95 research outputs found

    Towards Automotive Embedded Systems with Self-X Properties

    Get PDF
    With self-adaptation and self-organization new paradigms for the management of distributed systems have been introduced. By enhancing the automotive software system with self-X capabilities, e.g. self-healing, self-configuration and self-optimization, the complexity is handled while increasing the flexibility, scalability and dependability of these systems. In this chapter we present an approach for enhancing automotive systems with self-X properties. At first, we discuss the benefits of providing automotive software systems with self-management capabilities and outline concrete use cases. Afterwards, we will discuss requirements and challenges for realizing adaptive automotive embedded systems

    Mapping Framework for Heterogeneous Reconfigurable Architectures:Combining Temporal Partitioning and Multiprocessor Scheduling

    Get PDF

    Electronic System-Level Synthesis Methodologies

    Full text link

    3D-SoftChip: A novel 3D vertically integrated adaptive computing system [thesis]

    Get PDF
    At present, as we enter the nano and giga-scaled integrated-circuit era, there are many system design challenges which must be overcome to resolve problems in current systems. The incredibly increased nonrecurring engineering (NRE) cost, abruptly shortened Time-to- Market (ITA) period and ever widening design productive gaps are good examples illustrating the problems in current systems. To cope with these problems, the concept of an Adaptive Computing System is becoming a critical technology for next generation computing systems. The other big problem is an explosion in the interconnection wire requirements in standard planar technology resulting from the very high data-bandwidth requirements demanded for real-time communications and multimedia signal processing. The concept of 3D-vertical integration of 2D planar chips becomes an attractive solution to combat the ever increasing interconnect wire requirements. As a result, this research proposes the concept of a novel 3D integrated adaptive computing system, which we term 3D-ACSoC. The architecture and advanced system design methodology of the proposed 3D-SoftChip as a forthcoming giga-scaled integrated circuit computing system has been introduced, along with high-level system modeling and functional verification in the early design stage using SystemC

    Design Space Exploration of Accelerators and End-to-End DNN Evaluation with TFLITE-SOC

    Get PDF
    Recently there has been a rapidly growing demand for faster machine learning (ML) processing in data centers and migration of ML inference applications to edge devices. These developments have prompted both industry and academia to explore custom accelerators to optimize ML executions for performance and power. However, identifying which accelerator is best equipped for performing a particular ML task is challenging, especially given the growing range of ML tasks, the number of target environments, and the limited number of integrated modeling tools. To tackle this issue, it is of paramount importance to provide the computer architecture research community with a common framework capable of performing a comprehensive, uniform, and fair comparison across different accelerator designs targeting a particular ML task. To this aim, we propose a new framework named TFLITESOC (System On Chip) that integrates a lightweight system modeling library (SystemC) for fast design space exploration of custom ML accelerators into the build/execution environment of Tensorflow Lite (TFLite), a highly popular ML framework for ML inference. Using this approach, we are able to model and evaluate new accelerators developed in SystemC by leveraging the language’s hierarchical design capabilities, resulting in faster design prototyping. Furthermore, any accelerator designed using TFLITE-SOC can be benchmarked for inference with any DNN model compatible with TFLite, which enables end-to-end DNN processing and detailed (i.e., per DNN layer) performance analysis. In addition to providing rapid prototyping, integrated benchmarking, and a range of platform configurations, TFLITESOC offers comprehensive performance analysis of accelerator occupancy and execution time breakdown as well as a rich set of modules that can be used by new accelerators to implement scaling up studies and optimized memory transfer protocols. We present our framework and demonstrate its utility by considering the design space of a TPU-like systolic array and describing possible directions for optimization. Using a compression technique, we implement an optimization targeting reducing the memory traffic between DRAM and on-device buffers. Compared to the baseline accelerator, our optimized design shows up to 1.26x speedup on accelerated operations and up to 1.19x speedup on end-to-end DNN execution

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Formal methods for design and simulation of embedded systems

    Get PDF
    • …
    corecore