5 research outputs found

    A Low-Power Single-Bit Continuous-Time ΔΣ Converter with 92.5 dB Dynamic Range for Biomedical Applications

    Get PDF
    A third-order single-bit CT-ΔΣ modulator for generic biomedical applications is implemented in a 0.15 µm FDSOI CMOS process. The overall power efficiency is attained by employing a single-bit ΔΣ and a subthreshold FDSOI process. The loop-filter coefficients are determined using a systematic design centering approach by accounting for the integrator non-idealities. The single-bit CT-ΔΣ modulator consumes 110 µW power from a 1.5 V power supply when clocked at 6.144 MHz. The simulation results for the modulator exhibit a dynamic range of 94.4 dB and peak SNDR of 92.4 dB for 6 kHz signal bandwidth. The figure of merit (FoM) for the third-order, single-bit CT-ΔΣ modulator is 0.271 pJ/level

    A 1 GS/s, 31 MHz BW, 76.3 dB Dynamic Range, 34 mW CT-ΔΣ ADC with 1.5 Cycle Quantizer Delay and Improved STF

    Get PDF
    A 1 GS/s continuous-time delta-sigma modulator (CT- ΔΣM) with 31 MHz bandwidth, 76.3 dB dynamic range and 72.5 dB peak-SNDR is reported in a 0.13 μm CMOS technology. The design employs an excess loop delay (ELD) of more than one clock cycle for achieving higher sampling rate. The ELD is compensated using a fast-loop formed around the last integrator by using a sample-and-hold. Further, the effect of this ELD compensation scheme on the signal transfer function (STF) of a feedforward CT- ΔΣ architecture has been analyzed and reported. In this work, an improved STF is achieved by using a combination of feed-forward, feed-back and feed-in paths and power consumption is reduced by eliminating the adder opamp. This CT- ΔΣ M has a conversion bandwidth of 31 MHz and consumes 34 mW from the 1.2 V power supply. The relevant design trade-offs have been investigated and presented along with simulation results

    Contribución a la ecualización de señal en sensores basados en modulación SIGMA-DELTA

    Get PDF
    El trabajo de investigación de esta tesis doctoral consiste en obtener una arquitectura de Convertidor Analógico-Digital (ADC) que sea capaz de procesar señales en dos bandas de frecuencias diferentes (tanto en la banda de audio como en la banda de ultrasonidos) de la manera más eficiente posible en consumo de potencia y área. Implementar un nuevo ADC que permita esta funcionalidad es costoso y requeriría el diseño desde el inicio de todos los componentes que lo forman, por lo que, como alternativa, se propone realizar la modificación de un ADC previamente diseñado e integrado con un micrófono digital para su uso en aplicaciones de ultrasonidos. Este ADC esta optimizado para su funcionamiento en la banda de audio por lo que no cumpliría las especificaciones necesarias para la banda de ultrasonidos, siendo necesario variar su comportamiento en dicha banda, sin alterar su comportamiento en la banda de audio. Tras estudiar diferentes técnicas que permiten la modificación del ADC, la opción más eficiente consiste en amplificar la señal en la banda de ultrasonidos mediante la adición de una serie de coeficientes feedforward. Estos coeficientes modifican la función de transferencia de la señal sin afectar al ruido del ADC. Una vez propuesta la técnica que permite procesar señales en ambas bandas de frecuencia, se realizan una serie de estudios teóricos para analizar cuál es el impacto de dicha técnica en el ADC, en términos de estabilidad, linealidad y consumo de potencia. La obtención de los coeficientes feedforward necesarios para obtener una determinada mejora en la banda de ultrasonidos del ADC no es una tarea sencilla, por lo que en esta tesis se ha diseñado una herramienta que permite ayudar en el diseño de estos coeficientes de manera que se pueda conseguir la especificación requerida. Esta herramienta consta de diferentes fases en las que se realizan una serie de cálculos teóricos y simulaciones hasta la obtención de los valores de los nuevos coeficientes feedforward. Finalmente, la técnica propuesta ha sido evaluada mediante un caso práctico de aplicación a un ADC de tercer orden implementado para un micrófono digital. Este ADC ha sido modificado de manera que puede ser empleado tanto para audio como para ultrasonidos, aprovechando la respuesta en frecuencia del sensor MEMS, con una adición de hardware mínima, tan solo un condensador y dos interruptores. La técnica de ecualización se ha combinado con otras técnicas adicionales que han permitido su aplicación practica a nivel de circuito.The research work of this doctoral thesis consists of getting an architecture of Analogto- Digital Converter (ADC) that is able to process signals in two different frequency bands (the audio band and the ultrasound band) in an effective way in terms of power consumption and area. Implementing a new ADC that allows this functionality is expensive and requires the design from the start of all its components. For this reason, this thesis proposes, as an alternative, to modify an ADC previously designed and integrated with a digital microphone to use it in ultrasound applications. This ADC is optimized for its operation in the audio band, not satisfying the specifications needed for the ultrasound band. It is necessary to vary its behavior in the ultrasound band without changing its behavior in the audio band. After studying different techniques that allow the modification of the ADC, the most efficient option consists of amplifying the signal in the ultrasound band adding some feedforward coefficients. These coefficients modify the signal transfer function without affecting the noise of the ADC. Once proposed the technique that allows to process signals in both frequency bands, some theoretical studies are realized to analyze which is the impact of the technique in the ADC in terms of stability, linearity and power consumption. Obtaining the feedforward coefficients needed to reach a certain improvement in the ultrasound band of the ADC is not an easy task, so that in this thesis a toll has been designed for helping in the design of the coefficients to reach the required specification. This tool consists of different phases in which some theoretical calculations and simulations have been realized until obtaining the values of the new feedforward coefficients. Finally, the proposed technique has been evaluated through a practical case of application to a third order ADC, initially implemented for audio applications. This ADC has been modified so that it can be used for both audio and ultrasound applications, taking advantage the MEMS frequency response, with the minimum hardware addition, only a capacitor and two switches. This equalization technique has been combined with other additional techniques that allow its practical application at circuit level.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Emilio Olías Ruiz.- Secretario: Rocío del Río Fernández.- Vocal: Francisco Colodro Rui
    corecore