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Abstract A 1 GS/s Continuous-time Delta-Sigma modulator (CT-∆ΣM) with 31
MHz bandwidth, 76.3 dB dynamic range and 72.5 dB peak-SNDR is reported in a
0.13µm CMOS technology. The design employs an excess loop delay (ELD) of more
than one clock cycle for achieving higher sampling rate. The ELD is compensated
using a fast-loop formed around the last integrator by using a sample-and-hold.
Further, the effect of this ELD compensation scheme on the signal transfer function
(STF) of a feedforward CT-∆Σ architecture has been analyzed and reported. In this
work, an improved STF is achieved by using a combination of feed-forward, feed-
back and feed-in paths and power consumption is reduced by eliminating the adder
opamp. This CT-∆ΣM has a conversion bandwidth of 31 MHz and consumes 34 mW
from the 1.2V power supply. The relevant design trade-offs have been investigated
and presented along with simulation results.

Keywords Analog-digital (A/D) conversion · continuous-time (CT) · delta-sigma
(4Σ) · excess loop delay (ELD) · feedforward · signal transfer function (STF)

1 Introduction

Rapid evolution of wireless broadband communication systems has necessitated de-
velopment of power-efficient analog-to-digital data converters (ADCs) with ever in-
creasing conversion bandwidth (BW). Continuous-time delta-sigma (CT-∆Σ) ADCs
have recently been explored for wideband data conversion while providing sufficiently
high dynamic range (DR) for wireless applications and unique features that greatly
reduce the challenges of deploying such ADCs in high-speed, high-performance sys-
tems. CT-∆Σ ADCs are particularly of interest in broadband wireless communica-
tion systems due to their following unique features:
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2 Sakkarapani Balagopal et al.

– An inherently power-efficient continuous-time ∆Σ ADC architecture eliminates
the power hungry gain-stages which are predominantly required for input-sampled
ADCs such as the pipeline ADC. Besides, CT-∆Σ ADCs are tolerant of the non-
linearities associated with the input-sampling process as the sampling takes place
inside the feedback loop and the associated errors are noise-shaped [1,2].

– The CT loop-filter in the 4Σ feedback loop provides inherent alias filtering
before sampling occurs in the quantizer. This greatly relaxes the requirement of
an additional anti-alias filter (AAF) resulting in higher on-chip integration and
overall saving in power consumption [1,2].

– Continuous-time 4Σ operation results in relaxed unity-gain bandwidth require-
ments for the integrator stages in comparison with the traditional discrete-time
(DT) ∆Σ ADCs. This results in significant power savings compared to the DT-
∆Σ ADCs for the same sampling-rate, and enables much higher sampling rates
in a given technology when compared to the latter.

– A purely resistive input impedance offered by the CT-∆Σ alleviates the require-
ment of a buffer usually employed to drive an input-sampled ADCs. Further, a
CT loop-filter leads to reduced switching in the ADC resulting in quieter supply
and ground rails[1,2].

The confluence of above desired features and relaxed opamp gain-bandwidth and
nonlinearity requirements, CT-∆Σ ADCs have been successfully implemented in
smaller CMOS technologies (65 nm and 45 nm) resulting in GHz sampling rates [3,
4,5,6]. The CT-∆Σ loop-filter lends to easier implementation at low supply voltages
and thus CT-∆Σ ADCs can easily be ported into scaled CMOS technologies while
leveraging the speed and power improvements in the digital decimation stages.

Modern wireless network standards require ADCs with conversion bandwidth up
to 160 MHz and resolution of 10-14 bits. Rapid development of these systems can be
sustained by leveraging the higher conversion bandwidth and dynamic range from
CT-∆Σ ADCs while maintaining power efficiency. To achieve a wider conversion
bandwidth, the designers are limited by the lower oversampling ratio (OSR) for the
maximum achievable clock rate in a given process technology. Moreover, trading
the OSR for higher BW restricts the highest achievable dynamic range. In order to
compensate for the signal-to-quantization noise (SQNR) degradation due to lower
OSR, higher resolution, i.e. multi-bit quantizers are often used [1,2]. Several CT-
4Σ modulators achieving 10-12 bits resolution with a signal bandwidth ranging
from 5-20 MHz have been recently reported [3,6,7,8,9].

