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1. Introduction 

We propose a new framework called Evolving Systems to describe the self-assembly, or 
autonomous assembly, of actively controlled dynamical subsystems into an Evolved System 
with a higher purpose. An introduction to Evolving Systems and exploration of the essential 
topics of the control and stability properties of Evolving Systems is provided. This chapter 
defines a framework for Evolving Systems, develops theory and control solutions for 
fundamental characteristics of Evolving Systems, and provides illustrative examples of 
Evolving Systems and their control with adaptive key component controllers. 
Evolving Systems provide a framework that facilitates the design and analysis of self-
assembling systems. The components of an Evolving System self-assemble, or mate, to form 
new components or the Evolved System. The mating of the subsystem components can be 
self-directed or agent controlled. The Evolving Systems framework provides a scalable, 
modular architecture to model and analyze the subsystem components, their connections to 
other components, and the Evolved System. Ultimately, once all the components of an 
Evolving System have joined together to form the fully Evolved System, it will have a new, 
higher purpose that could not have been achieved by the individual components 
collectively. 
Autonomous assembly of large, complex structures in space, or on-orbit assembly, is an 
excellent application area for Evolving Systems. For example, the Solar Power Satellite (SPS) 
is a conceptual space structure that collects solar energy, which is then transmitted to Earth 
as microwaves (NASA, 1995). The solar array of the SPS, as envisioned in fig. 1, is a complex 
structure that could be assembled from many actively controlled components to form a new 
system with a higher purpose. 
System stability is a trait that could be exhibited by an Evolving System or their 
components. We say that a subsystem trait is inherited by an Evolving System when the 
system retains the properties of the trait after assembly. The inheritance of subsystem traits, 
or genetics, such as controllability, observability, stability, and robustness, in Evolving 
Systems is an important research topic. 
A critical element of successful on-orbit assembly of flexible space structures is the 
autonomous control of a structure during and after the connection of two or more 
subsystem components. The inheritance of stability in Evolving Systems is crucial in space 
applications due to potential damage and catastrophic losses that can result from unstable 
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Fig. 1. Solar array component of a Solar Powered Satellite, image credit NASA. 

space systems. The subsystem components of an Evolving System are designed to be stable 
as free-fliers, or unconnected components, but the Evolving System might fail to inherit 
stability at any step of the assembly, resulting in an unstable Evolved System. The 
fundamental topic of stability in Evolving Systems has been a primary focus of our Evolving 
Systems research (Balas & Frost, 2007; Frost & Balas, 2007a;b; 2008b;a; Balas & Frost, 2008; 
Frost, 2008). In this chapter, we develop an adaptive key component control method to 
ensure that stability is inherited in flexible structure Evolving Systems. 

1.1 Description of evolving systems 
Evolving Systems are dynamical systems that are self-assembled from actively controlled 
subsystem components. Central to the concept of Evolving Systems is the idea that an 
Evolved System has a higher functioning purpose than that of its subsystem components. 
For instance, the subsystem components might include a truss system, optical equipment, 
control systems, and communications equipment. If these components are assembled to 
form a space-based telescope, this would have a higher purpose than that of the individual 
components. Subsystems could consist of deployed components and self-assembled 
components. One could imagine that a space-based telescope, such as the Hubble Space 
Telescope, could be built as an Evolving System. The higher functioning purpose of the 
Evolving System would most likely come about not directly from the assembly of the 
subsystem components into a new system, but as a result of a new controller or agent taking 
over operation of the Evolving System after the subsystem components are fully assembled. 
It is assumed that the components of an Evolving System would self-assemble, either 
through their own knowledge, or through the knowledge of an external agent. Note that the 
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agent would not be a human, but an autonomous agent with knowledge of the assembly 
requirements of the Evolving System. In the Evolving Systems framework presented here, it 
is assumed that the positioning of the subsystem components in space and time would be 
handled by the agent or the components themselves. Once the components are positioned, 
they would be self-directed or agent-directed to assemble with the appropriate components. 
The actual connections made between subsystem components in an Evolving System are 
envisioned as compliant connections, so no degrees of freedom would be lost as a 
consequence of two components joining together in a rigid manner. A key concept in 
Evolving Systems is an evolutionary connection parameter, , that enables the compliant 
connection to smoothly go from not existing at all (  = 0), to the full compliance of the 
connection (  = 1). The evolution of the connection parameter would occur independent of 
time. In Evolving Systems of flexible structures, the compliant connection might be modeled 
by a spring joining two components. Formation flying of imaging satellites to create 
synthetic apertures could be modeled as Evolving Systems with virtual forces representing 
the distance maintained between members of the satellite constellation. 
In the formulation of Evolving Systems presented here, the evolution of the connection 
between components occurs independent of time. We are ignoring time in our formulation 
because it is assumed that the mating of the components is not time critical. We are 
interested in studying the joining of subsystem components to form an Evolved System, 
which is controlled by the evolution of the connection parameter going from zero to one. We 
say an Evolving System is fully evolved when all of the connection parameters joining the 
subsystem components equal one. An Evolving System is said to be partially evolved when 
at least one of its connection parameters never attains the value of 1 due to some event. In 
the case of a partially Evolved System, some of the components have failed to completely 
join together to form the prescribed configuration of the Evolving System. 
Evolving Systems could be used for the design and analysis of self-assembling systems at all 
scales. Self-assembly occurs in nature and technology starting at the molecular or nanoscale 
(formation of crystals and nanostructures) to the macro-scale (formation of netted computer 
systems). See Whitesides & Grzybowski (2002) for an excellent survey of present and future 
applications of self-assembly. 
The Evolving Systems framework is ideal for systems that are modular and can be scaled for 
complexity. If a system can be decomposed into modules, the detailed design process for 
each module needs to be performed only once. Parameter variations affecting the module 
can often be accommodated by the original design with significantly less effort than a new 
design would require. Once the design and validation of the module is complete, scaling the 
system to include more modules would be cost effective within the Evolving Systems 
framework. 

