from chapter 5), it can be seen that solving 

the covariance matrix for the eigenvalues and eigenvectors using Verilog HDL for FPGA 

would be a difficult task. This requires a novel architecture [Brav 08] [Brav 06]. Solving 

eigenvectors and eigenvalues from the covariance matrix is presently being extensively 

researched for a simple, unique and efficient solution for FPGA implementation. 
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Chapter 7 

Conclusion and Future Work 

7.1 Dissertation Summary 

Current security systems based on password and ID card could be lost, forgotten or 

stolen. To avoid such situations a good solution is to implement an effective biometric 

system. Face recognition system is advantageous over other biometric systems. They are 

non-intrusive, cheaper and they do not require any explicit action from the user. 

The state of art face recognition technologies [Cogn 10] [Ayon 10] [Auro 08] are 

implemented using powerful server computers and workstations with large memories. 

This type of hardware can only be placed in secure location with human supervision. This 

is a huge drawback even though they offer good recognition rate. This hurdle could be 

crossed if we could implement face recognition algorithm on FPGA. Currently face 

recognition algorithms are implemented using programming languages such as C++, 

Java, MATLAB, Python and Mathematica. They are yet to be written in a HDL. 

This thesis explored the feasibility of FPGA implementation of face recognition 

using eigenfaces and an architecture has been proposed and was elucidated module by 

module, along with the simulation results for the main modules, using ModelSim Verilog 

simulator. The limitations of the architecture and the feasibility of FPGA implementation 

were also discussed. 
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7. CONCLUSION AND FUTURE WORK 

7.2 Future Work 

This thesis is an initial step towards exploring the feasibility of implementing face 

recognition algorithm on FPGA. This would enable a new generation of face recognition 

technology that is mobile, flexible and cost effective . These advantages will open up new 

avenues for the every increasing applications of face recognition technology. 
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