There are several advantages of using a multi-bit quantizer, which include a
lower quantization noise floor and higher dynamic range, and relaxed slew-rate re-
quirements in the loop-filter opamps. A lower LSB size allows a higher out-of-band
gain (OBG) which allows aggressive noise shaping with higher maximum stable am-
plitude (MSA) . On the other hand, increasing the resolution above 4-bits results in
an exponential increase in circuit complexity, as increase in 1-bit in the quantizer
requires a doubling of the number of comparators. Also, in a given technology, the
maximum achievable sampling frequency, fs,max is primarily constrained by the tol-
erable excess loop delay (ELD) in the CT-4Σ loop. ELD is largely contributed by
the finite regeneration time of the comparator latches in the quantizer and the delay
from the DAC mismatch shaping logic in the feedback DAC, while the excess delay
from the opamps also contributes to the ELD [10,11]. Figure 1 shows the general
block diagram of the traditional single-loop CT-4Σ modulator. In this figure, L(s) is
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Fig. 1 General block diagram of a CT-4Σ modulator.

the continuous-time loop filter, implemented either using cascaded integrators with
distributed feedforward or feedback summation architecture, whose output is sam-
pled and quantized at frequency, fs, or equivalent time period Ts. k0 is the gain of
the direct path introduced to compensate for an ELD of less than one clock cycle.

To design a power-efficient CT-4Σ ADC, the feedforward architecture is pre-
ferred, as it results in power savings in the loop-filter and requires only a single feed-
back DAC. In a feedforward loop-filter, after dynamic range scaling is performed, the
unity-gain bandwidth (ωun) requirements of the integrators are progressively reduced
from the input stage to the last integrator stage [1]. Since the first integrator stage
already necessitates a power hungry opamp from noise and linearity considerations,
the latter opamps can be designed with progressively lower unity-gain bandwidths.
This results in overall power savings in the loop-filter when compared to the feed-
back architecture. However, feedforward modulators exhibit out-of-band peaking in
the signal transfer function (STF) magnitude response. This is one of main draw-
back in using them in wireless application where any strong out-of-band blocker can
get amplified by the peaking of the STF and thus reducing the dynamic range of
the ADC or risking instability by saturating the quantizer. Few feedforward CT-4Σ
modulators have been reported in past with a low-pass STF, without any out of
band peaking at the cost of increased circuit complexity [12,13].

In our earlier work, in order to achieve a higher conversion bandwidth (BW),
a quantizer with an excess loop delay (ELD) of one-and-a-half clock cycles (1.5Ts)
was used, which enabled higher sampling rate (fs = 1GHz) for a fixed oversampling
ratio (OSR = fs

2·BW ) [14]. To compensate for the loop instability caused by an ELD
of 1.5, a sample-and-hold (S/H) based excess-loop-delay (ELD) compensation pre-
sented in [11,15], was employed. Despite of the over two-fold increase in the sampling
rate, this architecture suffers from aggravated STF peaking which is undesirable in
several wireless applications. Further, the authors have proposed a CT-4Σ architec-
ture employing a two-step quantizer to realize higher dynamic range at low OSR (i.e.
higher BW) [16]. The proposed technique and design discussion can be directly ap-
plied to such hybrid CT 4Σ-pipelined ADC architectures to achieve a low-peaking
STF response. In this work, the impact of this ELD compensation on out-of-band
peaking in STF of the feedforward CT-4Σ modulator is analyzed in detail. Fur-
ther, a detailed description of the earlier proposed CT-4Σ architecture in [14] is
provided along with a systematic design method to achieve lower STF peaking. The
simulation results validate that the proposed power-efficient architecture results in a
reduced out-of-band peaking STF, making it suitable for next-generation broadband

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply. DOI: 10.1007/s10470-013-0066-2



4 Sakkarapani Balagopal et al.

wireless applications such as IEEE 802.11ac which require up to 160MHz conversion
bandwidth [17,18].

The architecture and implementation details of the CT-4ΣADC form the dis-
cussion of rest of the paper. Section 2 illustrates design of the required CT-4Σ noise
transfer function (NTF), the impact of ELD greater than one the STF and the sys-
tematic design procedure for the proposed ADC. Section 3demonstrates circuit level
implementation of the design blocks. Section 4 presents the simulation results of the
proposed modulator. Finally, section 5 draws conclusions about the work.