1.2 Motivation for evolving systems 
Future space missions will require on-orbit assembly of large aperture (greater than 10 
meters) space systems, possibly at distant locations that prohibit astronaut intervention 
(Flinn, 2009). Historically, deployable techniques, sometimes in combination with astronaut 
assistance, have been used for fielding space systems. As the aperture size of the fielded 
space structure increases, deployable fielding techniques can become overly complex and 
unreliable. The increasing complexity of space structures, including such missions as the 
International Space Station (ISS) and the Hubble Space Telescope, often results in the need 
for extraordinary astronaut and ground crew assistance for assembly, servicing, and 
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upgrades. Evolving Systems research could facilitate self-assembly and autonomous 
servicing of complex space systems (Saleh et al., 2002). Additionally, future space missions 
might entail systems where the scale, complexity, and distance preclude astronaut assistance 
due to the inherent risks and costs associated with direct human involvement in these 
missions. These considerations suggest the need for an Evolving Systems framework and 
methodologies to enable on-orbit autonomous assembly and servicing of space systems with 
little or no direct human involvement. 
Once an autonomous assembly problem has been solved with the Evolving Systems 
approach, the same solution can be used repeatedly or scaled to solve a similar problem. For 
example, the assembly of a large truss structure can be broken down into the assembly of 
smaller components. These components might consist of a small number of beams that are 
assembled into certain configurations. The designer only needs to develop the methods to 
assemble a certain type of component once, then this solution can be repeated to create any 
number of similar components. One can envision the development of a repository of designs 
that could be reused in different platforms with small modifications or parameterization 
changes for new dimensions, configurations, or other characteristics of the components. 
Evolving Systems enables the scaling and reuse of subsystem components, allowing new 
platforms to leverage existing technologies or reuse demonstrated solutions. 
Flexible structure Evolving Systems are actively controlled, self-assembling flexible 
structures. The autonomous assembly of space structures provides an efficient means to 
build very large space structures with the elimination of space walk missions. Removing the 
astronaut from the assembly of space structures removes the dependency on transportation 
of the astronaut to the structure, eliminates the risk to human life, and eliminates the high 
costs associated with transporting humans to space. On-orbit assembly also gives the 
capability to build and service space systems at distant locations in space that are 
inaccessible to humans. A key benefit of Evolving Systems is its ability to enable on-orbit 
servicing and upgrades to existing space systems, thereby leveraging our existing space 
assets to their fullest capability. 
The Evolving Systems framework is ideal for exploiting the inherent modularity and 
scalability of flexible structure space systems to potentially deliver more reliable systems at 
lower costs. Space systems that are self-assembled from components can lead to greater 
launch packing efficiency than can be achieved in traditionally deployed systems. The 
component aspect of Evolving Systems aids in the mitigation of vibration damage associated 
with the launch environment by allowing subsystem components to be individually 
enclosed in energy absorbing packaging. The modular framework of Evolving Systems 
allows designers to easily add redundancy to systems, thereby mitigating risks. Evolving 
Systems has the potential to solve difficult autonomous assembly and on-orbit servicing 
missions of flexible structure space systems, hence, the framework and the control problems 
investigated here are tailored to the application of flexible structure Evolving Systems. 

1.3 Previous research 
Decentralized control theory and analysis has been applied to the control of large 
interconnected systems; see the excellent survey paper by Nils Sandell (Sandell, Jr. et al., 
1978) on this topic. Generally, decentralized control has been used to decrease the 
complexity of the control issues affecting large interconnected systems. Several researchers 
have proposed methods to decompose large interconnected systems into subsystems which 
can then be analyzed for stability properties and for the use of decentralized control 
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methodologies (Michel, 1983; Willems, 1986; Corfmat & Morse, 1976b). These ideas are 
related, but not equivalent to the Evolving Systems viewpoint. 
Formations or constellations of satellites, nano-satellites, or micro-spacecraft could be 
included in the Evolving Systems framework. These formations of multiple, low cost 
spacecraft enable missions to accomplish complex objectives with the benefit of greater 
redundancy, improved performance, and reduced cost. An especially challenging control 
problem for constellations having large numbers of satellites is the task of coordinating and 
controlling the relative distances and phases between members of the fleet (Mueller et al., 
2001; Kapilal, 1999). The solutions proposed in this work are specific to the application of 
constellations of satellites, and so are not as general as the Evolving Systems framework we 
are presenting here. 
On the experimental side, a research group at the Information Sciences Institute at the 
University of Southern California (USC) has been conducting research in self-reconfigurable, 
autonomous robots and systems. They have conducted experimental work to study the 
feasibility of techniques for assembling large space structures as part of their FIMER (Free-
flying Intelligent MatchmakER robots) project (Suri et al., 2006; Shen et al., 2003). This group 
uses a distributed control method with simple proportional derivative control laws for the 
selfassembly of components. 

2. Theoretical formulation of evolving systems 

This section provides the general theoretical formulation of Evolving Systems, expanding on 
work first presented in (Balas et al., 2006). In the previous section, we introduced the reader 
to the variety of dynamical systems that can be modeled by Evolving Systems and some of 
the benefits applications can obtain by using the Evolving Systems approach. Flexible 
structures are relatively simple, generally well understood mechanical dynamic systems, so 
they will be used to illustrate many ideas presented here. The state space representation 
developed in this section will be for general linear time-invariant (LTI) Evolving Systems, 
although the framework can be easily extended to account for nonlinear time-invariant and 
time varying Evolving Systems. 

