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ABSTRACT

Image Spam Analysis

by Annapurna Sowmya Annadatha

Image spam is unsolicited bulk email, where the message is embedded in an

image. This technique is used to evade text-based spam filters. In this research,

we analyze and compare two novel approaches for detecting spam images. Our first

approach focuses on the extraction of a broad set of image features and selection of an

optimal subset using a Support Vector Machine (SVM). Our second approach is based

on Principal Component Analysis (PCA), where we determine eigenvectors for a set of

spam images and compute scores by projecting images onto the resulting eigenspace.

Both approaches provide high accuracy with low computational complexity. Further,

we develop a new spam image dataset that should prove valuable for improving image

spam detection capabilities.
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CHAPTER 1

Introduction

Electronic mail, commonly known as e-mail, is the most widely used application

for exchanging digital messages across the globe [17]. The usefulness of e-mail is

threatened by spamming, which is defined as unsolicited bulk e-mail. Spam e-mail

may, for example, contain advertisements, links to phishing websites or malware at-

tached as executable files. Spam is illicit in nature, targeting numerous recipients

around the world.

According to Symantec [36], during 2015 spam accounted for approximately 60

percent of all inbound e-mail, making spam filtering necessary for the continued utility

of e-mail. The first generation of spam e-mail contained only text messages. As spam

filters became more effective, spammers developed various techniques to bypass such

filters. Image spam, which consists of spam text embedded within an image, is used

by spammers as a means of evading detection. It has been reported that image spam

is around 40 percent of the overall spam traffic, and this percentage continues to rise.

Figure 1 shows image spam as a percentage of overall spam volume for the year 2015

as reported by Trustwave [34].

Previous approaches to detecting image spam consist of extracting various image

properties and classifying the images as either spam or ham (i.e., non-spam), using

machine learning techniques. This previous work either obtains low accuracy [9, 12,

39] or has an unrealistically high computational complexity [7, 19].

In this research, we develop and analyze two techniques for distinguishing spam

images from ham. Specifically, we extract high-level and low-level image properties

1



Figure 1: Image spam as a percentage of overall spam for the year 2015

and use a feature selection algorithm based on Support Vector Machines (SVM) to

minimize the computational complexity of the model. We also consider a technique

based on Principal Component Analysis (PCA), and compare these two approaches.

These techniques both perform very well against current spam images. We then use

insights gleaned from our detection techniques to develop a more challenging class of

spam images. This dataset should prove valuable for improving image spam detection

capabilities.

The remainder of this paper is organized as follows. Chapter 2 provides an

overview of image spam and related work on detection techniques. Chapter 3 de-

scribes Support Vector Machines and the presents our selective approach based on

this technique. Chapter 4 briefly explains the face-recognition technique called Eigen-

faces, followed by our method of Eigenspam. Chapter 5 gives the implementation

details for our techniques. Experimental results and performance analysis are pre-

sented in Chapter 6. Finally, Chapter 7 provides the conclusion and possible future

enhancements to the current study.
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CHAPTER 2

Background

Spamming refers to sending unsolicited electronic messages to a large group of

users arbitrarily. The evolution of the spam began with the idea of advertising var-

ious products. Later, it had been practiced as a prank in the gaming field and also

advanced to include some malicious activities. But, the focus of spamming has par-

ticularly moved to e-mail, where it prevails today. Since the advertisers have no

operating costs except to obtain the servers, mailing lists and the infrastructures, it

has proven to be economically viable. And as there is no particular barrier, spammers

have emerged numerously and are not being held for their mass mailings. In the year

2015, the predicted figure for spam messages is around seven trillion [18]. Public and

several organizations had to borne the costs that include loss of productivity and

bandwidth.

2.1 Types of Spam

Spam takes different forms based on the targeted media such as email spam,

mobile spam, social networking spam, gaming spam [20].

Email spam is the unsolicited bulk email and the most commonly encountered

spam. Identical messages are sent to numerous recipients by email; that may contain

advertisements, links to phishing sites or some malware attached. Different email

spam techniques include blank spam, image spam, and text spam. Initially, spam

was only text based, i.e., spam email contained text in the body of the message. As

the filters could classify these text messages, spammers introduced a sophisticated

image-based technique. Image spam is an obfuscation method in which the text is

3



embedded in an image and displayed in the mail. Blank spam as the name suggests

does not contain any message. It is a kind of dictionary harvest attack to collect valid

email addresses.

Social spam targets the most common social networking sites such as Facebook

and Twitter. Spammers hack into the accounts and send some false links to the user’s

trusted contacts.

Mobile spam aims at the text messaging service of a mobile device. “SpaSMS”

is coined to describe the spam SMS [33]. Mobile spamming not only causes inconve-

nience to the customers but also could cost the incoming message. Though a huge

number of people use the mobile phone, there has been a considerably less amount of

mobile spam because of the cost involved with sending the messages.

Gaming Spam is a form of message flooding to the players via chat rooms or

public discussion areas. It is particularly common for the spammers to sell game

related items for real-world money or in-game currency.

2.2 Image Spam

Image spam is a class of email spam, which has evolved as an obfuscation tech-

nique to bypass the traditional text-based spam filters. The text is embedded into a

graphical image which appears as the main body of the message. The method to de-

tect text spam was to identify keywords from the text and block the message. Thus,

more advanced form of email spam was developed by the spammers. The process to

determine if an image in an email is spam or ham is as follows [16]:

∙ First, if the sender of the email is in the black list, mark it as spam. If the email

is marked as spam, then determine if the message contains an image. Though

4



the email is identified as spam, we can not conclude that the image included is

spam. Thus, a spam filter is required to classify it as spam or ham.

∙ If an email is marked as legitimate using white-list, the image contained in the

message is filtered. If it is found to be spam image, the image is displayed only

with users’ consent.

∙ If a new email address is encountered and it contains an image, the image has

to be filtered. If the image is detected to be spam, the image is not displayed.

A choice is given to the user to mark it as spam.

2.2.1 Types of Image Spam

Image spam is heavy in content and has progressed in different forms to con-

stantly challenge the conventional filters: Pure text image, Randomized image, Mixed

image.

Pure text image is the first generation spam image and rich in text. It con-

tains a pure text file embedded as a picture in the message as shown in Figure 2a.

Since most e-mail clients rendered graphical images automatically, it could deliver

the intended message successfully. A filtering technique that uses Optical character

recognition (OCR) has been employed to identify such spam. Words from the image

are extracted using OCR, and the text is passed to the traditional text-based filter.

Randomized image is introduced to increase the difficulty of filtering spam

using OCR. Spammers created images by adding noise, a thin background of random

artifacts, or by rotating the image slightly. These changes do not influence the read-

ability of the users but significantly affect the output of the OCR based filter. The

spammers also carried out some unnoticeable changes such as shading the border,
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adding tiny streaks with almost random patterns to bypass the filters that are based

on Hash signatures. An example of this kind is shown in Figure 2d.

A Mixed image is a form of spam that is split into multiple parts to contain

both text and some related picture or an animation. These forms appear to be very

close to genuine and are challenging to be detected by most of the filters. Images

shown in Figure 2b and Figure 2c.

(a) (b) (c) (d)

Figure 2: Spam Images

2.2.2 Content Categories

Image spam can contain the following categories [20]:

∙ Advertisements — The content includes some details to promote a product or

some online shopping offers for various

∙ Pornography — The image contains obscene pictures or products.

∙ Phishing links — Images contain a link to websites that would attempt to

acquire their usernames and passwords or can also contain a link to malicious

websites.

∙ Scams — Typically promises a set of victims with some significant share of a
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substantial amount of currency for a small payment. This fee helps the fraudster

to collect a huge amount and later disappear or creates a series of the victims.

2.3 Image Spam Detection

Image spam detection techniques fall into two categories: Content-based and

Noncontent-based.

2.3.1 Content-based Filter

Content-based filters inspect the image content for specific keywords typically

used in the spam text. And then may use pattern recognition technique to track

particular behavior or pattern. One of the early content based filters is Spam As-

sasin [32], which uses OCR to extract text from the images and analyze the text using

traditional text-based filters.

2.3.2 Noncontent-based Filter

The noncontent-based filter uses different properties of the image to classify the

spam image. The earlier work included extracting simple metadata features and color

properties of an image. This kind of filter relies on the fact that the genuine image

possesses distinct characteristics compared to a computer generated image with text.

2.4 Related Work

Image spam detection has stirred interests of many researchers since the time

of its birth. Various detection techniques and algorithms have been explored for

an efficient classification. In this section, we present some works in the scientific

literature that dealt with the image spam detection.
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One of the classical techniques for the content-based filters was Spam Assasin [32],

which uses Optical Character Recognition (OCR) to recover the text from the spam

images. OCR is a mechanism for electronic conversion of images with any text (hand-

written or printed) into machine-encoded text. The text-based filters are used for the

further analysis of the extracted text. To bypass these filters, spammer used various

obfuscation techniques like making the text blur which practically effected the quality

of the existing filters.

The limitations of the OCR-based detection have been defeated by non-content

based email spam filtering. One of the early works in this area is Learning fast clas-

sifiers for image spam [7]. Authors in this paper propose a fast and robust detection

method by extracting a set of features based on simple file properties and metadata.

They employed Maximum Entropy, a discriminative model to evaluate the feature set.

They included two other classifiers such as Naive Bayes and ID3 decision trees for com-

parison and also to represent a different learning approach. The results showed that

Maximum Entropy outperformed Naive Bayes while decision tree is a close second.