2 System-Level Design of the Modulator

As previously discussed, the quantizer can be clocked over two times higher sampling
rate by absorbing the excess loop-delay (ELD) greater than a clock cycle in the
feedback4Σ loop [11]. Fig. 2 shows the modified CT-4Σ modulator block diagram,
incorporating an ELD compensation technique of more than one clock cycle [11].
Here, the ELD compensation is achieved by using an additional feedback path around

Fig. 2 General block diagram of a CT-4Σ modulator with an S/H [11].

the sampler using a sample-and-hold (S/H) with a gain ’a’. The purpose of this fast-
loop is to restore the second sample of the open-loop response, l[n]. Due to this
additional loop formed by the S/H, an extra zero appears in the resulting noise-
transfer function (NTF ) of the modulator. Therefore, the resulting noise-transfer
function, NTFnew(z), is of the form[11]

NTFnew(z) = (1 + az−1).NTF (z) (1)

where NTF (z) is the originally desired NTF without the S/H based short-loop. Even
though the ability to tolerate ELD in the range of 1 to 1.5, increases the achievable
sampling rate (fs) by a factor of two, there are few drawbacks with this technique.
The resultant larger out-of-band gain (OBG) of the NTFnew, with increased in-band
noise floor, results in larger ’wiggling’ of the quantizer output sequence, v[n]. As a
consequence, the signal variation at the input of the quantizer (yc(t)) is increased
by large extent and thus overloading the quantizer more often, which significantly
reduces the maximum stable amplitude (MSA), and degrades the achievable dynamic
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range of the modulator. Fig. 2 shows the comparison between the resultant OBG
(OBGnew) with 1 < ELD < 2 with the desired OBG (OBGorig). Here, the increased
OBG due to the additional zero in NTFnew(z) degrades the SQNR performance of
CT-4Σ by an order of the modulator. Therefore, in order to compensate it, an extra
order in the loop filer is required to achieve the same SQNR and DR performance
in a modulator, where the ELD is compensated for less than one clock cycle. In this
work, a maximum NTF OBG of approximately OBGorig = 7 dB is selected such
that the resulting equivalent OBGnew = 12 dB can be tolerated. Since a multi-bit
quantizer is employed in the design, the resulting overload due to OBGnew slightly
reduces the MSA and dynamic range.
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Fig. 3 Plot showing the increased out-of-band gain (OBGnew), compared to the original
OBGorig with ELD = 1.5 technique for 3rd− and 4th-order CT-4Σ modulators.

2.1 STF Response of CT-4ΣM Compensated for ELD > 1

In a CT-∆ΣM, the input signal is pre-filtered by the loop filter before its sampled
by the quantizer. Thus, the modulator provides an inherent anti-alias filtering [1].
However, in the case of ELD compensation greater than one clock cycle, we have
another loop around the sampler. Fig. 4 illustrates the equivalent linear model used
to derive the signal transfer function, STF (jω), of the CT-∆ΣM compensated for
ELD > 1. The resulting STF is given by the expression[14]

STFnew(jω) = FFnew(jω).
1

1 + az−1 + k0z−2 + L1(z)
|z=ejωTs = FFnew(jω) ·NTF (ejωTs )

(2)
where FFnew(jω) is the pre-filter transfer function, and L1(z) is the open-loop re-
sponse of the CT-4ΣM compensated for ELD > 1. The general form of the pre-filter
(FF (jω)) for a feedforward modulator is given by [12,13]

FF (jω) = γNs
N + γN−1s

N−1 + . . . γ1s+ γ0

sN + αN−1sN−1 + . . . α1s+ α0
(3)

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply. DOI: 10.1007/s10470-013-0066-2



6 Sakkarapani Balagopal et al.

Fig. 4 Linear model used in the derivation of STFnew(jω).

where N is the order of the loop-filter. The key for avoiding the peaking in the STF
and achieving a monotonic roll-off is an all-pole FF (s) which requires γN = γN−1 =
γ1 = 0 . Also, the value of γ0 can be linked to the DC gain of the STF. Fig. 5 shows
the STF’s of a 4thorder CT-4ΣM with OSR = 16, designed for ELD = 0.5 and
1.5 respectively. The figure clearly illustrates that the out-of-band peaking in the
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Fig. 5 Comparison of |STF (jω)| and |STFnew(jω)|.