2.1 General formulation of evolving systems 
In this section we give the general mathematical formulation of Evolving Systems. Consider a 
system of L individually actively controlled components, where the components are given by 

 
(1) 

where  is the component state vector,  

 is the control input vector,  is the vector of sensed outputs, 

and 
 
is the vector of initial conditions. Note that ni is the dimension of the state vector xi, mi 

is the dimension of the control vector ui, and pi is the dimension of the output vector yi. Each 
component has an objective to be satisfied by the perfomance cost function Ji. Local control 
that depends only on local state or local output information will be used to keep the 
components stable and to meet the component performance requirements, Ji. In general, the 
local controller for a Evolving System component would have the form given by 
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(2) 

where hi and li are control operators and  represents the dynamical part of the control law. 
The components are the building blocks of the Evolving System. When these individual 
components join to form an Evolving System, the interconnections between components I 
and j are represented by the function kij(x,u). The connection parameter, ij, multiplies the 
interconnections between components i and j. 
The subsystem components of the Evolving System with the interconnections included is 
given by 

 

(3) 

where x = [x1x2 … xL]T ,u = [u1u2 … uL]T , and 0 ≤ ij ≤ 1. 
The connection parameter, ij, is a mathematical construct representing the evolutionary 
joining of components in an Evolving System. The connection parameter evolves 
continuously from zero to one as the components assemble. The connection parameter is 
zero when the components are unconnected, or free-fliers. In the free-flier configuration, the 
components are completely independent of each other. The concept of partial evolution 
versus full evolution is an important distinction in Evolving Systems. Full evolution of two 
components occurs when the evolution parameter controlling the connection of the 
components evolves completely, resulting in the connection reaching its full magnitude and 
the components being joined together. Partial evolution is the case where, for some reason, 
the connection parameter ij joining two components fails to attain the value of 1, resulting 
in the failure of the two components to join together. An important characteristic of the 
Evolving Systems framework is that the evolution process of a system comprises the 
homotopies 0 ≤ ij ≤ 1, not just the endpoints where ij = 0 or ij = 1. In Evolving Systems, the 
mating of components is independent of the evolution of time in the system. The time 
parameter and the connection parameter are uncoupled in Evolving Systems because the 
connection parameter completely defines the evolutionary joining of components. 
When the subsystem components join to form an Evolved System, the new entity becomes 

 
(4) 

2.2 Finite element method formulation of evolving systems of linear flexible 
structures 
A flexible structure Evolving System is a mechanical dynamical system consisting of 
actively controlled flexible structure components that are joined together by compliant 
forces, e.g., springs. A practical and well accepted representation of flexible structures is 
based on the finite element method (FEM), see Balas (1982); Meirovitch (2001). The 
fundamental law governing mechanical systems is Newton’s second law, which we use to 
write the dynamical equations describing a flexible structure. The FEM of the lumped model 
in physical coordinates, qi, for an arbitrary actively controlled flexible structure component, 
i, with n elements, m control inputs, and p outputs is given in matrix form as 
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(5) 

Where Mi ≡ diag(m1,m2, . . . , mn) is the n×n element mass matrix, qi(t)≡[q1(t)q2(t) … qn(t)]T is 

the displacement vector,  is the velocity vector,  

is the acceleration vector, Di is the n×n element damping matrix, Ki is 

the n×n element stiffness matrix, Bi is the n×m matrix of control input constants, ui(t) ≡ 
[u1(t)u2(t) … um(t)]T are the control inputs, yi(t) ≡ [y1(t)y2(t) … yp(t)]T is the vector of sensed 

outputs of the component, and Ci and Ei are the p×n matrices of output constants. 
The damping in space structures in orbit above the atmosphere is expected to be quite small 
and can be well modeled by Rayleigh damping (Balas, 1982) as given by 

 (6) 

Because the damping is quite small, it is customary to use the undamped generalized eigen-
problem for eq. 5 given by 

 
(7) 

where k =1, 2, . . . ,H,Mi is symmetric, positive definite, Ki is symmetric, positive 
semidefinite, and H is equal to the number of degrees of freedom (DOF) in the physical 

model. The mode shapes φk and the mode frequencies ωk are calculated from the generalized 
eigenproblem. Modal coordinates, z, are obtained from the transformation 

 (8) 

where Φ = [φ1 φ2 … φH]. Generally, the number of modes computed for design and analysis is 
much smaller than the number of DOF included in the physical model (Bansenauer & Balas, 
January-February 1995). 
The active control of each flexible structure component is local in the sense that the 
controller only uses the input and output ports located on its component. In the examples 
presented here, the active component control is in the form of Proportional Derivative (PD) 
control or Proportional Integral Derivative (PID) control. 
The flexible structure components are the building blocks of the Evolving System. Any 
number of components can join together in an arbitrary, but predetermined, configuration 
to form an Evolved System. The components of an Evolving System are joined by 
connection forces operating on the displacements of physical coordinates within the 
components. The connection forces joining the components are modeled by linear springs 
connecting two elements, one from each component. Note that the connections could also be 
made through the velocities of the physical coordinates, with dampers connecting the 
components. 
For the flexible structure Evolving System being described here, each connection force, or 
spring, joining physical coordinates from two components will be multiplied by a 
connection parameter. The symbol ij will denote the connection parameter that multiplies the 
forces joining the ith and the jth components. For simplicity, the formulation of Evolving 
System presented here will only allow one connection parameter to multiply the forces 
joining two components. However, it would be possible to construct more complex flexible 
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structure Evolving Systems which have multiple, distinct connection parameters 
corresponding to the forces joining different physical coordinates of two subsystem 
components. 
The connection forces between components of an Evolving System are represented in the 
connection matrix, KE( ij), which multiplies the displacements of the component elements 
and has the form 

 
(9) 

where i, j = 1, 2, . . . L. The connection parameter, ij, multiplies the elements of the 
connection matrix corresponding to the connection forces joining physical coordinates of 
component i to coordinates of component j, where i ≠ j, i.e., components i and j are separate 
components. There is only one connection parameter connecting component i to component 
j, so ij ≡ ji. 
If there are no connections between any elements of components i and j, then ij ≡ 0 and 
Kij( ij) ≡ Kji( ij) ≡ 0. The connection matrix has zero entries for the elements of components 
that have nothing connected to them. There are no cyclic connections within components 
represented in the connection matrix, so ii ≡ 0. Since KE( ij) is a matrix of connection forces 
that are symmetric, Kji( ij) ≡ Kij( ij)T. 
The off-diagonal elements of the connection matrix have the form 

 

(10)

where in represents the nth element of the ith component, jm represents the mth element of the jth 

component, k(in, jm) is the connection force exerted by the nth element of component i on the 
mth element of component j, and the values in and jn represent the number of elements in the 
ith and the jth component FEM representations, respectively. 
The block diagonal elements, Kii( ij), of the connection matrix are more complex, since they 
represent the connection forces of all of the components in the Evolving System which 
connect to component i. If more than one component connects to a given component i, then 
Kii( ij) will include multiple connection parameters. A general form of the block diagonal 
elements of the connection matrix is given by 