This research also offers Just-in-Time (JIT) extraction which focuses on extracting

features based on each image. The basis of the feature selection is a greedy inclusion

by mutual information technique. A JIT decision tree is constructed to evaluate the

feature sets. The overall system demonstrated an efficient classification.

Image spam hunter [12] proposed a detection method based on probabilistic

boosting tree considering global image features like color and gradient histogram.

They suggested a learning-based prototype system to differentiate spam from normal

images. The system works by first clustering the spam into groups based on a similar-

ity measurement of color and gradient oriented histograms. Then build a probabilistic

boosting tree on the training set (chosen from the clustered groups) to distinguish
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the images. Results obtained from SVM classifier are considered as a baseline for the

comparison of their system. The proposed technique achieved an accuracy rate of

89.44% with 0.86% false positive rate.

A comprehensive server to client side approach for image spam detection [9]

applied the clustering technique at the server end to segregate genuine and spam.

Further, feature-based active learning methods have been used for classification at

the client side. The server-side approach involves a sparse nonnegative representation

of a similarity measure. This similarity measure is combined with a spectral clustering

algorithm for analysis of spam images. SVM active classification technique is applied

at the client-side to filter the spam images that have survived during the server-

side detection. This system extracted a large feature set and thus increased the

computational complexity though have ensured an accuracy rate of 99%.

Detecting image spam based on file properties, Hough transform, and his-

togram [39] focussed the detection constrained by specific image attributes. The

authors of this paper extracted features related to three different domains and com-

pared their individual performance. The first approach considers features related to

file properties like file format, width, height, and aspect ratio that are derived at a low

computational cost. The second method uses classification based on color histograms

of the image. The final approach uses Hough transforms for the classification. Hough

transform is a method to find different shapes present in the images using edge de-

tection. According to their experimental results, an approach using file properties

eliminates around 80% of image spam and the method using the histogram to imple-

ment distance measure reduces 84% of the spam images whereas the Hough transform

method achieves 88% of accuracy and also minimizes the false positive rate

Fuzzy Inference System based Image Spam Detection Technique (F-ISDS) [19]
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introduced a server side solution to extract multiple domain features and further

classify based on fuzzy inference system. F-ISDS employs dimensionality reduction

based on Principal Component Analysis (PCA) to reduce the number of features by

mapping them to their principal components. Further, Linear Regression Analysis is

used to model the relationship between the principal components and the extracted

features. Based on the model, membership functions are designed for a Fuzzy Infer-

ence System classifier. Though this work focused on an extensive range of features,

obtained an accuracy rate of 85%.

This comprehensive study of the existing research motivated us to develop an

efficient system for the image spam detection using various machine learning algo-

rithms.
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CHAPTER 3

SVM-based Detection

A large number of classification algorithms have been applied to spam detection

area earlier. Among them, Support Vector Machine (SVM) [15] is a useful technique

and famous for its good generalization performance. Previously, SVM has been widely

used for text-based spam detection. As SVM provides a useful analysis by separating

the hyperplane, in this work, we employed SVM for classification. In the next sections,

we present an overview of SVM technique followed by our approach for image spam

detection based on SVM.

3.1 SVM Overview

Support vector machines is a class of algorithms based on optimization and is

used for binary classification. SVM is a supervised learning technique, which means

that it requires labeled training data. That is, we must use data that has been

categorized and labeled in advance. The algorithm uses the labeled data to train a

model and find an optimal hyperplane that separates the two classes of the data by

acting as a threshold. This technique is based on the following intuitive ideas [35]:

∙ Maximize the margin: Consider a labeled training data, we attempt to find

a hyperplane that separates the data. Since it is binary classification, we try

to divide the two classes with a maximum margin of separation.The margin is

determined by the minimum distance between the hyperplane and any point

in the training set. For example, the hyperplane is denoted by the yellow line

in Figure 3. The black arrows indicate the nearest elements called the support
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vectors.

Figure 3: Maximum margin of seperation

∙ Work in higher dimension: For a given data, if a hyperplane exists, we

recognize the problem as linearly separable. To deal with the cases where data

is not linearly separable, SVM employs a technique to move the input space to

a higher plane giving additional space to find the hyperplane. For example, the

data on the left side of the Figure 4 cannot obtain a linear separation. Though

a parabola is possible, we can also use a transformation technique (𝜑) to map

input space to feature space and determine the hyperplane.

Figure 4: Linear seperation
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∙ Kernel trick: This is essentially a mapping function that transforms the data

into higher dimensions. Kernel trick makes it easy to compute a hyperplane in

the feature space. Figure 5 shows an example where the input space on the left

is not linearly separable, but after applying the transformation based on kernel

trick, we can easily construct a hyperplane.

Figure 5: Tranformation to higher dimension

3.1.1 SVM Algorithm

SVM algorithm functions in two phases: Training Phase and Testing Phase. In

the Training Phase, we create a model by training on a labeled dataset. In the Testing

Phase, we apply the generated model to the test dataset. The test phase determines

the accuracy of the given classifier. The SVM training and testing algorithms can be

generalized as follows [35].

3.1.1.1 Training Phase

The SVM training phase determines the equation of a separating hyperplane

that maximizes the margin. The obtained hyperplane will separate the feature space

into two sets. As a result, we can classify any points during the testing phase. The
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generic process involves solving Lagrangian Duality [35]. The simplified steps of SVM

Training Phase algorithm is given below.

1. Consider a set of labeled training data consisting of points 𝑋1, 𝑋2, . . . , 𝑋𝑛 and

a corresponding set of classification 𝑧1, 𝑧2, . . . , 𝑧𝑛, where 𝑧𝑖 ∈ {−1, 1}.

2. Select a kernel function 𝐾 and a parameter 𝐶, which specifies the permissible

number of classification errors.

3. Solve the optimization problem

Maximize: 𝐿(𝜆) =
𝑛∑︁

𝑖=1

𝜆𝑖 −
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜆𝑖𝜆𝑗𝑧𝑖𝑧𝑗𝐾(𝑋𝑖, 𝑋𝑗)

Subject to:
𝑛∑︁

𝑖=1

𝜆𝑖𝑧𝑖 = 0 and 𝐶 ≥ 𝜆𝑖 ≥ 0 for 𝑖 = 1, 2, . . . , 𝑛

(1)

to obtain 𝜆𝑖 and 𝑏.

3.1.1.2 Testing Phase

Given a trained SVM, we score a data point by determining on which side of the

separating hyperplane it resides. The process involves the following steps.

1. Given a datapoint X, we compute score

𝑓(𝑥) =
𝑠∑︁

𝑖=1

𝜆𝑖𝑧𝑖𝐾(𝑋𝑖, 𝑋) + 𝑏 (2)

where 𝑠 is the number of support vectors and is much smaller than 𝑛. This can

also be written as

𝑓(𝑥) = 𝑤 · 𝑥 + 𝑏 where 𝑤 = 𝜆𝑖𝑧𝑖𝐾(𝑋𝑖, 𝑋). (3)

This 𝑤 is called the weight vector which represents the support vectors orthog-

onal to the hyperplane in the Figure 6.
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Figure 6: SVM weight vector

2. Classify X according to

𝑐(𝑋) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑓(𝑋) > 0

−1 otherwise.
(4)

3.1.2 Kernel Functions

A Kernel function 𝐾, accepts inputs as 𝑋𝑖 and 𝑋𝑗 and produces an output that

is the inner product of their respective images, 𝜑(𝑋𝑖) and 𝜑(𝑋𝑗) [5]. The function is

given by

𝐾(𝑋𝑖, 𝑋𝑗) = 𝜑(𝑋𝑖) · 𝜑(𝑋𝑗)

which represents a dot product of the input data points mapped onto the higher

dimensional feature space by 𝜑 transformation. There are different Kernel functions

used in practice. SVM classifier allows the user to specify one of the following kernels:

∙ Linear Kernel:

𝐾(𝑋𝑖, 𝑋𝑗) = 𝑋𝑖 ·𝑋𝑗
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∙ Polynomial Kernel:

𝐾(𝑋𝑖, 𝑋𝑗) = (𝑋𝑖 ·𝑋𝑗 + 1)𝑝

∙ Radial basis function:

𝐾(𝑋𝑖, 𝑋𝑗) = 𝑒−(𝑋𝑖−𝑋𝑗)(𝑋𝑖−𝑋𝑗)/(2𝜎
2)

∙ Two Layer perceptron:

𝐾(𝑋𝑖, 𝑋𝑗) = tanh(𝛽0(𝑋𝑖 ·𝑋𝑗) + 𝛽1)

Choosing the correct kernel is a nontrivial task. The classification generally

depends on tuning the kernel parameters no matter which kernel is chosen.

3.2 Selective Approach using SVM

In this paper, we present a novel approach based on the SVM algorithm that

allows a sensitive feature selection apart from the traditional feature extraction. Then,

creates a model for fast and accurate classification. The baseline of the system is

the fact that the characteristics of a spam image, which is computer generated are

distinct from a genuine camera generated image [7]. Our empirical evaluation shows

that our model yields high accuracy with a reduced computational cost. With this

approach, we extract a broad set of features from various domains. A feature selection

algorithm based on SVM weights has been used to select a subset containing highly

distinguishing features to make the classification easy. Thus, our model employs

Feature Extraction, Feature Selection, and Classification, which we discuss further in

detail.
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3.2.1 Feature Extraction

In this feature extraction module, we detect and isolate various desired portions

or shapes of a digitized image as a compact feature descriptor or feature vector [26].