CT-4ΣM compensated for ELD = 1.5 is increased by at least 6 dB, (i.e) almost
doubled, when compared to the design with ELD = 0.5. Further, any decrease in the
OSR of the modulator results in significant increase in STF peaking. For low-OSR
designs (OSR < 16), the aggravated peaking appears closer to signal band edge
of the modulator. This peaking translates into degradation in the dynamic range
(DR) of the modulator due to the increased signal content in yc(t) which overloads
the quantizer. Also, an amplified blocker in this frequency range will significantly
degrade the modulator DR and can induce instability for large input signal swing.

In order to understand the increased peaking in STF, consider the pole-zero
plots for FF (jω) and FFnew(jω) shown in the Fig. 6. In literature, for an nth-
order loop-filter, the coefficients K = [k0 k1 k2 . . . kn] are typically obtained by least-
square fitting the impulse response (l[n] = [0 l1 l2 l3 . . .]) of discrete-time loop filter,
L(z) = 1−NTF−1(z), to the continuous-time loop-filter,Lc(s), using the impulse in-
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variance transformation (IIT) for the selected feedback DAC pulse shape [2,19]. Now,
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Fig. 6 Pole-zero plot of FF (jω) and FFnew(jω) for CT-4ΣM compensated for ELD = 0.5
and 1.5.

since the fast-loop using the S/H restores the second sample (l1) of the open-loop re-
sponse, the remaining samples (lnew[n] = [0 l2 l3 . . .]) are restored by appropriately
choosing loop-filter coefficients K = [k0 k1 k2 . . . kn] by least-squares fitting. Due to
the increase in magnitude of samples in lnew[n], when compared to l[n], the loop-filter
co-efficients K have to be large enough to fit the lnew[n] to the continuous-time loop-
filter response,Lc(s). Also, table 1 shows the loop-filter coefficients of a fourth-order
NTF with NRZ DAC pulse with ELD = 0.5 and 1.5 in a feedforward architecture.

Table 1 Coefficients of a forth order NTF (z) for ELD < 1, = 1.5 for the feedforward archi-
tecture

ELD k0 k1 k2 k3 k4 a
0.5 0.5895 1.3493 0.7200 0.2378 0.0388 0
1.5 0.9532 2.1209 0.8933 0.2250 0.0145 1.3418

The increase in the values ofK correspondingly increases the magnitude of the co-
efficients γN , γN−1 . . . γ1 of FF (jω), which results in pushing the zeros of FFnew(jω)
closer to the jω- axis. This results in aggravated peaking in the STF. Despite of the
fact that higher BW is achieved through this ELD compensation method, the resul-
tant peaking in the STF considerably affects the AAF performance of the CT-4ΣM
(see Fig. 5). Also, Fig. 7 shows the Bode plot comparison of FF (jω) and FFnew(jω).
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Fig. 7 Pole-zero plot of FF (jω) and FFnew(jω) for CT-4ΣM compensated for ELD = 0.5
and 1.5.

2.2 CT-4Σ Modulator Architecture and Design Procedure for Reduced
STF-Peaking

To mitigate the out-of-band STF peaking in a feedforward CT-4ΣM , additional
feed-in coefficients can be introduced [12]. Fig. 8 shows the proposed CT-∆ΣM archi-
tecture with reduce STF peaking and thus improved anti-alias filtering performance.
The modulator employs a 4-bit quantizer, with a sample rate of 1GHz in a 0.13µm
CMOS technology and an OSR of 16 to achieve a signal bandwidth of 30MHz. A
4th-order NTF is chosen to compensate for the SQNR reduction due to the addi-
tional NTF-zero in NTFnew(z) and achieve at least 13-bit ENOB performance. A
combination of feedforward (k1,k2,k3), feedback (k4) and feed-in (b2) coefficients with
NRZ feedback DACs (to implement the feedback and the k0 paths) are used in this
design. This hybrid architecture eliminates an additional summing opamp before the
quantizer. Here, the quantizer delay is 1.5Ts to enable the 1 GHz-sampling rate in
the selected technology. This delay is compensated by a fast-path using the sample
and hold and a slow-path using a feedback DAC (k0). The NTF out-of-band gain
(OBGorig) is set to 2 (or 6 dB) which corresponds to an OBGnew of 13 dB in the
resulting NTFnew(z) as shown in Fig. 9.

The systematic design procedure for the hybrid architecture is as follows: First, a
desired 4th-order inverse-Chebyshev NTF (z), given in equation-4, is chosen for the
target SQNR.

