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Abstract

We propose a new framework called Evolving Systems to describe the self-assembly, or
autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with
a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target
application for Evolving Systems. A critical requirement for autonomous assembling structures
is that they remain stable during and after assembly. The fundamental topic of inheritance of
stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research.
In this paper, we develop an adaptive key component controller to restore stability in Nonlinear
Evolving Systems that would otherwise fail to inherit the stability traits of their components. We
provide sufficient conditions for the use of this novel control method and demonstrate its use on
an illustrative example.
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1. Introduction

We have proposed a new framework called Evolving Systems to describe the self-assembly,
or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System
with a higher purpose [1, 2]. The components of an Evolving System self-assemble, or mate, to
complete the Evolved System. The Evolving Systems framework provides a scalable, modular
architecture to model and analyze the subsystem components, their connections to other compo-
nents, and the Evolved System. Ultimately, once all the components of an Evolving System have
joined together to form the fully Evolved System, it will have a new, higher purpose that could
not have been achieved by the individual components collectively.

Autonomous assembly of large, complex structures in space, or on-orbit assembly, is an
excellent application area for Evolving Systems. Future space missions will require on-orbit
assembly of large aperture (greater than 10 meters) space systems, possibly at distant locations
that prohibit astronaut intervention [3]. Other applications for Evolving Systems can be found
in [2, 4]. These applications motivate the development of flexible structure Evolving Systems,
which are mechanical dynamical systems consisting of actively controlled flexible structure com-
ponents joined together by compliant forces.
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A critical requirement for autonomous self-assembling structures is that they remain stable
during and after assembly. We say that a subsystem trait is inherited by an Evolving System
when the system retains the properties of the trait after assembly. The inheritance of subsystem
traits, such as controllability, observability, stability, passivity, and dissipativity, is an important
research topic.

The fundamental topic of inheritance of stability, passivity, and dissipativity in Evolving
Systems is our primary focus. In this paper, we develop an adaptive key component controller to
restore stability to Nonlinear Evolving Systems that would otherwise fail to inherit the stability
traits of their components. We provide sufficient conditions for the use of the control method.
Sufficient conditions for the inheritance of passivity and dissipativity traits in Nonlinear Evolving
Systems are also given. For linear time-invariant (LTI) systems, we show that strict dissipativity,
strict passivity, and strict positive real are equivalent properties. Finally, we demonstrate the
adaptive key component stability restoring controller on an illustrative example.

Decentralized control theory and analysis have been applied to the control of large inter-
connected systems; see the excellent survey paper by Nils Sandell [5] on this topic. Generally,
decentralized control has been used to decrease the complexity of the control issues affecting
large interconnected systems. A decentralized adaptive control approach presented in [6] differs
from the approach developed here in many ways, including its use of the system’s inputs and
outputs. The ideas addressed by decentralized control theory are related, but not equivalent, to
the Evolving Systems viewpoint.

On the experimental side, a research group at the Information Sciences Institute at the Uni-
versity of Southern California (USC) has been conducting research in self-reconfigurable, au-
tonomous robots and systems. They have conducted experimental work to study the feasibility
of techniques for assembling large space structures as part of their FIMER (Free-flying Intel-
ligent MatchmakER robots) project [7, 8]. This group uses a distributed control method with
simple proportional derivative control laws for the self-assembly of components.

2. Mathematical Formulation of Evolving Systems

In this section we give the general mathematical formulation of nonlinear time-invariant
Evolving Systems. See [2, 4] for a more detailed description of the Evolving Systems formula-
tion. Often, applications have significant nonlinearities that must be accounted for in the system
model. Hence, the framework presented here allows nonlinear dynamics in the system model.

The components are the building blocks of the Evolving System. Consider a system of L
individually actively controlled components, where the dynamical equations of the components
are given by {

ẋi = fi(xi,ui); xi(0) = xi0
yi = gi(xi,ui)

(1)

where i = 1, 2, . . . , L, xi ≡
[
xi

1 xi
2 · · · xi

ni

]T
is the component state vector,

ẋi ≡
[
ẋi

1 ẋi
2 · · · ẋi

ni

]T
, ui ≡

[
ui

1 ui
2 · · · ui

mi

]T
is the control input vector,

yi ≡
[
yi

1 yi
2 · · · yi

pi

]T
is the vector of sensed outputs, and xi0 ≡

[
xi

10
xi

20
· · · xi

ni0

]T
is the

initial condition. Note that ni is the dimension of the state vector xi, mi is the dimension of the
control vector ui, and pi is the dimension of the output vector yi.
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Each component uses local control to remain stable and to meet its performance require-
ments. Local control means dependence only on local state or local output information, i.e.,
ui = hi(xi) or ui = hi(yi). In general, the local controller for an Evolving System component
would have the form given by {

ui = hi(zi)
żi = li(zi, yi)