We extract an effective set of 21 discriminant image features. These features have been

identified from various image property domains that classify a computer-generated

image and a camera-generated image. Various features have been employed in the

previous related work for noncontent-based filtering. After rigorous simulation and

empirical analysis, we chose the following image statistics from the literature to inte-

grate color, shape, metadata, noise and appearance properties.

∙ Color Domain: Considering that the spam images are composed of fewer color

shades compared to the genuine images, we extract color related properties to

classify the images. We compute the entropy of the color histogram as the

first image feature. By quantizing each color band in the RGB space, the

color histogram depicts the distribution of colors in an image. We further set

up a histogram for the three color channels separately and then compute the

mean, variance, skewness and kurtosis for each, which adds another 12 feature

statistics [9].

∙ Texture Domain: Local binary pattern (LBP) [22] labels the pixel of an

image by thresholding the neighborhood pixels. This shows the similarity or

differences between the neighboring pixels. The entropy of the LBP histogram

is calculated as one texture feature [9]. The natural images are likely to have

more information in this feature vector as they are captured with a wide variety

of backgrounds and foregrounds.

∙ Shape Domain: The histogram of oriented gradients (HOG) descriptor is
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the local object appearance and shape within an image. It can be described

by the distribution of the intensity gradients; that is the directional change in

the intensity of the image. The entropy of the gradient magnitude orientation

histogram is the first shape feature [11]. Then we use edges of the image to

compute the next two image features. The curved line segments formed by a

set of points where image brightness change sharply are called edges [3]. The

total number of edges and the average length of the edges are examined for

our classification [10]. As spam images are generally a combination of text and

images, they are supposed to have more number of edges compared to the ham

images.

∙ Metadata Domain: Compression ratio and Aspect ratio of the images are

calculated as the two metadata features [39]. Compression ratio captures the

amount of compression achieved by calculating the ratio of pixels in an image

to an actual image size. Aspect ratio is a proportional ratio between width and

height of an image. Spammers try to compress the picture to minimize the size

of the email which discriminates from a genuine one.

∙ Noise Domain: Image noise is the random change of brightness or color in-

formation in images and is an aspect of electronic noise. The effects of the

noise content are analyzed by computing entropy of noise and signal to noise

ratio which is the measure of sensitivity [19]. Genuine images are captured in

varied backgrounds tend to have more noise than spam images unless noise is

artificially added.

Table 1 gives the list of all the features with the abbreviations as used in the

rest of the paper.
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Table 1: List of Image Features

Feature No. Feature Name Abbreviation used
f1 Entropy of Local Binary Pattern Histogram LBP
f2 Entropy of Histogram of Oriented Gradients HOG
f3 Number of Edges Edge no
f4 Average length of Edges Edge len
f5 Compression Ratio Comp
f6 Aspect Ratio Aspect
f7 Signal to Noise Ratio SNR
f8 Entropy of Noise Noise
f9 Entropy of Color Histogram Color hist
f10 Mean of Red Channel Mean1
f11 Mean of Blue Channel Mean2
f12 Mean of Green Channel Mean3
f13 Variance of Red Channel Var1
f14 Variance of Blue Channel Var2
f15 Variance of Green Channel Var3
f16 Skewness of Red Channel Skew1
f17 Skewness of Blue Channel Skew2
f18 Skewness of Green Channel Skew3
f19 Kurtosis of Red Channel Kurt1
f20 Kurtosis of Blue Channel Kurt2
f21 Kurtosis of Green Channel Kurt3

3.2.2 Feature Selection

In the feature selection module, we select a subset of highly discriminant features

for our model construction [2]. The aim is to mute out features that are not useful

to the existing features during classification. The feature selection could invariably

reduce the computational complexity and increase the speed. There are various al-

gorithms for ranking the features. In this paper, we explored a different perspective

of Support Vector Machines(SVM) for feature ranking. Feature selection using SVM

was earlier used for identification of gene subsets in biological research [14]. In this

section, we describe two feature selection strategies that we analyzed.
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3.2.2.1 Feature Ranking using SVM Weights

Recall that in linear SVM, 𝑤 is the weight vector that represents the coordinates

of the support vectors orthogonal to the resultant hyperplane in equation (3). The

dot product of this weight vector with any point from the test set gives the direction

of the predicted class. So using the weight vector we find the most useful feature for

separating the data with the fact that the hyperplane would be orthogonal to that

axis. The absolute size of this weight coefficient relative to the other points gives an

indication of how useful the feature is during the classification [24]. Our first approach

for feature selection is based on the weights as ranking criteria to limit the number

of features. Weight vectors are evaluated by training the model using linear SVM.

Then 𝑛 features with the largest absolute value of the weight are marked as the most

important features. This is intended to reduce the computational effort during the

test phase. The steps for this algorithm to select a subset of 𝑛 features are as follows:

1. Train the classifier using Linear SVM using the feature set

2. Compute the SVM weights for all the features

3. Select the first 𝑛 features with the largest weights

4. Create a model based on the subset

3.2.2.2 Recursive Feature Elimination using SVM Weights

The usual feature ranking criteria becomes very sub-optimal when it comes to

removing several features at a time, which is necessary to obtain a small and accu-

rate feature subset. This problem is overcome by using an iterative procedure called

Recursive Feature Elimination (RFE) [14]. RFE is designed to recursively remove

the attributes and build a model on the remaining attributes. It relies on the model
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accuracy to identify the combination of attributes that contribute the most to pre-

dicting the target attribute. Here we used linear SVM as the model. The steps for

the RFE algorithm are as follows:

1. Train the classifier using Linear SVM using the feature set

2. Compute the ranking criterion using SVM weights

3. Remove the feature with smallest ranking criterion

4. Repeat steps 1 to 4 until number of features in the subset matches the criteria

3.2.3 Classification

The model generated after feature selection is applied to the test set. Selected

features are extracted from the test set images. Then the SVM technique is used for

classifying the two classes of spam and ham images. Different kernel functions have

been applied during the empirical testing, and the analysis is presented in Chapter 6.

3.3 New Spam Data

In previous section, we discussed the SVM weight vectors which reveal the im-

portance of the features by training a model. The weight vectors not only help to

minimize the computational effort but also expose the determinant characteristics of

the spam images. This fact motivated us to create a new set of spam images that

would attempt to conceal all the visible traits of the original spam images. This has

been explained in detail in Chapter 6.
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CHAPTER 4

PCA-based Detection

In this chapter, we focus on PCA-based image spam detection strategy. In com-

parison to the earlier detection technique, this approach also depends on the struc-

tural entropy score but does not involve feature extraction for the images. Principal

Component Analysis (PCA) is a linear transformation method that finds the direc-

tions (principal components) of the data and maximizes the variance. PCA relies

on eigenvector analysis which is also achieved using Singular Value Decomposition

(SVD) [35].

First, we briefly discuss the mathematical model of eigenvalues and eigenvectors

that helps us for the theoretical discussion of PCA in the following section. Then

we review Eigenfaces, an application of PCA to the well-known facial recognition

problem from [37], which forms the basis for our “Eigenspam” detection technique.

We present the implementation and experimental analysis in the coming chapters.

4.1 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are prominently used in the interpretation of linear

transformations. The term eigen means “unique to”, or “peculiar to” in the sense

of “characteristic” [41]. It was initially designed to analyze principal axes of the

rotational motion of rigid bodies.

In linear algebra, eigenvector is a non-zero vector 𝑥 for a square matrix 𝐴 that

satisfies 𝐴 = 𝜆𝑥 where 𝜆 is scalar called eigenvalue. Eigenvector 𝑥 of a matrix 𝐴

implies that 𝐴 stretches the eigenvector 𝑥 by 𝜆, without changing the direction. Fig-
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ure 7 depicts a vector 𝑥 and its geometrical transformation 𝜆𝑥. It shows that for a

particular matrix 𝐴 and a vector 𝑥, the effect of 𝐴𝑥 is same as scalar multiplication

of eigenvector 𝑥 with a magnitude given by its eigenvalue 𝜆. Considering each eigen-

value is associated with an eigenvector, the relative importance of an eigenvector is

given by the magnitude of its corresponding eigenvalue and hence can be used for

dimensionality reduction of data by removing the unimportant directions.

Figure 7: Eigenvector [6]

4.2 Principal Component Analysis

PCA is a linear algebra technique which helps us find the most significant direc-

tions in the data that enables to reduce the dimensionality of the problem. In simple

terms, PCA is a way to identify patterns in the data and express them to identify

the similarities and differences. If the data is of higher dimension, it is hard to find

the patterns without any graphical representation. PCA minimizes this problem by

reducing the dimensionality. The main idea of PCA for a given dataset 𝑆 with 𝑛

variables is to define this dataset with a smaller set of elements that are linear com-

binations of the original values. These elements are called the principal components.

For example, consider the a scatterplot of the scores from an experiment as shown

in Figure 8a. The minimal spanning set of the data is not very informative, so we
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try to reduce the dimensionality. We can use a regression line as shown in Figure 8b,

which is the best-fitting straight line to the set of points. This regression line reduces

the dimensionality by obtaining the significant information but there is also some

loss of information. PCA also uses linear regression but provides a better basis that

reveals the structure for viewing the data. Figure 8c illustrates this basis, where the

direction determines the structure and the length measure gives the variance of the

data in the given direction. PCA thereby eliminates the less informative directions

proportional to the variance to reduce the dimensionality.