NTF (z) =

(
z2 − 1.996z + 1

) (
z2 − 1.971z + 1

)
(z2 − 1.2z + 0.3746) (z2 − 1.425z + 0.6564)

(4)

Then, by using the impL1 command in the Schreier’s Toolbox [2], the value of second
sample ’a’ is found. Fig. 10 shows the discrete-time equivalent impulse response, l[n],
of the loop filter L(s) for the chosen NTF (z). Also, fig. 9 shows the comparison
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of the desired NTF (z) with NTFnew(z) achieved through the design. Then, after
removing the second sample and advancing the remaining samples (i.e. [0 l2 l3 . . .]),
the equivalent IIR transfer function (L1(z)) is found by using the prony fitting
function in MATLAB. Using the resultant transfer function and the DAC pulse
shape, L(s) is computed, which is given by the equation-5.

L(s) =

(
0.9532s4 + 2.1209s3 + 0.9249s2 + 0.2857s+ 0.0402

)
(s2 + 0.03305s2 + 0.0001274)

(5)

For the 4th- order feedforward and feedback hybrid topology shown in the fig.8
the state space (ABCD) matrices of the modulator are

A =

 0 −g1ω1 0 0
ω2 0 0 0
0 ω3 0 −g2ω3

k1ω4 k2ω4 k3ω4 0

 B =

 −ω1 ω1
0 b2ω2
0 0

−k4ω4 0


C =

[
0 0 0 1

]
D =

[
k0 0

]
The resultant parametric transfer functions L(s) and FF (s) are given by

L(s) =
−
(
X4s

4 +X3s
3 +X2s

2 +X1s+X0
)

(s2 + Z1) (s2 + Z2)

FF (s) =
(
Y2s

2 + Y1s+ Y0
)

(s2 + Z1) (s2 + Z2)

where the parametric equivalents of Xi and Yj coefficients and their set of equations
are shown in table-2. Here, the goal is to eliminate one of the zero’s of FF (s) or
by nulling out the s2- term, i.e. Y2 = 0. Also, in order to nullify the Y1 term,
an additional feed-in b1 co-efficient will need to be introduced into the loop-filter.
However, this will significantly increase the signal content at yc(t) and consequently
alter the value of ’a’ and thus further reducing the MSA and degrading the dynamic
range. Thus, in this design only a single feed-in coefficient (b1) is employed to achieve
reduced STF-peaking.

ω1

sTs

ω2

sTs

ω3

sTs sTs

ω4

D
A
C

1

D
A
C

2(k 4)

g1 g2
k1k2
k3

b2u(t)

v[n]yc(t)

D
A
C

0(k 0) fs
S/Ha

Fig. 8 Proposed CT-∆Σ modulator architecture with reduced STF peaking.
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Fig. 10 Discrete-time equivalent impulse response of the loop filter L(s) for the chosen
NTF (z)

Table 2 L(s) and FF (s) coefficients for the hybrid loop-filter topology

Term Parametric Equivalent Parametric Equi. Value State-Space Variables Value
X4 k0 0.9532 k0 0.9533
X3 k4 2.1209 k1 0.8932
X2 g1k0 + k‘1 + g2k0k3 0.9248 k2 0.2249
X1 k2 + g1k4 0.2857 k4 0.0401
X0 k3 + g1g2k0k3 0.0402 ω4 2.1210
Z1 g1 + g2k3 0.03305 g1 0.0286
Z2 g1g2k3 0.0001274 g2 0.1123
Y2 k1 + b2k2 γ2 = 0 b2 −3.9715
Y1 k2 + b2k3 − b2g1k1 − − −
Y0 k3 − − −

3 Circuit Implementation

3.1 Loop Filter

Fig. 11 shows an active-RC implementation of the proposed CT-∆ΣM architecture
seen in Fig. 8. In order to optimize power consumption in the design, the last inte-
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Fig. 11 CT-∆Σ modulator loop filter.

grator is also used as an adder, along with analog differentiation of the k0 feedback
path using an NRZ DAC, similar to [7,20]. Feedback paths g1and g2are implemented
using Rz1 and Rz2 resistors. The input, vin is added to the input of second integrator
using resistor Rb2 to implement the feed-in co-efficient b2. The integrating capacitor
is implemented as programmable bank using four control bits to tune for the RC
time-constant variation with process. Adding a direct feed-in path from the modu-
lator input u(t) to the quantizer input yc(t) helps reduce the signal content at yc(t)
[21], but results in a degraded STF , and is thus avoided in this design. A simple
source-follower based pseudo-differential sample-and-hold is used to implement the
fast path as in [11]. The S/H-based fast-loop output is added to yc(t) using capacitive
addition as shown in Fig. 11.