(2)

where hi and li are control operators and ż represents the dynamical part of the control law.
A key concept in Evolving Systems is the evolution of the connection between components,

which is controlled by a connection parameter, ε, that multiplies the forces between components.
It is critical to note that connection parameters evolve independent of time. We are ignoring
time in our formulation because it is assumed that joining of components is not time critical and
because we are interested in studying the system as the components mate. In this framework, the
evolution of the connection parameter comprises the homotopy 0 ≤ ε ≤ 1, not just the endpoints
where ε = 0 or ε = 1. Components are unconnected when ε = 0, and connected when ε = 1. An
Evolving System is fully evolved when all of the connection parameters joining the subsystem
components equal 1.

Compliant forces join the components, so no degrees of freedom are lost as a consequence
of two components connecting in a rigid manner. In flexible structure Evolving Systems, the
compliant forces are usually springs.

The subsystem components of the Evolving System with interconnections included have the
form 

ẋi = fi(xi,ui) +

L∑
j=1

εi jki j(x,u)

yi = gi(xi,ui)

(3)

where x =
[
x1 x2 · · · xL

]T
,u =

[
u1 u2 · · · uL

]T
, and the function ki j(x,u) represents

the interconnection between components i and j with connection parameter 0 ≤ εi j ≤ 1.
When the subsystem components join to form an Evolved System, the new entity becomes{

ẋ = f (x,u)
y = g(x,u) (4)

The above is the most general form of an Evolving System. Next, we introduce the framework
for Evolving Systems of flexible structures.

A large and important class of nonlinear systems are linear in their input. In [2], we developed
a state space description of a finite element model representation of a flexible structure Nonlinear
Evolving System that is linear in its inputs. State space equations for individual components of
an Evolving System, including component connections, are given by

ẋi = Ai(xi) + Bi(xi)ui +

L∑
j=1

εi jAi j(x); xi(0) ≡ xi0

yi = Ci(xi)

(5)

where i = 1, 2, . . . , L, xi ≡
[
xi

1 xi
2 · · · xi

ni

]T
is the component state vector,

ui ≡
[
ui

1 ui
2 · · · ui

mi

]T
is the control input vector, yi ≡

[
yi

1 yi
2 · · · yi

pi

]T
is the vector
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of sensed outputs, xi0 is the initial condition, Ai(xi), Bi(xi), and Ci(xi) are matrices that are
functions of the state and have dimension ni x ni, ni x mi, and pi x ni, respectively, Ai j(x) is the
connection matrix, and 0 ≤ εi j ≤ 1 is the connection parameter. The connection matrix, Ai j(x),
has dimension ni by dim(x), where ni is the dimension of the state vector xi corresponding to

component i and dim(x) ≡
L∑

k=1

nk. The notation (A(x),B(x),C(x)) is used to denote an Evolving

System represented by (5).

3. Impedance-Admittance Formulation of Contact Dynamics

In this section, we formulate the contact dynamics in Evolving Systems in terms of me-
chanical impedance and admittance, as first described in [9]. For many dynamical systems, the
impedance-admittance form is a useful tool for modeling the contact dynamics of components
[10]. The impedance of a mechanical system is determined by the equation f = Z(v), where f
is the force exerted by the system, v is the velocity of the system, and Z is the impedance of the
system. The admittance of a mechanical system, Y , is determined by the equation v = Y( f ) and
it is the inverse of the impedance of the system, e.g., Y ≡ Z−1. Impedance and admittance can
be seen as nonlinear operators describing the relationship between the output of a mechanical
system, or the force it exerts at a contact point, with the input of the system, or the velocity at the
contact point.

When two components join at a point of contact, their velocities are equal and the forces
exerted are equal and opposite. Thus, we can model the contact dynamics of two components
mating in an Evolving System as the feedback connection of the impedance of one component
with the admittance of the other component. We now introduce two nonlinear operators Y1 and
Z2 that provide the admittance and impedance formulation of the contact dynamics of Nonlinear
Evolving Systems components. These operators relate the force and velocity at the contact point
of two mating components as given by the equations v1 = Y1(f1) and f2 = Z2(v2). In linear
time-invariant systems, these operators can be easily calculated using Laplace transforms. For
nonlinear components, the admittance and impedance operators cannot be easily found. How-
ever, this does not invalidate the analysis provided here, which provides a foundation for adaptive
key component control and inheritance of passivity and dissipativity traits in Evolving Systems.