(a) Experiment Data (b) Regression Line (c) PCA Basis

Figure 8: PCA Example

The process of dimensionality reduction using PCA consists of following

steps [31].

1. Consider an experimental data as matrix 𝐴𝑚×𝑛, where 𝑛 is the number of ex-

periments, and 𝑚 is the number of measurements per experiment.

2. Compute the mean of each row and subtract it from the each element of the

corresponding row.

3. Construct a covariance matrix 𝐶 = 1
𝑛
𝐴𝐴𝑇 . Each element on the principal

diagonal of this matrix is just the variance of each element of the vector while
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the off-diagonal element is the covariance. We use the covariance matrix [40] to

determine the principal components.

4. To diagonalize the covariance matrix, compute the eigenvalues and eigenvectors

of the matrix 𝐶.

The diagonalized matrix reveals the inherent structure of the data. Also, the

dominant eigenvalues correspond to the most informative directions of the data. Thus,

we use this information to reduce the dimensionality of the problem. In the next

section, we discuss a classical application of PCA for facial recognition.

4.3 Eigenfaces

Eigenfaces [37] is a technique that is widely used for face recognition and is based

on PCA. Eigenfaces approach interprets the complex problem of face recognition as

a 2-dimensional problem by assuming faces to be upright and ignoring the geometric

features of the face, which makes it computationally simple.

4.3.1 Face Recognition

For this approach, first, a set of training images is considered with the faces

of images centered. A covariance matrix is constructed with the pixel values from

the images. Eigenvectors of this covariance matrix are computed to measure the

similarity between different images. These vectors are referred to as “eigenfaces”. The

eigenfaces exhibit significant features of a face but do not certainly present intuitive

features such as lips, eyes, etc. The feature space defined by these eigenfaces is termed

as “face space”.

The images from the training set are projected onto the face space, and a weight
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vector for each image in the training set is obtained. These set of weights are used

to score any image. Consider an unknown image is given for classification, the image

is first projected onto the face space. The Euclidean distance to each of the training

images from the weight vector of the projected image is computed. The minimum of

these distances defines the score. If the score is small, then the image is considered

to be the closest match to a class in the training set, else the image does not belong

to that class.

To illustrate this process, consider the images in Figure 9 to be the training

set. The training images have been downloaded from Yale face database [42] for

experiments. Then the corresponding eigenfaces as in Figure 10 are obtained by

projecting the training images onto the face space with most significant eigenvalues.

An image from the training set can be reconstructed using its eigenvectors. That is, if

a projected image belongs to the training set, it could be matched by reconstructing

its eigenfaces as shown in Figure 11. When a unknown image is projected onto the

face space, the results may be entirely different as shown in Figure 12. That is,

even though a test image is not in the training data, an image with lowest score is

recognized and mapped. To overcome this anomaly, we use a certain threshold to

actually classify the images.

4.4 Eigenspam

The face recognition technique using eigenvectors [37] inspires our approach to

detect spam images. As images of different people have similarities corresponding

to the outline of their facial features, different spam images also have some common

characteristics like the wild backgrounds and the text. For the following section, we

will refer to “Eigenspam” as the set of eigenvectors that constructs a spam image as
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Figure 9: Facial images

Figure 10: Eigenfaces

corresponds to Eigenfaces, which constructs the face when combined linearly. The

training phase and testing phase for the system are discussed in detail below [35].
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Figure 11: Known test image mapped to training set

Figure 12: Unknown test image mapped to training set

4.4.1 Training Phase

The Training phase is the stage during which our model is trained by a database

of different spam images called the training set. We determine the eigenvectors and
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project them onto the eigenspace to compute the weight vectors. The training phase

consists of the following steps:

1. Acquire a set of 𝑀 spam images, resize all images to be of same dimensions.

2. Convert each image to greyscale. Each image is represented as a vector 𝑉𝑖 by

converting to greyscale and flattening the image. Since all images are resized to

same dimensions, each image consists of a same number of pixels. We represent

the entire image set as 𝑁 ×𝑀 , where 𝑁 is the count of pixels in each image,

and 𝑀 is the number of images.

3. Compute the mean image vector and subtract from each image. Let 𝑒𝑖(𝑉 ) be

the 𝑖𝑡ℎ element of the vector 𝑉 . Then, for 𝑗 = 1, 2, 3, . . . , 𝑁, we let

𝜇𝑗 =
1

𝑀

∑︁
𝑖
𝑒𝑗(𝑉𝑖),

that is, 𝜇𝑗 is the mean of the elements appearing in position 𝑗 of the training

vectors 𝑉𝑖. The vector of means is defined as

𝜇 =

⎛⎜⎜⎜⎝
𝜇1

𝜇2
...
𝜇𝑁

⎞⎟⎟⎟⎠
Subtract the mean from each vector 𝑉 .

𝑉𝑖 = 𝑉𝑖 − 𝜇

The matrix of interest is defined as

𝐴 = (𝑉1 𝑉2 . . . 𝑉𝑀) (5)

that is, column 𝑖 of 𝐴 is the vector 𝑉𝑖. By construction, the mean of the elements

in each row of 𝐴 is 0.
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4. The covariance matrix [23] is

𝐶 =
1

𝑀
𝐴𝐴𝑇

and the elements of the matrix 𝐶 are denoted as 𝑐𝑖𝑗. Then

𝑐𝑖𝑗 =
𝑉𝑖 · 𝑉𝑗

𝑀
(6)

where 𝑉𝑖 · 𝑉𝑗 denotes the dot product.

5. Find the normalized eigenvectors of covariance matrix 𝐶. However, 𝐶 is 𝑁×𝑁 ,

where 𝑁 is the number of pixels of an image in the training and the number 𝑁

is generally large. So, instead of instead of directly computing the eigenvectors

of 𝐶, we use the following efficient approach.

Suppose a matrix 𝐿

𝐿 = 𝐴𝑇𝐴 (7)

Here 𝐿 is a 𝑀×𝑀 matrix. Since 𝑀 is the number of the images in the training

set, it will be much smaller than 𝑁 . Let 𝜈 is an eigenvector of 𝐿, that is,

𝐿𝜈 = 𝜆𝜈

for some 𝜆. Then multiplying by 𝐴

𝐴𝐿𝜈 = 𝐴𝐴𝑇𝐴𝜈 = 𝐴𝜆𝐴𝜈

and thus, 𝐴𝜈 is the eigenvector of 𝐶 with a corresponding eigenvalue 𝜆.

6. Suppose that the set of eigenvectors of 𝐿 from the above step is 𝜈 =

{𝜈1, 𝜈2, . . . , 𝜈𝑗} and obtain the corresponding eigenvectors of 𝐶 using 𝜇𝑖 = 𝐴𝜈𝑖,

for 𝑖 = 1, 2, . . . , 𝑗. Thus, consider the eigenvectors of 𝐶 as 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑀)

and sort them in descending order based on the magnitude of the eigenvalue.
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7. Since we have already mentioned that the most significant eigenvectors corre-

spond to the eigenvalues with the largest magnitude. We select the first 𝑚

singular vectors of 𝑢𝑖 where 𝑚 ≤ 𝑀 and ignore eigenvectors with small eigen-

values.

8. Project each image of the training set 𝑉 onto the eigenspace [41]. We compute

weight vectors Ω𝑖, for 𝑖 = 1, 2, . . . ,𝑀, as

Ω𝑖 =

⎛⎜⎜⎜⎝
𝑉𝑖 · 𝑢1

𝑉𝑖 · 𝑢2
...

𝑉𝑖 · 𝑢𝑚

⎞⎟⎟⎟⎠ (8)

where the dot product for the vectors 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑦 =

(𝑦1, 𝑦2, . . . , 𝑥𝑛) is defined as

𝑥 · 𝑦 =
𝑛∑︁

𝑗=1

𝑥𝑗𝑦𝑗.

9. Finally, define the scoring matrix ∆

∆ = (Ω1,Ω2, . . . ,Ω𝑚). (9)

Thus, we can view ∆ as a model that is trained using images in 𝑉 .

4.4.2 Testing Phase

In the testing phase, a new image is projected onto the eigenspace of the training

set and the Euclidean distance is computed between the test image weight vector and

each of the weight vectors of the training set images. If the distance measure, also

called as the score, is below a certain threshold, then the test image is classified as a

spam image or it is marked as a ham image. Given an image vector 𝑋 that we want

to score, we proceed as follows.
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1. Analogous to (8), we compute the weight vector, 𝑊 of �̃� where �̃� = 𝑋 − 𝜇,

𝑊 =

⎛⎜⎜⎜⎝
𝑤1

𝑤2
...

𝑤𝑚

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
�̃�𝑖 · 𝑢1

�̃�𝑖 · 𝑢2
...

�̃�𝑖 · 𝑢𝑚

⎞⎟⎟⎟⎠ (10)

2. Compute each Euclidean distance between 𝑊 from (10) and weight vector Ω𝑖

in (9). Suppose 𝜖𝑖 is the distance between 𝑊 and Ω𝑖, then

𝜖𝑖 = 𝑑(Ω𝑖,𝑊 ).

3. Finally, determine the score

score(𝑋) = min
𝑖

(𝜖𝑖).