3.2 Operational Amplifier

Figs. 12& 13 show the schematic of the feed-forward compensated opamps used in
the CT-4Σ modulator. Low-Vt devices are used for the input diff-pairs in all the
opamps to achieve a wider input range. The opamp topology shown in Fig. 12 is
used for the first three active-RC stages, with a gradual reduction in bias currents
from the first to third stage. The first opamp sets the overall input-referred noise and
nonlinearity for the modulator and thus consumes largest amount of power. These
opamps employ a telescopic first stage with PMOS diff-pair followed by a class-A
output stage. Since gm3 shares the bias current with gm2, the topology results in
lower power dissipation. To ensure that the opamp common mode output voltage is
held at Vcm, separate CT common mode feedback (CMFB) loops are used in both
of the op-amp stages. The output of first stage (vo1p and vo1m) is averages through
30KΩ resistors and fed to the input transistors and compares it to Vb4 to tune the
output common-mode voltage (VCMFB1). The 100fF capacitors bypass the active
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Fig. 12 Two-stage feed-forward compensated opamp with CMFB circuit used in first three
integrators.

common-mode detector for high frequencies and help stabilize the loop. Similarly,
the CMFB2 circuit shown in the Fig. 12 uses a differential averaging and tune the
PMOS current to keep the output node (vop and vom) at VCM . The total current
drawn by the first opamp, including the CMFB circuitry, is 3.4mA from the 1.2V
supply. The performance requirements on the opamps used for the last integrator are
high. To achieve high gain/speed opamp, a gain-boosted folded-cascade first stage
is used as shown in Fig. 13. To provide sufficient current at the loop-filter output
(yc(t)), a class-AB second stage is employed. The total current consumed by this
opamp is 6.1mA. Since feed-forward compensated opamps exhibit higher slew-rate
performance [22], their usage in the loop-filter leads to significant improvement in
the overall modulator linearity.

3.3 Quantizer

A 4-bit Flash sub-ADC, shown in fig. 14, is used to implement the quantizer. The
quantizer consists of 15 differential comparators and has a full-scale input range
of 1.6Vpp resulting in a step size of VLSB = 100mV . The quantizer is designed to
meet the specification at the maximum sampling frequency of 1 GHz with the total
maximum regeneration delay and the latch delay of 1.2 ns in the slow-slow simulation
corner. The comparators used in the quantizer are designed to provide sufficient
regenerative gain to mitigate the effects of metastability at the high sampling rate.
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Fig. 13 Two-stage feed-forward compensated opamp with CMFB circuit used in the fourth
integrator (implicit adder) and the S/H.
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Fig. 14 The 4-bit quantizer used in the CT-4Σ modulator.

This presents a trade-off between the performance and the static power consumption
in the comparators. Fig. 15 shows the high-speed comparator used in the modulator,
similar to [7] with additional current-mode logic (CML) latch stages. Here, the first
stage uses a differential difference amplifier for reference subtraction. The amplifier
is loaded with cross-coupled PMOS latches to provide initial regeneration followed
by a clocked latch. The second stage latch provides a large regenerative gain and
resolves the outputs to full logic levels. The latch is disconnected from the input to
avoid kickback noise and a reset phase is used to remove the memory in the latches.
A cascade of three latches sufficiently resolves the analog difference into logic levels.
The timing of the latches is shown in the fig. 15. A trimming current DAC is employed
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Fig. 15 Comparator circuit used in the quantizer with timing diagrams[7].

for the comparators to compensate for the mismatch in the diff-pairs and the tail
current sources as in[7].