We can use the nonlinear impedance and admittance operators to obtain a state space rep-
resentation of Evolving System components in admittance-impedance form. Following is a two
component Evolving System in admittance-impedance form

ẋi = Ai(xi) + εBi(xi)ui + BA
i (xi)uA

i
yi = Ci(xi)
yA

i = CA
i (xi)

(6)

where i = 1, 2, Ai(xi) represents a component with local control, interconnections between com-
ponents are represented in Bi(xi)ui, control augmentation for stability of the joined system is
accomplished through BA

i (xi)uA
i , and 0 ≤ ε ≤ 1. The Evolved System is the feedback connection

of the two subsystems, i.e., where (y1 = u2) and (u1 = −y2).

4. Adaptive Key Component Stability Restoring Controllers

The Evolving Systems framework facilitates flexibility in the design of systems from com-
ponents. Stability of an Evolving System can be lost when stable components assemble. There
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are many advantages, such as cost and reliability, to enable assembly of Evolving System com-
ponents with little or no modification to the individual components. In this section, we introduce
adaptive key component control to restore stability to an Evolving System by augmenting the
controller on a single subsystem component, using only the input-output ports on that compo-
nent. A fixed gain key component controller was first proposed in [11].

Aerospace systems are often difficult and costly to model due to their complexity and their
uncertain operating environments, making them ideal candidates for adaptive control, which does
not require detailed knowledge of the system parameters. Adaptive key component control was
first proposed in [12]. In this approach, one component is chosen to be the key component,
which is then augmented with a direct adaptive control law that only uses inputs and outputs
available on that component. Since the key component controller is restoring stability to the
system without using inputs or outputs on any of the other components in the Evolving System,
the system needs to be controllable and observable from the key component.

Now we give equations for an Evolving System with a key component controller. Without
loss of generality, we can let component 1 be the key component. We may think of component 2
as being the rest of the Evolving System to which the key component and its adaptive controller
are connected. Consider a two component Nonlinear Evolving System in impedance-admittance
form given by 

ẋi = Ai(xi) + εBi(xi)ui + BA
i (xi)uA

i
yi = Ci(xi)
yA

i = CA
i (xi)

(7)

where i = 1, 2. Let component 1 have an adaptive key component controller with the following
direct adaptive control law {

uA
1 = GyA

1
Ġ = −yA

1 (yA
1 )T H; H > 0 (8)

Note that the adaptive key component controller operates only through the input and output
ports located on component 1. The augmented control uA

2 (x2) on component 2 would be present
if additional output feedback control were needed to make the system controllable and observable
from the key component or to satisfy sufficient conditions for the adaptive controller, as given in
Theorem 6.1.

In the next section, we develop theory on the inheritance of dissipativity traits in Evolving
Systems. This theory is used to provide sufficient conditions for adaptive key component control
in Nonlinear Evolving Systems.

5. Inheritance of Dissipativity Traits in Evolving Systems

We say a trait, such as dissipativity, is naturally inherited by the Evolved System when all
of the subsystem components have the trait and the Evolved System inherits the trait. In this
section we show that two forms of dissipativity are naturally inherited in Evolving Systems. The
notion of dissipativity used here is different from the dissipativity studied by other authors, e.g.,
[13, 14].

Definition 5.1. Consider a nonlinear system of the form given by{
ẋ = A(x) + B(x)u
y = C(x) (9)
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We say that this system is strictly dissipative when ∃V(x) > 0 ∀x , 0 and V(0) = 0 such that ∀x{
∇VA(x) ≤ −S (x)
∇VB(x) = CT (x) (10)

where ∇V ≡ gradient V and S (x) > 0 ∀x , 0. When S (x) ≡ 0, (9) is a dissipative system.
The function V(x) is referred to as an energy storage function or a Lyapunov function for (9).

We can use ∇V to define the function V(x), as follows

V̇(x) ≡ ∇V[A(x) + B(x)u] (11)

The above says that the energy storage rate is always less than the external power. This can be
seen by using (10) to obtain

V̇(x) ≡ ∇V[A(x) + B(x)u]
≤ −S (x) + CT (x)u
= −S (x) + 〈y,u〉

(12)

Taking u ≡ 0, it is easy to see that (12) implies (10a), but not necessarily (10b). So (10)
implies (12) but not conversely. If (10a) is an equality, then (10) and (12) are equivalent. If the
inequalities in (10) and (12) are equalities, then the property is called strict passivity, which is
described in Section 8.

Definition 5.2. Consider a nonlinear system of the form given by{
ẋ = A(x) + B(x)u
y = C(x) (13)

We say that this system is almost strictly dissipative (ASD) when there is some output feedback,
u = Gy + ur, that makes it strictly dissipative.