This score(𝑋) determines how closely the input image represents the spam

image features among the training set. The smaller the score, the better is the

match to the training set image. The classification of the images is based on a

threshold value for the score and is set experimentally.
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CHAPTER 5

Implementation

This chapters discusses the implementation of the techniques presented in the

previous chapters. The first section gives implementation details of the SVM-based

approach and the second section gives the implementation of PCA-based detection.

5.1 SVM-based Detection

We have implemented SVM using Python’s Scikit-Learn package [30]. The sup-

port vector machines in Scikit-Learn supports both dense and sparse vectors as input.

Internally it uses libsvm [4] library to handle all the computations. It also provides

an option to train the classifier with different kernel functions. Figure 13 shows the

internal working of our SVM-based approach for image spam detection. We discuss

the training phase and testing phase executions in detail in the following sections.

Figure 13: SVM-based detection model
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5.1.1 Training Phase

Initially, we construct a training set with a combination of spam and ham images.

The feature extraction module takes images as input and generates a CSV file with

a list of images and the corresponding feature values. The feature selection module

takes this CSV file as input to create a model and return the subset of features

selected.

5.1.1.1 Feature Extraction Module

We represent the train set images as 𝑀 ×𝑁 matrix, where 𝑀 is the number of

images and 𝑁 is pixel count . We extract a broad set of features for each of the train

set images by manipulating the array. To obtain the entropy of color histogram, we

first build a 103 dimension color histogram in the joint RGB space by quantizing each

color band [7]. The entropy of the color histogram is then computed. We further set

up one 100-dimensional histogram for each of the three color channels. Then mean,

variance, skewness and kurtosis for each of the three histograms are calculated. The

entropy of the LBP histogram is calculated as one texture feature. We extract 59-

dimensional texture histogram, including 58 bins for all the different uniforms local

binary pattern and measure the entropy value. A 40 × 8 = 320-dimensional gradient

magnitude-orientation histogram is built to describe the shape information. The

entropy of the gradient magnitude orientation histogram is the first shape feature.

The total number of edges and the average length of the edges are computed by

running Canny edge detector [3]. Compression ratio is computed using following:

Compression ratio =
height × width × bit depth

file size

Aspect ratio is measured as the ratio between the width and height of the image.

Signal to noise ratio is computed as the proportional relationship between mean and
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variance. The noise of the image is measured by measuring deviation at each pixel of

the image.

To illustrate the feature extraction, consider a picture as shown in Figure 14a.

The color histogram of three different channels (RGB) are computed and plotted as

shown in Figure 14b. The image is then converted to a greyscale as presented in

Figure 14c. We use Canny edge detector to detect the edges. With a variation in

the parameters, the edges could be detected as shown in Figure 14d and 14d. The

histogram of oriented gradients (HOG) is computed and displayed as in Figure 14f.

The similar illustration is also presented for a spam image in Figure 15. Finally, the

entropy of these histograms is computed as feature vectors.

(a) Ham Image (b) Color Histogram (c) Greyscale

(d) Canny edges 𝜎 = 1 (e) Canny edges 𝜎 = 3 (f) HOG

Figure 14: Feature extraction illustration of a Ham Image
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(a) Spam Image (b) Color Histogram (c) Greyscale

(d) Canny edges 𝜎 = 1 (e) Canny edges 𝜎 = 3 (f) HOG

Figure 15: Feature extraction illustration of a Spam Image

5.1.1.2 Feature Selection Module

The extracted features along with the class label (1 for spam and −1 for ham)

are given as input to a linear SVM classifier. We generate a model after selecting a

subset of features using SVM weights. Feature ranking using linear SVM weights has

been implemented using the algorithm described in Table 2.

Recursive feature elimination algorithm has been implemented based on the al-

gorithm [14] in Table 3. A model is generated using the selected features. This model

is used to classify the images.
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Table 2: Feature Ranking Algorithm

// Input: Training set 𝑋0 = [𝑥1, 𝑥2, . . . , 𝑥𝑘, . . . , 𝑥𝑛]𝑇 ,
// Class labels 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑘, . . .¸ , 𝑦𝑛]𝑇

// Output: Feature ranked list 𝑟
// Initializations
Set of features 𝑆 = [1, 2, . . . ,𝑚],
Feature ranked list 𝑟 = [ ]
Max count of features to be selected = 𝑠
Begin

Train the classifier
𝜆 = SVM-Train(𝑋, 𝑦)

Compute the weight vector of dimension length(𝑆)
𝑤 =

∑︀
𝑘

𝜆𝑘𝑦𝑘𝑥𝑘

Compute the ranking criteria
𝑐𝑖 = (𝑤𝑖)

2, for all 𝑖
Sort the features based on weights

𝑓 = sort(𝑐)
Update feature ranked list

𝑟 = [𝑆(𝑓), 𝑟]
Select the first 𝑠 features

𝑆 = 𝑆(𝑠)
Return 𝑟, 𝑆
End

5.1.2 Testing Phase

A test set of spam and ham images is given as input to the feature extraction

module to extract the selected subset of features. Then the extracted features are

classified using SVM algorithm.
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Table 3: Recursive Feature Elimination Algorithm [14]

// Input: Training set 𝑋0 = [𝑥1, 𝑥2, . . . , 𝑥𝑘, . . . , 𝑥𝑛]𝑇 ,
// Class labels 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑘, . . . , 𝑦𝑛]𝑇

// Output: Feature ranked list 𝑟
// Initializations
Subset of surviving features 𝑆 = [1, 2, . . . ,𝑚],
Feature ranked list 𝑟 = [ ]
Begin
Repeat until 𝑆 = [ ]

Constrain training𝑋to feature set 𝑆
𝑋 = 𝑋0(:, 𝑆)

Train the classifier
𝜆 = SVM-Train(𝑋, 𝑦)

Compute the weight vector of dimension length(𝑆)
𝑤 =

∑︀
𝑘

𝜆𝑘𝑦𝑘𝑥𝑘

Compute the ranking criteria
𝑐𝑖 = (𝑤𝑖)

2, for all 𝑖
Find feature with smallest ranking criterion

𝑓 = argmin(𝑐)
Update feature ranked list

𝑟 = [𝑆(𝑓), 𝑟]
Discard feature with smallest rank

𝑆 = 𝑆(1 : 𝑓 − 1, 𝑓 + 1 : length(𝑆))
Return 𝑟
End

5.2 PCA-based Detection

We implemented the algorithm discussed in Chapter 4 using Python. Python

Imaging Library (PIL) and OpenCV packages have been used to work with the images.

Figure 16 summarizes the eigenspam detection process.
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Figure 16: Eigenspam based detection model

5.2.1 Training Phase

We construct a test set of spam images. Initially, we resize all the images and

convert them to grayscale. Converting to grayscale, flattens the image and allows us

to store in a matrix 𝐴𝑀×𝑁 , where 𝑁 is total pixel count of an image and 𝑀 is a total

number of image files used for training. This matrix is given as an input to compute

eigenvectors and weights. Python’s Scikit-Learn has been used to implement this

algorithm. We store the weights for further manipulations.

5.2.2 Testing Phase

Test set constitutes both spam and ham images. Project each image from the

test set onto the eigenspace created in the training phase and compute the weight

vector. Then, we measure the Euclidean distance from each of the weight vectors of

the training set. We classify the derived score based on an empirical threshold value.

The experiments for the above implementations have been presented in Chap-

ter 6.
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CHAPTER 6

Experimental Analysis and Results

In this chapter, we present the empirical analysis and the results of our project.

The first section gives details about the datasets used and created by us, followed by

the experimental setup for the project. We discuss the criteria for the evaluation in

the third section. The rest of the chapter shows the experiments and results.

6.1 Datasets

Very few image spam corpus are available to the public due to privacy concerns.

We analyze the project using such available datasets.

6.1.1 Dataset 1

This dataset is available at Northwestern University’s public website [13]. This

dataset was created by authors of Image spam hunter [12] by collecting images from

the original emails. The dataset consists of a total of 928 spam images and 810 ham

images. The dataset consists of images in JPEG format. We excluded eight images

from the spam data as they were corrupted. The dataset has been divided into two

parts as training set and test set.

6.1.2 Dataset 2

This data was used by the authors of Learning Fast classifiers for Image spam [7]

and was made accessible to public [8]. The data set consists of a large corpus with

different formats (JPEG, GIF, PNG), most of which have been found either repeated

or corrupted. So, we selected a subset of 1091 spam images and 1056 ham images
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and converted them to JPEG format for our experiments.

6.1.3 Dataset 3

We created a new set of spam images as mentioned in Chapter 3. The idea is

to build a stronger set that would bypass the existing spam filters. As the current

filters rely on the highly determinant characteristics of the spam, we have processed

the images to make those visible properties similar to the properties of a ham image.

We generated a set of 1029 such images and performed various experiments to test

the sanity of the data.

In addition to the above datasets, we have also performed our experiments on

the Princeton spam image benchmark dataset [28].

6.2 Experimental Setup

This project has been implemented using Python-3.5. Image processing packages

such as Scikit-Image, Python Imaging Library (PIL) and OpenCV have been used

to work with images. Scikit-Learn package has been used to implement machine

learning algorithms for the detection. Matplotlib has been used to plot the graphs

for the analysis. We worked with Mac OS X operating system.

