1,094,491 research outputs found

    Fibronectin in immune responses in organ transplant recipients.

    Get PDF
    The immune response to an organ allograft involves perpetuation of T cell infiltration and activation. Advances in understanding the mechanisms of T cell activation have placed particular emphasis on the interactions between the T-cell receptor and antigen presenting cells, with little reference to the fact that in vivo activation occurs in the physical context of extracellular matrix proteins (ECM). Indeed, the possibility that ECM proteins may have a determining role in lymphocyte adhesion and tissue localization and function is now becoming more appreciated in view of growing evidence indicating that integrins and other T cell antigens bind ECM components, with some of these components exerting synergistic effects on T-cell activation. This review focuses on the importance of interactions between lymphocytes and fibronectin, a prominent ECM component, for cell migration and function in organ allograft recipients. It explores novel therapeutic approaches based on the assumption that fibronectin represents an active element in the process of T cell activation in the immune cascade triggered by organ transplantation

    Cortisol patterns are associated with T cell activation in HIV.

    Get PDF
    ObjectiveThe level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.MethodsWe studied 128 HIV-infected adults who were not on treatment and had a CD4(+) T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.ResultsLower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+) T cells (r = -0.26, p = 0.006). Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+) T cells (r = -0.17, p = 0.08). A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+) (r = 0.24, p = 0.018) and CD8(+) (r = 0.24, p = 0.017) activation.ConclusionsThese data suggest that the hypothalamic-pituitary-adrenal (HPA) axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV

    Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells.

    Get PDF
    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function

    Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective

    Get PDF
    Thymus-derived regulatory T cells (Tregs) are considered to be a distinct T-cell lineage that is genetically programmed and specialised for immunosuppression. This perspective is based on the key evidence that CD25(+) Tregs emigrate to neonatal spleen a few days later than other T cells and that thymectomy of 3-day-old mice depletes Tregs only, causing autoimmune diseases. Although widely believed, the evidence has never been reproduced as originally reported, and some studies indicate that Tregs exist in neonates. Thus we examine the consequences of the controversial evidence, revisit the fundamental issues of Tregs and thereby reveal the overlooked relationship of T-cell activation and Foxp3-mediated control of the T-cell system. Here we provide a new model of Tregs and Foxp3, a feedback control perspective, which views Tregs as a component of the system that controls T-cell activation, rather than as a distinct genetically programmed lineage. This perspective provides new insights into the roles of self-reactivity, T cell–antigen-presenting cell interaction and T-cell activation in Foxp3-mediated immune regulation

    Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T cell responses to malaria liver stages.

    No full text
    Malaria sporozoites induce swift activation of antigen-specific CD8(+) T cells that inhibit the intracellular development of liver-stage parasites. The length of time of functional in vivo antigen presentation, estimated by monitoring the activation of antigen-specific CD8(+) T cells, is of short duration, with maximum T cell activation occurring within the first 8 h after immunization and lasting approximately 48 h. Although the magnitude of the CD8(+) T cell response closely correlates with the number of parasites used for immunization, increasing the time of antigen presentation by daily immunizations does not enhance the magnitude of this response. Thus, once a primary clonal burst is established, the CD8(+) T cell response becomes refractory or unresponsive to further antigenic stimulation. These findings strongly suggest that the most efficient strategy for the induction of primary CD8(+) T cell responses is the delivery of a maximal amount of antigen in a single dose, thereby ensuring a clonal burst that involves the largest number of precursors to become memory cells

    Suppression of SIV-specific CD4+ T cells by infant but not adult macaque regulatory T cells: implications for SIV disease progression.