We now give a result on the inheritance of almost strict dissipativity in systems connected in
feedback.

Theorem 5.3. Suppose we have a pair of subsystems of the form
ẋi = Ai(xi) + εBi(x)ui + BA

i (x)uA
i

yi = Ci(xi)
yA

i = CA
i (xi)

(14)

where i = 1, 2 and both subsystems
([

u1
uA

1

]
,

[
y1
yA

1

])
and

([
u2
uA

2

]
,

[
y2
yA

2

])
are almost strictly dissipative

(strictly dissipative) with energy storage function V1(x1) and V2(x2), and

∇ViεBi(xi) = εCT
i (xi) (15)

Then the feedback connection of the two subsystems, where (y1 = u2) and (u1 = −y2), leaves

the resulting composite system
(
uA ≡

[
uA

1
uA

2

]
, yA ≡

[
yA

1
yA

2

])
almost strictly dissipative (strictly dissi-

pative).
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Proof: We first prove the theorem for almost strict dissipativity. By the definition of almost strict
dissipativity, there exists output feedback control that makes each of the subsystems strictly dis-
sipative. It is well known [15], that output feedback can be added to a system (A(x),B(x),C(x))
to obtain {

ẋ = A(x) + B(x)GC(x) + B(x)ur
y = C(x) (16)

Let uA
i = GA

i yA
i + uAr

i , where i = 1, 2, be the output feedback that makes the subsystems given
by (14) strictly dissipative. The subsystems with uA

i defined as above are now both strictly
dissipative and can be written as

ẋi = Ai(xi) + BA
i (xi)GA

i CA
i (xi) + εBi(x)ui + BA

i (x)uAr
i

= AC
i (xi) + εBi(xi)ui + BA

i (xi)uAr
i

yi = Ci(xi)
yA

i = CA
i (xi)

(17)

Using the definition of strict dissipativity and the assumption (15), (17) gives us
∇ViAC

i (xi) ≡ ∇Vi[Ai(xi) + BA
i (xi)GA

i CA
i (xi)]

≤ −S i(xi)
∇ViεBi(xi) = ε(Ci(xi))T

∇ViεBA
i (xi) = ε(CA

i (xi))T

(18)

We can connect the two subsystems in feedback, with (y1 = u2) and (u1 = −y2). Then using
the assumption (15), we obtain

∇V1εB1(x1)u1 = εCT
1 (x1)[−y2]

= −εyT
1 y2

(19)

and

∇V2εB2(x2)u2 = εCT
2 (x2)[y1]

= εyT
2 y1

(20)

Let x ≡
[
x1 x2

]T
, y ≡

[
yA

1 yA
2

]T
and write the system from (17) in matrix form as

ẋ = A(x) + B(x)u

=

[
AC

1 (x1) + εB1(x1)u1
AC

2 (x2) + εB2(x2)u2

]
+

[
BA

1 (x1)
BA

2 (x2)

] [
uAr

1
uAr

2

]
y =

[
CA

1 (x1)
CA

2 (x2)

]
= C(x)

(21)

Let V = V1 + V2. We now can use (18)-(20) to solve

∇VA(x) =
[
∇V1 ∇V2

] [AC
1 (x1) + εB1(x1)u1

AC
2 (x2) + εB2(x2)u2

]
= ∇V1AC

1 (x1) + ∇V1εB1(x1)u1 + ∇V2AC
2 (x2) + ∇V2εB2(x2)u2

≤ −S 1(x1) + (−εyT
1 y2) − S 2(x2) + εyT

2 y1
= −(S 1(x1) + S 2(x2))
= −S (x)

(22)

7



and

∇VB(x) =
[
∇V1 ∇V2

] [BA
1 (x1) 0
0 BA

1 (x2)

]
=

[
CA

1 (x1)
CA

2 (x2)

]T

= CT (x)

(23)

Therefore the composite system given by
(
uA ≡

[
uA

1
uA

2

]
, yA ≡

[
yA

1
yA

2

])
is made strictly dissipative with

output feedback
[
uA

1
uA

2

]
≡

[
GA

1 0
0 GA

2

] [
yA

1
yA

2

]
+

[
uAr

1
uAr

2

]
. Hence, the composite system is almost strictly

dissipative.
We now prove the theorem for strict dissipativity. Since the two subsystems are strictly

dissipative, we can let GA
i ≡ 0 in the preceding proof. Then the proof for this result follows

directly and the composite system is strictly dissipative. �
A consequence of Theorem 5.3 is that two component Nonlinear Evolving Systems with

components that are either both almost strictly dissipative or strictly dissipative from an admittance-
impedance point of view, inherit these properties from their subsystem components. Thus almost
strict dissipativity and strict dissipativity are naturally inherited traits in Nonlinear Evolving Sys-
tems.