6.3 Evaluation Criteria

The proposed techniques have been evaluated based on accuracy, false positive

rate, and area under the curve. The accuracy of a classification is the ratio of a

number of correctly classified samples to the total number of samples [35]. We define

accuracy as

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
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Where, True Positive is the number of spam images correctly classified as spam, True

Negative is the number of ham images correctly classified as ham, False Positive is

the number of ham images classified as spam and False Negative is the number of

spam images incorrectly classified as ham images. False Positive Rate (FPR) is the

percentage of the genuine files that incorrectly fall into the spam class. FPR for a

classification scheme is

FPR =
False Positive

True Positive + False Positive
.

In machine learning, Receiving Operating Characteristics (ROC) is a graphical plot

used to compute the Area Under the Curve (AUC) value and determine the efficiency

of the algorithm. We generate the ROC curve by plotting the True Positive Rate

(TPR) versus the False Positive Rate (FPR) with varying threshold through the

range of data points. Figure 17 shows ROC curve with a shaded region. We compute

the area of the shaded region to obtain the AUC value. This value usually lies in

between 0.5 to 1. An AUC value of 1 indicates ideal classification with zero false

positives or false negatives.

Figure 17: ROC curve with shaded area

In this project, we evaluate the performance of the proposed techniques majorly
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by plotting ROC curve and calculating the AUC value.

6.4 SVM Model Experiments

6.4.1 Image Feature Statistics

The initial step of this method is to retrieve 21 image features. These features are

adopted with the motivation that the spam image possesses different visual statistics

compared to the genuine image. To demonstrate this, we first plotted the distributions

for each of the 21 features in two distinct classes for dataset 1. The visualizations of

the most effective features have been presented in Figure 18.

We can observe that the chosen features can certainly distinguish between the

spam image and ham image. There is a clear mark of separation between the two

classes of images. Further, we plotted the ROC curves to compute the AUC value

for each of the features score obtained using SVM classifier. The ROC curves corre-

sponding to the features in Figure 18 can be observed in Figure 19. It is apparent

from the results that each feature by itself discriminates strongly between both the

classes. The distributions and the ROC graphs for all the features are shown in the

Appendix A.

Further we plot the AUC for all the 21 features for images from dataset 1 as

shown in the Figure 20. We observe that the variances of different color channels

produce a high classification rate. The color histogram based statistical features are

most active in the exposition of the spam images. The analysis of the plot strengthens

the fact that the spam image possesses properties that could be distinguished from

the normal images. And, each feature individually could classify the images to a

reasonable degree.
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(a) Signal to noise ratio (b) Compression ratio

(c) LBP (d) Edge Count

Figure 18: Feature distribution for spam versus ham images

6.4.1.1 Kullback-Leibler Divergence

We further computed the Kullback-Leibler divergence [21](known as KL diver-

gence) for the probability distributions between the two classes of data for each fea-

ture. KL divergence is a distance metrics that measures the difference between two

probability distributions M and N. Concretely, the KL divergence of N from M is

denoted by 𝐷𝐾𝐿(𝑀 ‖ 𝑁) and measures the amount of added information needed to

encode image M based on the histogram of image N. The KL divergence of N from
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Figure 19: ROC curves for the feature distributions in Figure 18

Figure 20: AUC for Feature distributions

M is given by
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𝐷𝐾𝐿(𝑀 ‖ 𝑁) =
∑︁
𝑖

𝑀(𝑖) log
𝑀(𝑖)

𝑁(𝑖)
, (11)

where M and N are discrete probability distributions [27]. KL divergence is non-

symmetric, that is 𝐷(𝑀 ‖ 𝑁) is not equal to 𝐷(𝑁 ‖ 𝑀).

Using equation (11), we computed the KL divergence for the feature distributions

from ham to spam and spam to ham. The results are given in the Table 4.

Table 4: KL divergence for Feature distributions

Feature Spam to Ham Ham to Spam SVM AUC
Color hist 0.01 0.01 0.58

Mean1 0 0 0.5
Mean2 0 0 0.5
Mean3 0 0 0.5
Var1 0.08 0.07 0.96
Var2 0.11 0.09 0.98
Var3 0.1 0.09 0.97

Skew1 0.23 0.23 0.91
Skew2 0.26 0.27 0.95
Skew3 0.22 0.28 0.94
Kurt1 0.32 0.29 0.92
Kurt2 0.35 0.33 0.94
Kurt3 0.31 0.36 0.94
LBP 0.01 0.01 0.85
HOG 0.04 0.03 0.81

Edge no 0.04 0.05 0.87
Edge len 0.02 0.02 0.65
Comp 0.04 0.01 0.95
Aspect 0.03 0.04 0.77
SNR 0.15 0.04 0.95
Noise 0.02 0.01 0.63
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6.4.2 SVM Results without Feature Selection

We classify the extracted features using SVM technique. First, we label the two

classes of images (1 for spam, -1 for ham). The classification has been performed on

the first two datasets.

6.4.2.1 Dataset 1

For dataset 1, we considered the training set with 100 spam images and 100

ham images. There is no overlap between the test and the train sets. The test set

contains 710 ham and 820 spam images. The model has been trained and tested with

different kernel functions. The accuracy and the FPR have been computed for the

classification using three kernels. The results are shown in the Table 5.

Table 5: Accuracy and FPR with different Kernel functions for dataset 1

Kernel Accuracy FPR
Linear 0.96 0.05
RBF 0.96 0.05

Polynomial 0.92 0.02

It is observed that the Linear kernel performed a better classification with a

low positive rate compared to the other kernels.The performance of the linear SVM

classification is described as a confusion matrix in Table 6.

Table 6: Linear SVM Classification for dataset 1

Actual Classified
Spam Ham

Spam(820) 801 19
Ham (710) 32 678

Figure 21 shows the ROC curve for the SVM classification. The corresponding

AUC value for the curve is 0.99 which implies that the SVM technique detects spam
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images with a good accuracy and low false positive rate.
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Figure 21: ROC Curve for SVM classification without feature selection for dataset 1
with AUC = 0.99

6.4.2.2 Dataset 2

Dataset 2 contains 1091 spam images and 1056 ham images. The training set is

constructed with 1037 images from both classes. There is no overlap between the test

and the train sets. The test set contains 800 images. The model has been trained

and tested with different kernel functions. The accuracy and the FPR have been

computed for the classification using three kernels. The results are shown in the

Table 7.

In this case, it is observed that the Radial Basis Function performed a better

classification with a low positive rate compared to the other kernels.The performance

of the RBF SVM classification is described as a confusion matrix in Table 8.
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Table 7: Accuracy and FPR with different Kernel functions for dataset 2

Kernel Accuracy FPR
Linear 0.97 0.02
RBF 0.98 0.02

Polynomial 0.96 0.07

Table 8: RBF SVM Classification for dataset 2

Actual Classified
Spam Ham

Spam(400) 393 7
Ham (400) 6 394

Figure 22 shows the ROC curve for the SVM classification. The corresponding

AUC value for the curve is 1.0 which implies that the SVM technique detects spam

images as desired.
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Figure 22: ROC Curve for SVM classification without feature selection for dataset 2
with AUC =1.0
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6.4.3 SVM Results with Feature Selection

In this section, we perform SVM classification after selecting highly discriminant

subset of features by training the model with the weights extracted for 21 features. We

aim to find an optimal subset of the features to reduce the computational complexity

and yet provide maximum accuracy for classification.

6.4.3.1 Dataset 1

As mentioned in the Section 5.1, we first train a Linear SVM model with 21

features extracted from the training set images. Initially, we compute the weights

of the features after creating a model. Using recursive feature elimination, we select

a subset of features based on the ranking criteria as mentioned under Section 5.1.

That is, to choose a set of 10 elements using RFE algorithm, we compute weights

and recursively eliminate 11 features. To find an optimal subset, we experimented

with incrementing values for 𝑁 and measured the respective AUC values based on

SVM classification. Figure 23 shows the number of selected features with their cor-

responding AUC values and accuracy. In the plot, the orange line denotes the AUC

value, and the blue bars show the accuracy for the selected number of features. We

can observe that the maximum AUC value is first attained for a subset of 3 features.

But, this subset cannot be chosen as optimal because its accuracy value is less than

0.96 which is not the maximum value. And as we increase the number of features in

the subset, we achieve a higher accuracy. Thus, we consider 13 feature subset as an

optimal set considering this data.

We compare the result with simple feature ranking approach. First, we arrange

the features based on the weights. We select a subset of 𝑁 features by eliminating

the elements greater than rank 𝑁 . That is, a subset of 10 would contain all the
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Figure 23: RFE selection - AUC versus accuracy for dataset 1

features till rank 10. We experimented with incrementing values for 𝑁 and performed

classification to compute the respective AUC values. Figure 24 shows the plotting

for the number of features selected with ranking and its corresponding AUC with an

orange line in comparison with AUC values obtained using RFE approach. Both the

methods produce the maximum AUC at 13 feature subset.

Figure 24: AUC - RFE versus ranking for dataset 1

One interesting observation from Figure 24 is the difference in AUC for selection

of 3 features using both approaches. It is apparent that the combinations of the

features make a difference in the result. The combination for 𝑁 = 3 using the ranking
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approach from Figure 25 is the compression ratio, signal to noise ratio and entropy of

HOG (numbered as 1,2,3) whereas using RFE we get compression ratio, the entropy

of LBP, the variance for one color channel as in Figure 25 with blue marked bars.

Thus, using RFE approach the selection of features yields maximum efficiency.