 

(11)

We can write an individual component of the flexible structure Evolving System as 

 

(12)

The Evolving System consisting of L interconnected components can now be written in 
matrix form as 
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(13)

where M0 ≡ diag(M1,M2, . . . ,ML), B0 = diag(B1,B2, . . . ,BL), q(t) ≡ [q1(t)q2(t) . . . qL(t)]T,  (t) ≡ 

[ 1(t) 2(t) . . . L(t)]T,  (t) ≡ [ 1(t) 2(t) . . . L(t)]T, u(t) ≡ [u1(t)u2(t) . . . uL(t)]T, K0 = 

diag(K1,K2, . . . ,KL), KE( ij) is the connection matrix as described above, y(t) = [y1(t)y2(t) . . . 
yL(t)]T, C0 ≡diag(C1,C2, . . . ,CL), and E0 ≡diag(E1,E2, . . . ,EL). For simplicity of notation, the 
time parameter, t, will be omitted henceforth. 
The evolution of the different connection parameters, ij, that enable the mating of 
components is controlled by the self-assembling components or the agent. The various 
connection parameters can evolve at different times during the assembly of the Evolving 
System, thereby orchestrating the assembly order of the components. It is also possible to 
envision the evolution of the connection parameters proceeding at different rates, effectively 
causing the assembly of some components to be accomplished more rapidly than others. 
However, we will not address the evolution rate of the connection parameter at this time. 
The Evolving Systems framework allows the evolution of two components to be undone, 
i.e., connected components can devolve, where their connection parameter goes from one 
down to zero. 
The flexible structure Evolving Systems described above are some of the simplest examples 
of dynamic behavior where the nature of Evolving Systems can be investigated. The 
approaches developed here can be generalized rather easily and scaled for much more 
complex Evolving Systems. 
The matrix notation which we have developed for flexible structure Evolving Systems is 
useful for understanding the formulation of Evolving Systems, however, a model based on a 
state space representation of Evolving Systems will prove essential as we analyze more 
complex Evolving Systems. 

2.3 State space description of flexible structure evolving systems 
A state space representation of linear time-invariant Evolving Systems is developed here. 
Suppose we have a flexible structure Evolving System consisting of L individual 
components as described in section 2.2 and given by the FEM 

 
(14)

We can represent the individual flexible structure components given by eq. 14 by the state-
space description 

 
(15)

where  is the component state vector,  

is the control input vector, 
 
is the vector of sensed outputs, 

 is the vector of initial conditions, and Ai, Bi, and Ci are constant matrices of dimension ni × 

ni, ni × mi, and pi × ni, respectively. Since the state space description comes from the dynamical 

equations given by eq. 14, we have that 
 
and 
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. Note that ni is the dimension of the state vector xi, mi is the dimension of the 

control vector ui, and pi is the dimension of the output vector yi. The local controller on 
component i is given by 

 (16)

where li is a linear control operator. 
The subsystem components are the building blocks of the Evolving System. The connection 
forces between two components, i and j, of an Evolving System are represented in the 
connection matrix, Aij, which is multiplied by the connection parameter, ij, where i, j =1, 2, . 
. . , L, i ≠ j, and 0 ≤ ij ≤ 1. Even though connections may exist between the states of different 
components of the Evolving System, the component inputs and outputs are still local, i.e., 
there is no sharing of component inputs or outputs between components. 
The FEM representation of a flexible structure Evolving System component is given by 

 

(17)

The state space equations for an individual component including connections to other 
components in an Evolving System are given by 

 

(18)

where x ≡ [x1x2 . . . xL]T is the concatenated state vectors of the entire Evolving System, Aij is 
the connection matrix, and 0≤ ij ≤1 is the connection parameter. The connection matrix, Aij, 
has dimension ni by dim(x), where ni is the dimension of the state vector xi corresponding to 

component i and dim
 
In eq. 17, the matrix Kij( ij) multiplies the vector qj. The 

elements of the matrix Aij are related to the elements of Kij( ij), except that they are mass 
normalized by and rearranged so that they multiply the elements of x corresponding to 

qj. The other elements of Aij are set to zero. 
The connection parameter, ij, multiplies the forces connecting the physical coordinates of 
component i to physical coordinates of component j. The connection parameter is the same 
in the state space representation as in the FEM flexible structure model. If there is no 
connection between any states of components i and j, then ij ≡ 0 and the connection matrix 
Aij ≡ 0. 
When a system of L individual components, as described by eq. 18, mate to form an 
Evolving System, the new entity becomes 

 
(19)
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where x ≡ [x1x2 . . . xL]T, ≡ [ 1 2 . . . L]T, u ≡ [u1u2 . . . uL]T, y ≡ [y1y2 . . . yL]T, B ≡ diag(B1,B2, . 

. . ,BL), C ≡ diag(C1,C2, . . . ,CL), A( ij) ≡ diag(Ai) +

 

and  

0 ≤ ij ≤ 1. The system given by eq. 19 will also be represented by the standard state space 
notation of (A,B,C). 
We can form the closed-loop Evolving System by taking the Evolving System given by eq. 
19 and connecting each of the local component controllers, ui, to their corresponding input 
and output ports, i.e., close the loops in each of the components. The closed-loop Evolving 
System can be written as 

 (20)

where z = [x η]T is the augmented state vector, ( ij) is the closed-loop system, and ij is the 
connection parameter. The closed-loop Evolving System given by eq. 20 will be used for 
stability analysis. 
Flexible structure Evolving Systems can be written in a form that is mass normalized and 
the component state vectors can be rearranged to appear as one flexible structure, instead of 
multiple component state vectors concatenated together. The state space description of 
flexible structure Evolving Systems can be easily extended to describe other applications of 
Evolving Systems. 