6. Sufficient Conditions for Adaptive Key Component Control

We can now give sufficient conditions for the use of an adaptive key component controller to
restore stability in Nonlinear Evolving Systems.

Theorem 6.1. Consider a two component nonlinear time-invariant Evolving System given by{
ẋi = Ai(xi) + εBi(xi)ui + BA

i (xi)uA
i

yi = Ci(xi)
(24)

where i = 1, 2 with energy storage functions V1(x1) and V2(x2). Let component 1 have an
adaptive key component controller with the following direct adaptive control law{

uA
1 = GyA

1
Ġ = −yA

1 (yA
1 )T H; H > 0 (25)

Assume that V1 and V2 are positive ∀x , 0, equal to 0 when x = 0, and radially unbounded,
that (A(x),B(x),C(x)) are continuous functions of x, and that S (x) is positive ∀x , 0 and has
continuous partial derivatives in x. Furthermore, assume:

1. Component 2, given by (u2, y2), is strictly dissipative and in impedance form;
2. Component 1, given by (uA

1 , y
A
1 ), is almost strictly dissipative;

3. Component 1, given by (u1, y1), is in admittance form.

Then the adaptive key component controller given by (25) that joins component 1 with component
2 produces global asymptotic state stability, i.e., x ≡

[
x1 x2

]T
→ 0 as t → ∞ with bounded

adaptive gains and the outputs yi = Ci(xi)→ 0 as t → ∞.
8



Proof: Since the physical connection of component 1 to component 2 is equivalent to the
feedback connection u1 = −y2 and u2 = y1, by Theorem 5.3 we have that the closed-loop system
(uA

1 , y
A
1 ) below is almost strictly dissipative.

ẋ1 = A1(x1) − εB1(x1)C2(x2) + BA
1 (x1)uA

1
ẋ2 = A2(x2) + εB2(x2)C1(x1)
yA

1 = CA
1 (x1)

(26)

Rewrite (25), using G∗1 constant to get{
uA

1 = G1yA
1 = G∗1yA

1 + ∆G1yA
1

∆Ġ1 = Ġ1 = −yA
1 (yA

1 )T h1
(27)

where ∆G1 ≡ G1 −G∗1 and h1 > 0. Combine (26) and (27) to obtain
ẋ1 = AC

1 (x1) − εB1(x1)C2(x2) + BA
1 (x1)ωA

1
ẋ2 = A2(x2) + εB2(x2)C1(x1)
yA

1 = CA
1 (x1)

(28)

where AC
1 (x1) ≡ A1(x1) + BA

1 (x1)G∗1CA
1 (x1), ωA

1 ≡ ∆G1yA
1 , and 0 ≤ ε ≤ 1.

Let V = V1 + V2. We now have

V̇ = −S (x) + 〈yA
1 , ω

A
1 〉 (29)

Form VG ≡
1
2

tr(∆G1h−1
1 ∆GT

1 ) to obtain

V̇G ≡ tr(∆Ġ1h−1
1 ∆GT

1 )
= −tr(yA

1 (yA
1 )T h1h−1

1 ∆GT
1 )

= −tr(yA
1 (ωA

1 )T )
= −〈yA

1 , ω
A
1 〉

(30)

Define V(x,∆G) ≡ V(x) + VG(∆G). Then from (29) and (30), we have

V̇(x,∆G) ≡ V̇(x) + V̇G(∆G)
= −S (x) + 〈yA

1 , ω
A
1 〉 − 〈y

A
1 , ω

A
1 〉

= −S (x) ≤ 0
(31)

This guarantees that all trajectories (x,∆G) are bounded. If V̇(x,∆G) is uniformly continuous
or V̈(x,∆G) is bounded, then Barbalat’s Lemma [16] yields: S (x) → 0, as t → ∞, and the
positivity and continuity of S (x) imply that x ≡

[
x1 x2

]T
→ 0 as t → ∞.