3.4 DAC

As seen in the schematic in Fig. 8, three current-steering DACs are employed in the
modulator with bias currents of (IDAC0 = 4µA, IDAC1 = 1.8µA and IDAC2 = 8.7µA)
respectively. The feedback loop can tolerate mismatch errors in the inner DACs
(DAC0 and DAC3) as the errors are noise-shaped by the loop. However, any nonlin-
earity in the feedback DAC at the modulator input (DAC1) will directly be observed
at the output. Traditionally data weighted averaging (DWA) technique has been em-
ployed to noise shape the mismatch errors in the DAC elements[2]. However, DWA
will introduce a 4-bit barrel shifter in the feedback loop and contribute at least 400ps
excess delay. In the selected process, it was observed that at sampling rates greater
than around 600 MHz, DWA-based DAC mismatch noise-shaping techniques become
infeasible. Thus, to minimize any additional delay in the feedback loop, a calibrated
DAC shown with redundancy is employed[21]. Fig. 16 shows the feedback DAC used
in the modulator along with a unit current steering cell with calibration circuitry.
The DAC unit cell uses fixed current references for supplying 80% of the total unit
current and a tunable current reference is used to provide 20% tunability in the
DAC current. A unit DAC cell employs a redundant cell to enable online calibration.
While in operation, one of the DAC pairs are selected sequentially and calibrated
against reference current cells (Iref,p and Iref,m) using an analog calibration loop as
shown in Fig 16 [21].
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Fig. 16 The calibrated current steering DAC architecture [21].

Following concerns are carefully taken into account to achieve better dynamic
performance from the unit DAC cell: (i) imperfect synchronization of the control
signals at the switches, (ii) source-coupled node variation of the current-source tran-
sistors, and (iii) coupling of the control signals through the switches to the output.
A high crossover DAC driver is employed to reduce the glitching energy in the DAC
cells.

4 Simulation results

The 4th-order CT-4Σ ADC has been implemented in the 0.13µm IBM CMOS pro-
cess. Transistor-level simulations of the CT-4Σ modulator were performed using
Spectre and the results were post-processed using MATLAB. Fig. 17 shows the sim-
ulated STFs of feedforward (ELD = 0.5) and the proposed modulator architecture
(ELD = 1.5). It can be observed that the STF out-of-band peaking is substantially
reduced by 24 dB. 18 shows the PSD of the modulator output for a 15.5MHz input
tone with −2.5 dBFS amplitude, and the simulated SNR/SNDR and DR respec-
tively. A 8K-point FFT with Hann window is used for spectral estimation. The peak
simulated SNR of the modulator is 72.5 dB and the DR is 76.3 dB. The CT-4Σ

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply. DOI: 10.1007/s10470-013-0066-2



16 Sakkarapani Balagopal et al.

0 0.2 0.4 0.6 0.8 1.0 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

10

20

30

Input Frequency (GHz)

20
lo

g
(S

T
F

(j ωω ωω
))

 

 

This work (ELD =1.5)
CIFF (ELD =1.5)

Fig. 17 Simulated STF response for the conventional feedforward and the proposed modulator
with ELD=1.5.
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Fig. 18 Simulated performance of the proposed CT-4ΣM at 1GS/s and BW = 31MHz
(OSR = 16).

modulator dissipates around 34mW power from a 1.2V supply and achieves a figure
of merit (FoM = Pd

2ENOB ·2·BW ) of 0.189 pJ/level.

5 Conclusion

A 1GS/s CT-4ΣM, using a quantizer with 1.5 clock cycle delay, is designed in
0.13µm CMOS technology to achieve 31 MHz conversion bandwidth. The total power
consumption of the modulator is 34mW . Also, the effect of 1.5 clock-cycle excess
loop-delay compensation on the STF of feedforward architecture has been analyzed.
A design method to improve the STF performance of the modulator is presented
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Table 3 Performance Summary

This work [7] [6] [22]
Process 0.13 µm 0.13 µm 0.13 µm 0.18 µm

Supply Voltage 1.2 V 1.2 V 1.5 V 1.8 V
Sampling rate (MHz) 1000 640 900 300

BW (MHz) 31 20 20 15
Power Dissp. (mW) 34 20 87 20.7

DR(dB) 76.3 80 80 70
SNRmax(dB) 72.5 76 81.2 67.2
SNDRmax(dB) 72.5 74 78.1 63.2

STF peaking (dB) 9dB - - -
FoM (pJ/conv.) 0.189 0.122 0.330 0.37

which results in 24dB reduction in out-of-band peaking. The transistor-level simu-
lation results of the proposed CT-4ΣM exhibit a peak SNR of 72.5dB, a dynamic
range of 76.3dB with a MSA of −2.5dBFS.
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