    Get PDF
    The impact of regulatory T cells (T reg cells) on the course of HIV and SIV disease is unknown. T reg cells could suppress protective antiviral responses and accelerate disease progression. Alternatively, these cells might block T cell activation and thereby limit viral replication as well as activation-associated immunopathology. Given the higher frequency of T reg cells known to be present during human fetal ontogeny, such influences may be most important in the context of perinatal infection. We found that infant macaques had higher fractions of CD4(+)CD25(+)CD127(low)FoxP3(+) T reg cells in the peripheral blood and in lymphoid tissues, and that these T reg cells showed greater in vitro suppressive activity on a per cell basis. Infant and adult macaques were infected with SIVmac251 to test the influence of the T reg cell compartment on SIV-specific immune responses. After infection with SIV, most (three out of four) infant macaques had persistently high viral loads, weak and transient SIV-specific CD4(+) and CD8(+) T cell responses, and rapid disease progression. T reg cells in the infant but not in the adult directly suppressed SIV-specific CD4(+) T cell responses, which were detectable only after depletion of T reg cells. In the case of both the infant and the adult macaque, T reg cells were not able to directly suppress SIV-specific CD8(+) T cell responses and had no apparent effect on T cell activation. In aggregate, these observations suggest that the T reg cell compartment of the infant macaque facilitates rapid disease progression, at least in part by incapacitating SIV-specific CD4(+) T cell responses

    TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T lymphocyte population that are enriched in liver and mucosal tissues. They are restricted by MR1, which presents antigens derived from a metabolic precursor of riboflavin synthesis, a pathway present in many microbial species, including commensals. Therefore, MR1-mediated MAIT cell activation must be tightly regulated to prevent inappropriate activation and immunopathology. Using an in vitro model of MR1-mediated activation of primary human MAIT cells, we investigated the mechanisms by which it is regulated. Uptake of intact bacteria by antigen presenting cells (APCs) into acidified endolysosomal compartments was required for efficient MR1-mediated MAIT cell activation, while stimulation with soluble ligand was inefficient. Consistent with this, little MR1 was seen at the surface of human monocytic (THP1) and B-cell lines. Activation with a TLR ligand increased the amount of MR1 at the surface of THP1 but not B-cell lines, suggesting differential regulation in different cell types. APC activation and NF-κB signaling were critical for MR1-mediated MAIT cell activation. In primary cells, however, prolonged TLR signaling led to downregulation of MR1-mediated MAIT cell activation. Overall, MR1-mediated MAIT cell activation is a tightly regulated process, dependent on integration of innate signals by APCs

    Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells.

    Get PDF
    Selective differentiation of naive T cells into multipotent T cells is of great interest clinically for the generation of cell-based cancer immunotherapies. Cellular differentiation depends crucially on division state and time. Here we adapt a dye dilution assay for tracking cell proliferative history through mass cytometry and uncouple division, time and regulatory protein expression in single naive human T cells during their activation and expansion in a complex ex vivo milieu. Using 23 markers, we defined groups of proteins controlled predominantly by division state or time and found that undivided cells account for the majority of phenotypic diversity. We next built a map of cell state changes during naive T-cell expansion. By examining cell signaling on this map, we rationally selected ibrutinib, a BTK and ITK inhibitor, and administered it before T cell activation to direct differentiation toward a T stem cell memory (TSCM)-like phenotype. This method for tracing cell fate across division states and time can be broadly applied for directing cellular differentiation

    CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation.

    Get PDF
    Activation of an immune response requires intercellular contact between T lymphocytes and antigen-presenting cells (APC). Interaction of the T cell antigen receptor (TCR) with antigen in the context of major histocompatibility molecules mediates signal transduction, but T cell activation appears to require the induction of a second costimulatory signal transduction pathway. Recent studies suggest that interaction of CD28 with B7 on APC might deliver such a costimulatory signal. To investigate the role of CD28 signal transduction during APC-dependent T cell activation, we have used Staphylococcal enterotoxins (SEs) presented by a B7-positive APC. We used anti-B7 monoclonal antibodies and a mutant interleukin 2 (IL-2) promoter construct, unresponsive to CD28-generated signals, in transient transfection assays to examine the contribution of the CD28-B7 interaction to IL-2 gene activation. These studies indicate that the CD28-regulated signal transduction pathway is activated during SE stimulation of T cells and plays an important role in SE induction of IL-2 gene expression through its influence upon the CD28-responsive element contained within the IL-2 gene promoter. This effect is particularly profound in the activation of the IL-2 gene in peripheral blood T cells
    corecore