Consider

V̈(x,∆G) = −Ṡ (x)
≤ |Ṡ (x)|

=

∣∣∣∣∣∂S (x)
∂x

ẋ
∣∣∣∣∣

≤

∥∥∥∥∥∂S (x)
∂x

∥∥∥∥∥ ‖ẋ‖
≤

∥∥∥∥∥∂S (x)
∂x

∥∥∥∥∥ [
‖A(x)‖ + ‖B(x)‖

∥∥∥ωA
1

∥∥∥]
≤

∥∥∥∥∥∂S (x)
∂x

∥∥∥∥∥ [
‖A(x)‖ + ‖B(x)‖‖∆G1‖‖CA

1 (x1)‖
]

(32)
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which is bounded because (x,∆G) is bounded, S (x) has continuous partial derivatives, and
(A(x),B(x),C(x)) are continuous, and a continuous function of a bounded x(t) in RN is also
bounded in t. Therefore, yi = Ci(xi)→ 0 as t → 0. �

7. Special Case: Internal State Nonlinearity

Here we look at a special case of the above theory when the only nonlinearity is in the internal
state structure of each component. This means that the Evolving System from (7) can be written
as 

ẋi = Aixi + hi(xi) + εBiui + BA
i uA

i
yi = Cixi

yA
i = CA

i xi

(33)

where i = 1, 2. The nonlinearities are assumed to satisfy hi(0) = 0 and a Lipschitz continuity
condition given by

‖hi(x) − hi(y)‖ ≤ µi‖x − y‖ (34)

∀ x, y with µi > 0.
We can choose quadratic Lyapunov functions of the form V(x) ≡ 1

2 xT
i Pixi. We assume the

linear part of each component (Ai,Bi,Ci) is almost strict positive real (ASPR), i.e., ∃ G∗i such
that AC

i ≡ Ai + BiG∗i Ci satisfies{
(AC

i )T Pi + PiAC
i = −Qi

PiBA
i = (CA

i )T (35)

with Pi,Qi both positive definite. In addition, we assume that

PiBi = CT
i (36)

with the same Pi > 0. Then, from (35) - (36) we have
∇ViAC

i (xi) = xT
i Pi[(Ai + BA

i G∗i CA
i )xi + hi(xi) + εBiui]

= − 1
2 xT

i Qixi + xT
i Pihi(xi) + εyT

i ui

∇ViBA
i (xi) = xT

i PiBA
i = (CA

i xi)T
(37)

Now, from (34) and the Cauchy-Schwarz inequality, we have

− 1
2 xT

i Qixi + xT
i Pihi(xi) ≤ −

(
λmin(Qi)

2
− λmax(Pi)µ

)
xT

i xi

= −γi‖xi‖
2

≡ −S i(xi)

(38)

Therefore, (37) becomes
∇ViAC

i (xi) = xT
i Pi[(Ai + BA

i G∗i CA
i )xi + hi(xi) + εBiui]

≤ −S i(xi) + ε〈yi,ui〉

∇ViBA
i (xi) = xT

i PiBA
i = (CA

i xi)T
(39)

with S i(xi) ≡ γi‖xi‖
2 > 0 ∀ xi , 0 when γi ≡

λmin(Qi)
2

− λmax(Pi)µi > 0. From this analysis, we
have the following result:

10



Theorem 7.1. If the linear part, (Ai,BA
i ,C

A
i ), of (33) is ASPR, then (36) holds, and the Lipschitz

constant in (34) satisfies the following

0 < µi <
λmin(Qi)
2λmax(Pi)

(40)

Then, when component 1 is joined with component 2, the adaptive key component controller
given by (8) maintains closed-loop stability.

Proof: From (40), we obtain (39) and we can apply Theorem 6.1 to achieve the result. �

8. Inheritance of Passivity Traits in Evolving Systems

In this section we give results describing the inheritance of strict and almost strict passivity
in Nonlinear Evolving Systems.

Definition 8.1. Consider a nonlinear system of the form given by{
ẋ = A(x) + B(x)u
y = C(x) (41)

We say that this system is strictly passive when ∃V(x) > 0 ∀x , 0 and V(0) = 0 such that

V̇(x) = 〈u, y〉 − S (x) (42)

with S (x) > 0 ∀x , 0.

Definition 8.2. Consider a nonlinear system of the form given by{
ẋ = A(x) + B(x)u
y = C(x) (43)

We say that this system is almost strictly passive (ASP) when there is some output feedback,
u = Gy + ur, that makes it strictly passive.

We state the following result without proof. The result is an obvious consequence of Theorem
5.3 and a well known result about passivity and systems connected in feedback [16].

Theorem 8.3. Suppose we have a pair of subsystems of the form
ẋi = Ai(xi) + Bi(xi)ui + BA

i (xi)uA
i

yi = Ci(xi)
yA

i = CA
i (xi)

(44)

where i = 1, 2 and both subsystems
([

u1
uA

1

]
,

[
y1
yA

1

])
and

([
u2
uA

2

]
,

[
y2
yA

2

])
are almost strictly passive

(strictly passive) with energy storage functions V1(x1) and V2(x2). Then the feedback connection
of the two subsystems, where (y1 = u2) and (u1 = −y2), leaves the resulting composite system(
uA ≡

[
uA

1
uA

2

]
, yA ≡

[
yA

1
yA

2

])
almost strictly passive (strictly passive).
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Theorem 8.3 can be used to show that two component Nonlinear Evolving Systems with
components that are either both almost strictly passive or strictly passive from an admittance-
impedance point of view, inherit these properties from their subsystem components. Thus strict
passivity and almost strict passivity are naturally inherited traits in Nonlinear Evolving Systems.