2.4 Impedance-admittance formulation of contact dynamics in evolving systems 
In this section, we formulate the contact dynamics in Evolving Systems in terms of 
mechanical impedance and admittance, as first described in (Frost & Balas, 2007a). For many 
dynamical systems, the impedance-admittance form is a useful tool for modeling the contact 
dynamics of components, see Harris & Crede (1976). 
Definition 2.1 The impedance of a mechanical system is determined by the equation f = Z(v), where f 
is the force exerted by the system, v is the velocity of the system, and Z is the impedance of the system. 
Definition 2.2 The admittance of a mechanical system, Y, is the inverse of the impedance of the 
system, e.g., Y ≡Z-1 and v = Y( f ). 
Impedance and admittance can be seen as nonlinear operators describing the relationship 
between the output of a mechanical system, or the force it exerts at a contact point, with the 
input of the system, or the velocity at the contact point. When two components join at a 
point of contact, their velocities are equal and the forces exerted are equal and opposite. If 
the contact points of the two components are represented as ( f1,v1) and ( f2,v2) with 
displacements q1 and q2, then we can write 

 
(21)

This formulation can also be seen as the feedback connection of two components in an 
Evolving System, where the admittance of component 1 is connected in feedback with the 
impedance of component 2, as shown in fig. 2. We introduce two nonlinear operators Y1 and 
Z2 that provide the admittance and impedance formulation of the contact dynamics of 
nonlinear Evolving Systems components. These operators relate the force and velocity at the 
contact point of two mating components as given by the equations v1 =Y1(f1) and f2 = Z2(v2). 
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In linear time-invariant systems, these operators can be easily calculated using Laplace 
transforms. For nonlinear components, the admittance and impedance operators cannot be 
easily found. However, this does not invalidate the analysis provided in this chapter, which 
will provide a foundation for adaptive key component control. 
 

 

Fig. 2. Admittance-impedance feedback connection of two components. 

3. Stability inheritance in evolving systems 

The application of Evolving Systems to self-assembly of structures in space imposes the 
need for the inheritance of stability. Many textbooks (Vidyasagar, 1993; Brogan, 1991; Ogata, 
2002; Slotine & Li, 1991) give excellent discussions of linear and nonlinear systems stability 
analysis. For linear time-invariant Evolving Systems, we will examine the closed-loop poles 
of the system to evaluate the stability of the system as it evolves. In particular, we will 
examine the eigenvalues of the matrix ( ij) from the state space equation of the closed-loop 
Evolving System given by eq. 20 as ij goes from 0→1. The system is unstable if any of the 

closed-loop poles cross the jω-axis. 
Example 1 is a two component Evolving System where each of the components is actively 
controlled and stable, but the Evolving System fails to inherit the stability traits of the 
components. This particular system becomes unstable during the evolution process and 
remains unstable when the system is fully evolved. Consider the fully actuated, fully sensed 
three mass Evolving System shown in fig. 3. Component 1 contains only one mass with local 
control. The dynamical equations for component 1 are 

 

(22)

where m1 = 30 is the mass of mass 1, q1 is the displacement of mass 1, and 
u1 = -(0.9s + 0.1)q1 is the local controller for component 1 with the Laplace variable s. The 
dynamical equations for component 2 are 

 

(23)
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Fig. 3. Ex. 1: A two component flexible structure Evolving System. 

where m2 = 1.0 is the mass of mass 2, m3 = 1.0 is the mass of mass 3, q2 is the displacement of 
mass 2, q3 is the displacement of mass 3, and k23 = 1.0. The controllers on component 2 are 

 

(24)

The controllers for components 1 and 2 have been designed to produce stable behavior 
when the components are unconnected. The two components are joined by a spring 
connecting mass 1 with mass 2. The Evolving System comprised of these two components 
can be written in the matrix form of eq. 13 as 

 

(25)

where M0 = diag(m1,m2,m3),  = [ 1 2 3]T, q = [q1q2q3]T u = [u1u2u3]T, y = [y1y2y3]T, B0 = I3,  

C0 = I6, K0 =  , KE( ij) = , k12 = 1.0, and 0 ≤ 12 ≤ 1. 

Matlab and Simulink models of this system were created. To determine the stability of the 
Evolving System, we connect the local component controllers to their inputs and outputs, 
and we examine the closed-loop poles, or the eigenvalues, of the resulting composite 
system. Figure 4 shows the closed-loop poles of the Evolving System given by equation 25 
as the system evolves, i.e., as 12 goes from 0 to 1. Note that two of the closed-loop poles of 

ex. 1 cross the jω-axis for some 12 > 0, demonstrating that the Evolving System loses 
stability during evolution. When the system is fully evolved, i.e., 12 = 1, the Evolved System 
is unstable, i.e., it fails to inherit the stability of its components, as seen in fig. 4. 
In the next section, we explore a method to restore stability to Evolving Systems that would 
otherwise fail to inherit the stability traits of their components. 

4. Key component controllers 

In this section we introduce the idea of controllers that stabilize flexible structure Evolving 
Systems during evolution. Often the design requirements for an Evolving System dictate 
that the individual components remain unchanged as much as possible. For situations  
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Fig. 4. Closed-loop poles of Ex. 1. 

where stability is not inherited during evolution, in many cases it would be advantageous to 
augment the controller on only one component to restore stability to the entire Evolving 
System, thereby leaving the other components and their controllers unmodified. 
Furthermore, it is desirable for the augmented controller to only use the input-output ports 
on the component on which it resides. In this section, we introduce the idea of key 
component controllers that restore stability to an Evolving System by augmenting the 
controller on a single subsystem component, using only the input-output ports on that 
component. The key component controller using fixed gains was first proposed in (Frost & 
Balas, 2007b). 
In the key component controller design approach, one key component is chosen from the 
Evolving System to have additional local control added to it with the objective of 
maintaining system stability during the entire evolution of the system. The control and 
sensing of the other subsystem components will be unaltered and remain local. The key 
component controller operates solely through a single set of input and output ports on the 
key component, see fig. 5. For components that lose stability when assembling, the 
individual components could mate with the key component one at a time. The key 
component would compensate for any component which caused instability, thereby 
restoring stability to the system. 
 