Figure 25: SVM weights ranking with RFE selection in blue bars for dataset 1

Finally, the Table 9 gives the detailed result using 13 features. Table 10 shows

the accuracy of classification using different kernels of SVM. The corresponding ROC

curve for the detection using 13 features is presented in Figure 26. The AUC value

for the curve is computed to be 0.99.

From the results, it is also apparent that using 13 features; we get the same AUC

as the classification with all the 21 features and also with a greater value of accuracy

compared to accuracy without feature selection which is 0.96.
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Table 9: Accuracy and FPR with different Kernel functions for dataset 1 using 13
features

Kernel Accuracy FPR
Linear 0.97 0.04
RBF 0.96 0.05

Polynomial 0.95 0.03

Table 10: Linear SVM Classification for dataset 1 with 13 features

Actual Classified
Spam Ham

Spam(820) 811 9
Ham (710) 33 677
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Figure 26: ROC Curve for SVM classification with RFE feature selection for dataset
1 with AUC =0.99

6.4.3.2 Dataset 2

We perform similar experiments to calculate AUC and accuracy for an increasing

number of features using RFE. From Figure 27, we observe that the maximum accu-

racy and AUC values are seen for 𝑁 = 12. Though maximumAUC value is obtained
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at 𝑁 = 9, at 𝑁 = 12, the accuracy is also maximum. Thus, we consider 𝑁 = 12 as

the optimum feature set for this dataset.

Figure 27: RFE selection - AUC versus accuracy for dataset 2

The results in Table 11 and 12 show that accuracy achieved with feature section

is greater than without selection The corresponding ROC is plotted in Figure 28.

Table 11: Accuracy and FPR with different Kernel functions for dataset 2 using 12
features

Kernel Accuracy FPR
Linear 0.96 0.06
RBF 0.99 0.01

Polynomial 0.95 0.07

Table 12: SVM Classification for dataset 2 with 12 features

Actual Classified
Spam Ham

Spam(400) 398 6
Ham (400) 2 394

The comparison of AUC values for both the datasets is shown in Figure 29. From

the results of both the datasets, it can be observed that this feature selection depends

on the training model. The selection of the features employs a sensible approach based

on the discriminant properties of the training set.
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Figure 28: ROC Curve for SVM classification with RFE feature selection for dataset
2 with AUC =1.0

Figure 29: AUC comparison of dataset 1 and dataset 2 using feature selection

6.5 PCA Model Experiments

We perform various experiments for the first two datasets discussed in Section 6.1.

We first construct a train set with spam images and a test set including both spam
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and ham images. The results of the Eigen spam technique are shown in the following

sub-sections.

6.5.1 Eigenspam projections

Considering dataset 1, we constructed a training set with 500 spam images. The

train set is projected onto the eigenspace as discussed earlier. Figure 30 shows a

sample of spam images from the train set that are projected and Figure 31 shows the

corresponding eigenvectors.

Figure 30: Spam Images from Training set

6.5.2 Results

The following sub-sections display the graphs for two different datasets. We

plotted the score by computing the Euclidean distance between each of the test image

and spam image from the train set. The score closer to zero indicates that the test

56



Figure 31: Eigenspam - Eigenvectors corresponding to Images in Figure 30

file is very similar to the training set spam image.

6.5.2.1 Dataset 1 Results

We considered 500 spam images as the train set, and the test set is a combination

of 414 images from each class. Figure 32 displays the scatter plot for the scores

considering 5 Eigen components. The accuracy of the classification is computed as

0.97.

Figure 33 shows the ROC plotting for the scatter plot in the Figure 31. The

corresponding AUC value is 0.99 which implies that most of the spam images are

successfully classified considering its different forms.

We also computed the scores for increasing the count of Eigen components from

1 to 500. The corresponding AUC values have also been computed. Figure 34 shows
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Figure 32: Scatterplot of score for dataset 1
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Figure 33: ROC Curve for Eigenspam with AUC = 0.99 for dataset 1
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the plot for the number of Eigen components with respective AUC values. We observe

that the maximum efficiency is achieved when the number of Eigen components is in

between 3 to 10 and decreases gradually.

Figure 34: Eigen components versus AUC for dataset 1

6.5.2.2 Dataset 2 results

We performed experiments with 789 spam images as training set and with 300

images from each class as the test set. Figure 35 displays the scatter plot for the

scores considering 5 Eigen components. Figure 36 shows the ROC plotting for the

scatter plot in the Figure 35. The corresponding AUC value is 0.99 which implies a

relatively perfect classification.

We also computed the scores for increasing the count of Eigen components from

1 to maximum and the corresponding AUC values. Figure 37 shows the plot for

the number of Eigen components with respective AUC values. We observe that the

maximum efficiency is achieved when the number of Eigen components is equal to

three and decreases gradually.
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Figure 35: Scatterplot of score for dataset 2
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Figure 36: ROC Curve for Eigenspam with AUC = 0.99 for dataset 2
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Figure 37: Eigen components versus AUC for dataset 2

6.6 New Dataset Creation and Experiments

Recall that in the feature selection model; we discover the most discriminant

features of the spam images using the weight vector. Using the results from dataset 1

and dataset 2, we could analyze that the most significant features are the compression

ratio, the variance of the color histogram, signal to noise ratio, and the local binary

pattern. The fact that these visible characteristics of the spam image are the base

for the filtering criteria motivated us to create a stronger spam image dataset. With

the key image filtering criteria, we generated the new spam image as follows.

∙ Improved the spam image to have the same texture as a ham image by adding

a background layer and increase the entropy of the local binary pattern.

∙ The color elements of the spam image are made closer to the color histogram

of the camera generated picture.

∙ Introduced some noise to the image as the natural image contains more noise

compared to current spam.

∙ Finally, modified the image metadata to make it even with the compression

ratio of genuine images.
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We created 1029 such images and Figure 38 displays two such images from our dataset.

This dataset is extensively tested with our two proposed techniques. We compare the

(a) (b)

Figure 38: New Spam Images

results with the two existing datasets.

6.6.1 SVM-based Detection

We consider a training set with 500 newly created spam images and 500 ham

images. We use a total of 839 images from both classes for the test set. We first

extracted the features of the images and plotted the frequency as in Figure 39. It is

observed that there is no clear cut line between the spam and the ham. These feature

distributions have been further analyzed by computing AUC and plotting them with

a comparison to the AUC values obtained for dataset 1 as shown in Figure 40. It is

observed the classification capabilities of the individual features have been reduced.

We classified these feature vector using all kernel functions of SVM and results

are shown in Table 13. It is observed that a very low detection rate is achieved using

this dataset when compared to the other two datasets.

The AUC value obtained is 0.76 , and the ROC curve for the classification is
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(a) Signal to noise ratio (b) Compression ratio

(c) LBP (d) Edge Count

Figure 39: Feature distribution for spam versus ham images for dataset 3

Table 13: Accuracy and FPR with different Kernel functions for dataset 3

Kernel Accuracy FPR
Linear 0.65 0.21
RBF 0.76 0.12

Polynomial .72 0.19

presented in Figure 41.
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Figure 40: AUC for the feature distributions of dataset 1 and dataset 3
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Figure 41: ROC Curve for SVM with AUC = 0.76 for dataset 3
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6.6.2 PCA-based Detection

We consider 529 spam images as the train set and the test set with of 500 im-

ages from each class. Figure 42 displays the scatter plot for the Euclidean distance

scores considering one Eigen component. Figure 43 shows the ROC curve and the

corresponding AUC value of 0.48. Thus this method also produces a low detection

rate for this dataset as compared to the existing datasets.

Figure 42: Scatterplot for Eigenspam Score for dataset 3
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Figure 43: ROC Curve for Eigenspam with AUC = 0.48 for dataset 3

6.7 Cumulative Analysis

Finally, in this section we analyze the cumulative results of the proposed image

spam detection techniques as shown in the Table 14 and Figure 44. From the SVM-

based detection experiments, it is observed that using feature selection we achieve a

better accuracy rate of 0.97 compared to the result without feature selection which is

0.96 for dataset 1. And the results obtained with the second dataset show a perfect

classification rate with an AUC value of 1. It is thus evident that the model employs

a sensible approach for feature selection based on the discriminant properties of the

training set and reduces the effort. A broad feature set that includes all the aspects

of the image would ideally yield a good result for this technique.

On the other hand, using PCA-based detection we obtained similar detection

rates as the SVM technique with an AUC of 0.99 for dataset 1. But, Eigenspam
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(b) PCA-based detection

Figure 44: ROC curves for our proposed approaches for all datasets

Table 14: Cumulative Results

Datasets PCA SVM
AUC AUC Accuracy FPR

Dataset 1 0.99 0.99 0.97 0.04
Dataset 2 0.99 1.00 0.99 0.01
Dataset 3 0.48 0.76 0.76 0.21

has a comparatively low computational complexity, though SVM model reduces the

effort using feature selection. Though the preprocessing step requires a minimal effort

of resizing the image and converting it to greyscale, this model does not depend on

the extraction of various image features but instead processes the image as a whole.

Thus by reducing the overhead of identifying and selecting various image features,

PCA-based detection outperforms the previous technique.

On the contrary to an efficient detection, the experiments with our new dataset

have shown a decline in the productive filtering which is expected. As the spam set
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was constructed with an aim to circumvent the existing filters and in future would

help design a stronger filter. With the feature distributions for the new set, it is

apparent that the most discriminant feature values have been diminished to achieve

this feat.