All of the preceding results assume that the Lyapunov function, V(x), is defined on the entire
domain, Rn, of the system. Thus all the stability and dissipativity results and Theorem 6.1 are
global results. However, the Lyapunov function, V(x), might only be defined on a neighborhood

Ni(0, ri) ≡
{

xi

‖xi‖
< ri

}
of the origin, in which case the results could only be local at the best.

Using Lemma 1 from [17], ∃δ > 0 such that if the initial conditions of the system are close
enough to the origin, i.e., within Nδ = (0, δ), then the trajectories are guaranteed to stay in the
neighborhood of the origin for which the Lyapunov function is defined. In such a case, then the
results would be local. For instance, if the Lyapunov function V(x) in Theorem 6.1 only has the

assumed properties on a neighborhood Ni(0, ri) ≡
{

xi

‖xi‖
< ri

}
of the origin and the trajectories all

remain inside the neighborhood, then the stability is locally asymptotic to the origin. In that case,
Theorem 6.1 gives the result that a Nonlinear Evolving System with an adaptive key component
controller as given by (25) will have bounded gains and locally asymptotic state tracking.

9. Equivalence of Traits in LTI Evolving Systems

In this section we give equivalence results for some properties of LTI Evolving Systems.

Theorem 9.1. If a nonlinear system given by (A(x),B(x),C(x)) is strictly passive, then it is
strictly dissipative.

Proof: Let V(x) be the energy storage function for the system (A(x),B(x),C(x)). By the defini-
tion of the gradient and strict passivity, we have

V̇(x) ≡ ∇VA(x) + ∇B(x)u
= −S (x) + yT u (45)

Let u ≡ 0. Then (45) becomes

V̇(x) = ∇VA(x) = −S (x) ≤ −S (x) (46)

Thus, yT u = ∇VB(x)u ∀u. Since y = C(x), this implies that ∇VB(x) = CT (x). Therefore, the
system (A(x),B(x),C(x)) is strictly dissipative. �

Theorem 9.2. A LTI system given by (A,B,C) is strictly dissipative iff it is strictly passive.

Proof: First we show that a LTI system that is strictly dissipative is strictly passive. Since
(A,B,C) is LTI and strictly dissipative, by the Kalman-Yacubovic Lemma [16], ∃ quadratic
Lyapunov function V(x) such that ∀ x ∈ Rn

∇VAx = 1
2 xT (PA + AT P)x ≤ −S (x)

∇VB = xT PB = xT C = yT (47)
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Choose S (x) ≡ 1
2 xT Qx with Q > 0. Then we have

∇VAx = 1
2 xT (PA + AT P)x ≤ − 1

2 xT Qx
= PA + AT P ≤ −Q (48)

Let W ≡ PA + AT P, then W is symmetric and W ≤ −Q. Then ∃H, H symmetric such that
W + H = −Q. This can be seen if we let H ≡ −(Q + W) ≥ 0. Then Q + H > 0, because Q > 0.
So

∇VAx = PA + AT P = −(Q + H) (49)

Now we can write

V̇(x) = ∇VAx + ∇VBu = −(Q + H) + yT u (50)

∀ x ∈ Rn. Hence, (A,B,C) is strictly passive. The converse is true by Theorem 9.1. �

Theorem 9.3. A LTI system given by (A,B,C) is strict positive real (SPR) iff it is strictly passive.

Proof: First we show that if (A,B,C) is SPR, then it is strictly passive. Since (A,B,C) is SPR,
the Kalman-Yacubovic Lemma [16] implies that ∃ ε > 0 such that{

(A + εI)T P + P(A + εI) = −Q
PB = CT (51)

with Q ≥ 0 and P > 0. We can rearrange (51) to obtain{
AT P + PA = −(Q + 2εP)
PB = CT (52)

Since P > 0 and Q ≥ 0, then W(ε) ≡ Q + 2εP > 0. Choose V(x) ≡ 1
2 xT Px with P chosen as in

(51) and P > 0. The time derivative along any state trajectory of V(x) is given by

V̇(x) = 1
2

(
xT PAẋ + ẋT PBux

)
= 1

2 xT (AT P + PA)x + xT PBu
= − 1

2 xT W(ε)x + (Cx)T u
= −S (x) + yT u

(53)

Therefore (A,B,C) is strictly passive.
We now show that if (A,B,C) is strictly passive, then it is SPR. Since (A,B,C) is strictly

passive, we have that V(x) = −S (x) + yT u with S (x) > 0. Choose S (x) ≡W(ε), with P and Q as
defined in (51). Then all of the previous arguments can be reversed, giving the desired result.