 

Fig. 5. Block diagram of key component controller and Evolving System. 
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A clear advantage of the key component design approach is that components can be reused 
in many different configurations of Evolving Systems without needing redesign from a 
stability point of view. Redesign of existing components is unnecessary because the key 
component will be responsible for maintaining overall system stability. The reuse of 
components that are space-qualified, or at least previously designed, built, and verified and 
validated, could reduce overall system development and validation time and could result in 
higher quality systems with potentially significant cost savings and risk mitigation. 
The key component controller design requires the controllability and observability of the 
states of the Evolving System from a set of input and output ports on the key component. In 
the case of LTI Evolving Systems, we can use a method of applying local output feedback 
through specified input ports to obtain controllability and observability from a single set of 
input-output ports. Details of the method are given in (Corfmat & Morse, 1976a). Applying 
local output feedback on a component is seen as a minor modification that still preserves the 
idea of leaving the nonkey components mostly unmodified. 

4.1 Adaptive key component controllers for restoring stability in evolving systems 
We present a key component controller that uses a direct adaptive control law to restore 

stability to an Evolving System. In many aerospace environments and applications, the 

parameters of a system are poorly known and difficult and costly to obtain. Control laws 

that use direct adaptation are a good design choice for systems where access to precisely 

known parametric values is limited, since these control laws adapt their gains to the system 

output. We propose the use of adaptive control laws in a key component controller to 

provide a practical solution to the problems described above. This approach was first 

proposed in (Frost & Balas, 2008b). 

The adaptive key component controller adapts its gains based on the system outputs to 

ensure that the Evolving System remains stable during component assembly. The adaptive 

key component design has the same advantages as the fixed gain key component controller 

without the need to schedule the gains based on the value of . 

We consider an Evolving System consisting of two components given by: 

 
(26)

where x ≡ [x1x2]T, _ [ 1 2]T, u ≡ [u1u2]T, y ≡ [y1y2]T, B ≡ diag(B1,B2), C ≡ diag(C1,C2), A( ) ≡ 

diag(A1,A2) + and 0 ≤  ≤ 1. 

Now we give the equations for an Evolving System with a key component controller. 

Without loss of generality, we can let component 1 be the key component since the system 

can be rewritten to switch component 1 with component 2. Also, we may think of 

component 2 as being the rest of the Evolving System to which the key component and its 

adaptive controller will be connected. The adaptive key component controller on component 

1 is given by 

 
(27)
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The adaptive key component controller only uses the input and output ports located on 
component 1. Component 1, which is the key component of the system, can be written as 

 

(28)

and component 2 can be written as 

 

(29)

where the augmented control  would only be present if additional output feedback 
control were needed to satisfy sufficient condition for the adaptive controller. Next, we give 
some useful definitions. 
Definition 4.1 Consider a linear system (A,B,C) with closed-loop transfer function, Tc(s) ≡ C(sI − 

A)B. We say the system (A,B,C) is strict positive real (SPR) when for all ω real and for some σ > 0 

 (30)

Definition 4.2 We say a linear system (A,B,C) is almost strict positive real (ASPR) when it can be 
made strict positive real by adding output feedback. 
Remark: A linear system (A,B,C) is ASPR if it has no nonminimum phase zeros and CB > 0.  
The following result from (Fuentes & Balas, 2000) gives the sufficient condition for a linear 
time-invariant system with an adaptive control law as described above, to be guaranteed to 
have bounded gains and asymptotic output tracking. 
Theorem 4.3 Assume the linear time-invariant system given by 

 
(31)

is ASPR. Then the direct adaptive control law 

 
(32)

produces bounded adaptive gains, G, and y→0 as t→∞ 
This result suggests that the sufficient condition for an Evolving System with an adaptive 
key component controller to have guaranteed bounded gains and asymptotic tracking is that 
the system be ASPR. This idea will be developed further in a subsequent section. Note that 
the theory developed in (Fuentes & Balas, 2000) could also be applied to design the key 
component adaptive controller to track a desired reference model and reject disturbances. 

4.2 Results of restoring stability to Ex. 1 with adaptive key component controllers 
A Simulink model was created to implement the adaptive key component controller for ex. 
1. Simulations were run with the connection parameter, 12, ranging from 0 to 1, allowing 
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the system to go from unconnected components to a fully Evolved System. The key 
component controller was able to maintain system stability during the entire evolution 
process when it used the input-output ports on mass 1 of component 1, see fig. 6. When 
component 1 was the key component, the Evolving System is ASPR. 
 

 

Fig. 6. Nondimensional position displacements of Ex. 1 with adaptive key component 
controller on component 1. 

 

Fig. 7. Nondimensional position displacements of Ex. 1 with adaptive key component 
controller on mass 3 of component 2. 

When the key component controller was located on component 2 and used the inputoutput 
ports on mass 3, stability was not maintained, see fig. 7. The adaptive key component 
controller was not able to restore stability on mass 3 because that system had nonminimum 

phase zeros at 0.00515 ± 0.2009i, i.e., the system was not ASPR. 

5. Inheritance of passivity properties in evolving systems 

In this section we explore the inheritance of different types of passivity in Evolving Systems. 

First we give some theorems on the inheritance of these traits in systems connected in 
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feedback. Then we use the admittance-impedance formulation of Evolving Systems 

developed in Section 2.4 to determine the condition under which passivity traits are 

inherited in Evolving Systems. We use these results to determine the sufficient condition for 

LTI Evolving Systems with an adaptive key component controller to be guaranteed to have 

bounded gains and asymptotic state tracking. 

Intuitively, a system is passive if the energy stored by the system is less than or equal to the 

energy supplied. Physical systems satisfy energy conservation equations of the form 

 
(33)

Definition 5.1 We say that a nonlinear system of the form 

 
(34)

is passive if it has an positive definite energy storage function, V(x), that satisfies 

 
(35)

where S(x) is a positive semi-definite function, i.e., S(x) ≥0. 
The term  in eq. 35 represents the energy storage rate of the system. The external power 

input term in eq. 33 is represented by the inner product of the input and the output of the 

system, i.e., yTu. Note that V(x) can also be seen as a Lyapunov candidate function. Excellent 

references exist on passivity in linear and nonlinear systems, see Vidyasagar (1993); Wen 

(1988); Slotine & Li (1991); Isidori (1995). 
 