Furthermore, in comparison with the previous works related to image spam de-

tection, our approaches have obtained a greater rate of detection and a minimal false

positive rate. Considering dataset 1, we achieved a maximum accuracy of 0.97 and

FPR of 0.04 which implies that our proposed systems are highly efficient with a low

computational effort compared to the existing work.
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CHAPTER 7

Conclusion and Future Work

The ever increasing use of electronic communication always poses a threat to the

cyber world and demands a robust email spam detection system. Although there have

been a numerous attempts in the past to detect an image spam, dynamic detection

is always a challenge. In this project, we presented two novel approaches for efficient

image spam filtering which employs active machine learning techniques.

Support Vector Machines have proven to be the best among the highly discrim-

inative supervised learning algorithms. Hence, we based our first model on SVM

technique that uses an active feature selection algorithm by manipulating its weight

vectors. For this approach, we first extract a broad set of 21 discriminative image fea-

tures relying on the fact that spam image possesses different characteristics compared

to a genuine image. Next, we select the most influencing features using Linear SVM

weights and generate a model. We classify images by extracting only the selected sub-

set of features that decreases the computational effort. We further used the optimal

feature set to develop a challenging class of image spam. Our second approach based

on PCA, called the Eigenspam technique, is motivated by Eigenfaces which is widely

used for facial recognition. This system generates eigenvectors, projects them onto

the eigenspace and computes the Euclidean distance as a scoring factor to classify

images.

Extensive experimental evaluations of both the methods on different datasets

demonstrated the efficacy of the proposed system. From the results, it is observed that

the SVM-based model employs a sensible approach for feature selection by actively
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learning the properties of the images and achieved a greater accuracy with a low

false positive rate compared to the previous work. Although this system provides a

fast classification, the intuitive solution based on PCA illustrates a reasonably low

computational effort by reducing the complexity of feature extraction from the images

and with the same accuracy rate. And with the newly generated dataset, SVM-based

detection has performed reasonably better that the PCA-based approach.

Our future works may include, but not necessarily limited to combining our sys-

tem with text localization to further identify and reduce the false positive rate. One

such detection could be using the edges to isolate the words and filter the undesir-

able text. Also, new and efficient feature selection algorithms can be explored like

using Principal Component Analysis for dimensionality reduction. Another potential

approach could be classification based on clustering technique and combining it with

a genetic algorithm to improve the seed value. Furthermore, investigating more dis-

criminative features for spam images using our newly created dataset, which could

be a valuable tool in improving the image spam detection capabilities. Since image

spam is also widespread in different platforms such as mobile and social networks,

our proposed system could be extended to detect such spam images. Finally, there is

always room for an image spam corpus for extensive research.
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APPENDIX A

Feature Distributions

(a) Dataset 1

(b) Dataset 3

Figure A.45: Feature Distribution and ROC for Compression Ratio
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(a) Dataset 1

(b) Dataset 3

Figure A.46: Feature Distribution and ROC for Aspect Ratio

76



(a) Dataset 1

(b) Dataset 3

Figure A.47: Feature Distribution and ROC for Edge Count
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(a) Dataset 1

(b) Dataset 3

Figure A.48: Feature Distribution and ROC for Average Edge Length
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(a) Dataset 1

(b) Dataset 3

Figure A.49: Feature Distribution and ROC for Signal to Noise Ratio
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(a) Dataset 1

(b) Dataset 3

Figure A.50: Feature Distribution and ROC for Entropy of Local Binary Pattern
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(a) Dataset 1

(b) Dataset 3

Figure A.51: Feature Distribution and ROC for Entropy of color histogram
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(a) Dataset 1

(b) Dataset 3

Figure A.52: Feature Distribution and ROC for Entropy of HOG
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(a) Dataset 1

(b) Dataset 3

Figure A.53: Feature Distribution and ROC for Variance of First Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.54: Feature Distribution and ROC for Variance of Second Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.55: Feature Distribution and ROC for Variance of Third Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.56: Feature Distribution and ROC for Skew of First Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.57: Feature Distribution and ROC for Skew of Second Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.58: Feature Distribution and ROC for Skew of Third Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.59: Feature Distribution and ROC for Kurtosis of First Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.60: Feature Distribution and ROC for Kurtosis of Second Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.61: Feature Distribution and ROC for Kurtosis of Third Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.62: Feature Distribution and ROC for Mean First Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.63: Feature Distribution and ROC for Mean First Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.64: Feature Distribution and ROC for Mean of Third Color Channel
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(a) Dataset 1

(b) Dataset 3

Figure A.65: Feature Distribution and ROC for Entropy of Noise
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APPENDIX B

Feature Selection Experiments

This section presents the feature selection experiment results for feature ranking

method and RFE method as a part of SVM-based detection.

Figure B.66: SVM Weight Ranking
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Figure B.67: ROC for SVM Ranking Feature Selection 1 Feature Subset

Figure B.68: ROC for SVM Ranking Feature Selection 2 Feature Subset
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Figure B.69: ROC for SVM Ranking Feature Selection 3 Feature Subset

Figure B.70: ROC for SVM Ranking Feature Selection 4 Feature Subset
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Figure B.71: ROC for SVM Ranking Feature Selection 5 Feature Subset

Figure B.72: ROC for SVM Ranking Feature Selection 6 Feature Subset
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Figure B.73: ROC for SVM Ranking Feature Selection 7 Feature Subset

Figure B.74: ROC for SVM Ranking Feature Selection 8 Feature Subset
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Figure B.75: ROC for SVM Ranking Feature Selection 9 Feature Subset

Figure B.76: ROC for SVM Ranking Feature Selection 10 Feature Subset
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Figure B.77: ROC for SVM Ranking Feature Selection 11 Feature Subset

Figure B.78: ROC for SVM Ranking Feature Selection 12 Feature Subset
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Figure B.79: ROC for SVM Ranking Feature Selection 13 Feature Subset

Figure B.80: ROC for SVM Ranking Feature Selection 14 Feature Subset
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(a) RFE selection
(b) ROC

Figure B.81: RFE Selection for 1 Feature Subset

(a) RFE selection (b) ROC

Figure B.82: RFE Selection for 2 Feature Subset

104



(a) RFE selection
(b) ROC

Figure B.83: RFE Selection for 3 Feature Subset

(a) RFE selection
(b) ROC

Figure B.84: RFE Selection for 4 Feature Subset
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(a) RFE selection (b) ROC

Figure B.85: RFE Selection for 5 Feature Subset

(a) RFE selection (b) ROC

Figure B.86: RFE Selection for 6 Feature Subset
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(a) RFE selection
(b) ROC

Figure B.87: RFE Selection for 7 Feature Subset

(a) RFE selection
(b) ROC

Figure B.88: RFE Selection for 8 Feature Subset

107



(a) RFE selection (b) ROC

Figure B.89: RFE Selection for 9 Feature Subset

(a) RFE selection (b) ROC

Figure B.90: RFE Selection for 10 Feature Subset

(a) RFE selection (b) ROC

Figure B.91: RFE Selection for 11 Feature Subset
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(a) RFE selection
(b) ROC

Figure B.92: RFE Selection for 12 Feature Subset

(a) RFE selection (b) ROC

Figure B.93: RFE Selection for 13 Feature Subset

(a) RFE selection (b) ROC

Figure B.94: RFE Selection for 14 Feature Subset
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(a) RFE selection
(b) ROC

Figure B.95: RFE Selection for 15 Feature Subset

(a) RFE selection (b) ROC

Figure B.96: RFE Selection for 16 Feature Subset

(a) RFE selection (b) ROC

Figure B.97: RFE Selection for 17 Feature Subset
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(a) RFE selection (b) ROC

Figure B.98: RFE Selection for 18 Feature Subset

(a) RFE selection (b) ROC

Figure B.99: RFE Selection for 19 Feature Subset
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(a) RFE selection (b) ROC

Figure B.100: RFE Selection for 20 Feature Subset
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APPENDIX C

PCA-based Experiments

In this section, we present the scatterplots and the ROC curves of the scores

obtained for the increasing value of eigen component. The AUC values from these

curves have been used to plot the Figure 34.

(a) (b)

Figure C.101: Scatterplot and ROC for Eigen Component = 1
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(a) (b)

Figure C.102: Scatterplot and ROC for Eigen Component = 2

(a) (b)

Figure C.103: Scatterplot and ROC for Eigen Component = 3
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(a) (b)

Figure C.104: Scatterplot and ROC for Eigen Component = 4

(a) (b)

Figure C.105: Scatterplot and ROC for Eigen Component = 5
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(a) (b)

Figure C.106: Scatterplot and ROC for Eigen Component = 10

(a) (b)

Figure C.107: Scatterplot and ROC for Eigen Component = 50
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(a) (b)

Figure C.108: Scatterplot and ROC for Eigen Component = 100

(a) (b)

Figure C.109: Scatterplot and ROC for Eigen Component = 150
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(a) (b)

Figure C.110: Scatterplot and ROC for Eigen Component = 200

(a) (b)

Figure C.111: Scatterplot and ROC for Eigen Component = 250
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(a) (b)

Figure C.112: Scatterplot and ROC for Eigen Component = 300

(a) (b)

Figure C.113: Scatterplot and ROC for Eigen Component = 350
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(a) (b)

Figure C.114: Scatterplot and ROC for Eigen Component = 400

(a) (b)

Figure C.115: Scatterplot and ROC for Eigen Component = 450
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(a) (b)

Figure C.116: Scatterplot and ROC for Eigen Component = 500
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