We have shown that for LTI systems, strict positive real is equivalent to strict passivity. �
A system that is almost strict positive real (ASPR) is defined to be one that can be made strict

positive real with output feedback. Hence, for LTI systems, the above results give us that almost
strict positive real is equivalent to almost strict passivity. Likewise, the above results give us that
almost strict passivity is equivalent to almost strict dissipativity in LTI systems.

The equivalence results of the above properties in LTI systems also apply to LTI Evolving
Systems. Hence, for LTI Evolving Systems, we can substitute any of the equivalent properties
into Theorem 6.1.
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10. Illustrative Example of Nonlinear Evolving System with an Adaptive Key Component
Controller

We now give an illustrative example of an adaptive key component controller restoring sta-
bility in a Nonlinear Evolving System where each of the components is actively controlled and
stable, but the Evolving System fails to inherit the stability of the components. Consider a fully
actuated, fully sensed three mass Evolving System. Component 1 has only one mass. The dy-
namical equations for component 1 are m1q̈1 = u1

y1 =
[
q1 q̇1

]T (54)

where m1 = 30 is the mass of mass 1, q1 is the displacement of mass 1, and u1 = −(0.9s + 0.1)q1
is the local controller for component 1, where s is the Laplace variable.

Component 2 has two masses connected by a nonlinear spring. The dynamical equations for
component 2 are 

m2q̈2 = u2 − k23(q2 − q3)
m3q̈3 = u2 − [k23(q3 − q2) + µ23 sin(q3 − q2)]

y2 =
[
q2 q̇2

]T

y3 =
[
q3 q̇3

]T

(55)

where m2 = 1.0 is the mass of mass 2, m3 = 1.0 is the mass of mass 3, q2 is the displacement of
mass 2, q3 is the displacement of mass 3, k23 = 1.0, and µ23 = 0.5. The controllers on component
2 are  u2 = −

(
0.1
s

+ 0.2s + 0.5
)

q2

u3 = − (0.6s + 1) q3

(56)

The controllers for components 1 and 2 have been designed to produce stable behavior when the
components are unconnected. The two components are joined by a spring, k12 = 1.0 connecting
mass 1 with mass 2. The connection parameter, ε, multiplies the spring connecting the two
components.

A Simulink model of this system has been created to study its stability. The Evolving System
was evaluated in its fully evolved state, where the local component controllers were connected
to their inputs and outputs and ε was set equal to 1. Figure 1 shows the nondimensional mass
displacements for the Evolving System given by (54)-(56). When the system is fully evolved,
i.e., ε = 1, the Evolved System is unstable as seen in Fig. 1.

A Simulink model was created to implement the adaptive key component controller given
by (8) for the illustrative Nonlinear Evolving System example. Simulations were run with the
connection parameter, ε, ranging from 0 to 1, allowing analysis of the full evolution of the system.
The key component controller was able to maintain system stability during the entire evolution
process when it used the input-output ports on mass 1 of component 1, see Fig. 2.

11. Conclusions

We provided the reader with the framework for Nonlinear Evolving Systems of flexible struc-
tures. We developed the idea of modeling the contact dynamics between components as the feed-
back connection of the impedance of one component with the admittance of a second component.
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A major contribution made by this paper was the use of the impedance-admittance formulation to
deliver theory on the inheritance of dissipativity, passivity, and positive real traits of systems con-
nected in feedback. Using the impedance-admittance formulation of contact dynamics between
components of Evolving Systems, we were able to show that strict and almost strict dissipativ-
ity and passivity traits are naturally inherited in Nonlinear Evolving Systems. We also showed
that for LTI systems, strict dissipativity, strict passivity, and strict positive realness are equivalent
properties, with the strict dissipativity trait having the weakest hypotheses. A principal contri-
bution of this paper is the development of the adaptive key component controller and sufficient
conditions for its use in Linear and Nonlinear Evolving Systems. Finally, we demonstrated the
adaptive key component controller restoring stability in an illustrative example of a Nonlinear
Evolving System.
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Figure 1: Nondimensional mass displacements of example with no key component control.
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Figure 2: Nondimensional mass displacements of example with adaptive key component controller on component 1.
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