 

Fig. 8. Admittance-Impedance feedback connection of two nonlinear subsystems. 

We can use the nonlinear impedance and admittance operators introduced in section 2.4 to 

find the state space representation of the impedance and admittance of Evolving System 

components. The nonlinear state space representation of the admittance of one component 

connected to the impedance of a second component is shown in fig. 8. We use the following 

representation for components that are nonlinear in state 
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(36)

Definition 5.2 Consider a system that is nonlinear in state and is given by 

 
(37)

We say that this system is Strictly Passive when ∃V(x) > 0 ∀x ≠ 0 such that 

 (38)

with S(x) > 0 ∀x ≠ 0. 
Definition 5.3 Consider a nonlinear system of the form given by 

 
(39)

We say that this system is Almost Strictly Passive (ASP) when there is some output feedback, u = 
Gy + ur, that makes it strictly passive. 
We can state the following result about the inheritance of strict passivity in systems 

connected in feedback. 

Theorem 5.4 Suppose we have a pair of subsystems of the form 

 

(40)

where i = 1,2 and both subsystems 
 
are strictly passive with 

energy  storage functions V1(x1) and V2(x2). Then the feedback connection of the two subsystems, 

where (y1 = u2) and (u1 = −y2), will leave the resulting composite system  

strictly passive. 
Proof: Form the composite system by connecting (u1,y1) in feedback with (u2,y2), which 

gives us y1 = u2 and u1 = −y2. Let the energy storage function for the composite system be 

V(x) = V1(x1) +V2(x2). Using the fact that both components are strictly passive, and making 

the substitutions for the feedback connection, we have 

 

(41)
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with 
 
Therefore, by the definition of strict passivity, 

the composite system, given by remains strictly passive.               □ 

We have shown that the feedback connection of two strictly passive systems results in a 

composite system that is strictly passive. Hence, strict passivity is inherited by systems 

connected in feedback. We now give a result on the inheritance of almost strict passivity.  

Theorem 5.5 Suppose we have a pair of subsystems of the form 

 

(42)

where i = 1,2 and both subsystems  are almost strictly passive with 

energy storage function V1(x1) and V2(x2). Then the feedback connection of the two subsystems, where 

(y1 = u2) and (u1 = −y2), will leave the resulting composite system  

almost strictly passive. 
Proof: By the definition of almost strict passivity, there exists output feedback control that 

makes each of the subsystems strictly passive. Output feedback of the form u = Gy + ur can 

be added to a system (A(x),B(x),C(x)) to obtain 

 
(43)

Let  where i = 1, 2, be the output feedback that makes the subsystems 

given by eq. 42 strictly passive. The subsystems with  defined as above are now both 

strictly passive. We can connect the two subsystems in feedback, with (y1 = u2) and (u1 = 

−y2). By Theo. 5.4, the composite system resulting from the feedback connection of two 

strictly passive systems is strictly passive. Thus, the composite system (uA,yA) is strictly 

passive. Now let  Adding this output feedback to the 

composite system, (uA,yA) formed from the original subsystem components without the 

output feedback, is equivalent to adding the output feedback to the components and then 

connecting them in feedback. Since the two methods of adding output feedback are 

equivalent, we can add output feedback to the composite system, resulting in a strictly 

passive system. Hence by the definition of almost strict passivity, the composite system is 

almost strictly passive. Thus, almost strict passivity is inherited, and the result is true.          □ 

Theorem 5.6 A LTI system given by (A,B,C) is strict positive real iff it is strictly passive. 
Proof: First we show that if (A,B,C) is SPR, then it is strictly passive. Since (A,B,C) is SPR, 

the Kalman-Yacubovic Lemma (Vidyasagar, 1993) implies that ∃ > 0 such that 

 
(44)
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with Q ≥0 and P > 0. We can rearrange eq. 44 to obtain 

 
(45)

Since P > 0 and Q ≥ 0, then W( ) ≡ Q + 2 P > 0. Choose  with P chosen as in 

eq. 44 and P > 0. The time derivative along any state trajectory of V(x) is given by 

 

(46)

Therefore (A,B,C) is strictly passive. 
We now show that if (A,B,C) is strictly passive, then it is SPR. Since (A,B,C) is strictly 
passive, we have V(x) = −S(x) + yTu with S(x) > 0. Choose S(x) ≡ W( ), with P and Q as in eq. 
44. Then all the previous arguments can be reversed, giving the desired result.                       □ 
In Section 2.4 we showed that the physical connection of two Evolving System components 
is equivalent to the feedback connection of the admittance of one component and the 
impedance of the other component. Consequently, if the subsystem components of an 
Evolving System are in admittance-impedance form, then by Theo. 5.4 and Theo. 5.5 we see 
that strict passivity and almost strict passivity are traits that are always inherited in 
nonlinear Evolving Systems. Therefore, if the impedance of one component and the 
admittance of the other component are both strictly passive, then their feedback connection 
will be strictly passive. The same is true for almost strict passivity. 
The following result gives the sufficient condition for an LTI Evolving System with an 
adaptive key component controller to be guaranteed to have bounded gains and asymptotic 
output tracking. 
Theorem 5.7 Consider a two component linear time-invariant Evolving System given by 

 
(47)

where i = 1,2. Let component 1 have an adaptive key component controller with the following direct 
adaptive control law 

 
(48)

If both components of the Evolving System are almost strictly passive from an admittance-impedance 
point of view, then the adaptive gains, G, are bounded and y→0 as t→∞. 
Proof: By Theo. 5.5, since both components are almost strictly passive, then the composite 
system resulting from the feedback connection of the components is almost strictly passive. 
In Theo. 5.6, we showed that for linear time-invariant systems, strict passivity is equivalent 
to the strict positive real property. A system that is almost strict positive real (ASPR) is one 
that can be made strict positive real with output feedback. Hence, for LTI systems, almost 
strict positive real is equivalent to almost strict passivity. Since the Evolving System given 
by eq. 47 is an almost strictly passive LTI system, it is an almost strict positive real system. 
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Theorem 4.3 states that the sufficient condition for a LTI system with an adaptive control 
law given by eq. 48 to be guaranteed to have bounded gains and asymptotic output tracking 
is that the system be almost strict positive real. Therefore, by Theo. 4.3, the adaptive gains, 
G, are bounded and y→0 as t→∞. 
We think of the ports u1 and u2 as being the admittance-impedance ports through which the 
components make contact. For an Evolving System that has an adaptive key component 
controller, one of the ports  would be used for the key component controller to 

augment the system to restore stability if necessary. The ports  could also be used 

to add output feedback to make the Evolving System strictly passive. 

