4 research outputs found

    Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity

    Get PDF
    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example

    Evolving Systems and Adaptive Key Component Control

    Get PDF

    Regenerative Patterning in Swarm Robots: Mutual Benefits of Research in Robotics and Stem Cell Biology

    Get PDF
    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering

    System Design of Robots for Application to In-Space Assembly

    No full text
    Abstract- This paper presents the design of an experimental system for assembly applications in space. The prototypical application is the assembly of mechanical trusses. The system used an air-hockey table to simulate a frictionless twodimensional space. Assembly robots fly on the surface finding, gathering and assembling the relevant parts to perform the construction. The system design involved building the FIMER Robots, the test bed, the sensing system for position and velocity feedback and the control scheme. This paper describes the hardware and software used in the various sub-systems and includes calibrations and measurements and the results of experiments
    corecore