6. Inheritance of dissipativity properties in evolving systems 

In this section we briefly present several results that were presented in (Frost & Balas, 2010). 
Definition 6.1 Consider a nonlinear system of the form given by 

 
(49)

We say that this system is Strictly Dissipative when ∃V(x) > 0 ∀x ≠ 0 such that ∀x 

 
(50)

where ∇V ≡ gradient V and S(x) > 0 ∀x ≠ 0. 
The function V(x) is the Lyapunov candidate function for eq. 49. The function, V(x), is 

related to ∇V by the following 

 (51)

The above says that the storage rate is always less than the external power. This can be seen 
by using eq. 50 to obtain 

 

(52)

Taking u ≡0, it is easy to see that eq. 52 implies eq. 50(a), but not necessarily eq. 50(b). So eq. 
50 implies eq. 52 but not conversely. The two are only equivalent if eq. 50(a) is an equality. If 
the inequalities in eq. 50 and eq. 52 are equalities, then the property is called Strict Passivity, 
which was defined in section 5. 
Definition 6.2 Consider a nonlinear system of the form given by 

 
(53)

We say that this system is Almost Strictly Dissipative (ASD) when there is some output feedback,  
u = Gy + ur, that makes it strictly dissipative. 
Theorem 6.3 If a nonlinear system given by (A(x),B(x),C(x)) is strictly passive, then it is strictly 
dissipative. 
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Theorem 6.4 A LTI system given by (A,B,C) is strictly dissipative iff it is strictly passive. 
Theorem 6.5 Suppose we have a pair of subsystems of the form 

 

(54)

where i = 1,2 and both subsystems are almost strictly 

dissipative with energy storage function V1(x1) and V2(x2), and 

 (55)

Then the feedback connection of the two subsystems, where (y1 = u2) and (u1 = −y2), will leave the 

resulting composite system  almost strictly dissipative. 

A corollary of Theo. 6.5 is that strict dissipativity is inherited by systems connected in 
feedback. 
Corollary 6.6 Suppose we have a pair of subsystems of the form 

 

(56)

where i = 1,2 and both subsystems are strictly dissipative with 

energy storage function V1(x1) and V2(x2), and 

 (57)

Then the feedback connection of the two subsystems, where (y1 = u2) and (u1 = −y2), will leave the 

resulting composite system  strictly dissipative. 

Theorem 6.5 and Cor. 6.6 can both be used to show that two component nonlinear Evolving 
Systems with components that are either both almost strictly dissipative or strictly 
dissipative from an admittance-impedance point of view inherit the properties of their 
subsystem components. Thus strict dissipativity and almost strict dissipativity are traits that 
are always inherited in nonlinear Evolving Systems. 
Theorem 6.7 Consider a two component nonlinear time-invariant Evolving System given by 

 
(58)

where i = 1,2 with energy storage functions V1(x1) and V2(x2). Let component 1 have an adaptive key 
component controller with the following direct adaptive control law 

 
(59)
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Assume that V1 and V2 are positive ∀x ≠ 0 and radially unbounded, and (A(x),B(x),C(x)) are 

continuous functions of x and S(x) is positive ∀x ≠ 0 and has continuous partial derivatives in x. 
Furthermore, assume: 
1. Component 2, given by (u2,y2), is strictly dissipative and in impedance form; 
2. Component 1, given by ( ), is almost strictly dissipative; 

3. Component 1, given by (u1,y1), is in admittance form. 
Then the adaptive key component controller given by eq. 59 produces global asymptotic state stability, 
i.e., x ≡ [x1x2]T → 0 as t →∞ with bounded adaptive gains when component 1 is joined with 
component 2 into an Evolved System and the outputs yi = Ci(xi)→0 as t→∞. 
The above results assume that the Lyapunov function, V(x), is defined on the entire domain, 

Rn, of the system. Thus all the stability and dissipativity results are global results. The same 

is true for the other results given in this chapter. For instance, Theo. 6.7 says that a nonlinear 
Evolving System with an adaptive key component controller as given by eq. 48 will have 
bounded gains and globally asymptotic state tracking. However, the Lyapunov function, 

V(x), might only be defined on a neighborhood 
 
of the origin, in 

which case the results could only be local at the best. 

Using Lemma 1 from (Balas et al., 2008), ∀δ > 0 such that if the initial conditions of the 

system are close enough to the origin, i.e., within Nδ = (0, δ), then the trajectories are 
guaranteed to stay in the neighborhood of the origin for which the Lyapunov function is 
defined. In such a case, then the results would be local. For instance, if the Lyapunov 
function V(x) in Theo. 6.7 only has the assumed properties on a neighborhood 

 
of the origin and the trajectories all remain inside the neighborhood, 

then the stability is locally asymptotic to the origin. In that case, Theo. 6.7 gives the result 
that a nonlinear Evolving System with an adaptive key component controller as given by eq. 
59 will have bounded gains and locally asymptotic state tracking. 

7. Conclusions 

In this chapter, we presented the motivation and the framework for Evolving Systems, a 
new area of aerospace research. We developed the adaptive key component controller 
approach to maintain stability in Evolving Systems that would otherwise fail to inherit the 
stability traits of their components. We showed that strict passivity, almost strict passivity, 
strict dissipativity, and almost strict dissipativity are inherited by systems connected in 
feedback. Using the impedance-admittance formulation of contact dynamics between 
components of Evolving Systems, we showed that these traits are also always inherited in 
nonlinear Evolving Systems. Finally, we gave sufficient conditions for the use of the 
adaptive key component controller with linear and nonlinear Evolving Systems. 
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