104,202 research outputs found

    A Discrete Particle Simulation Study of Solids Mixing in a Pressurized Fluidized Bed

    Get PDF
    A fluidized bed containing polymeric particles is investigated using a state-of-the-art soft-sphere discrete particle model (DPM). The pressure dependency of particle mixing, flow patterns and bubble behaviour are analysed. It is found that with increasing pressure a less distinct bubble-emulsion structure and improved solids mixing can be observed

    Non-stationarity and Dissipative Time Crystals: Spectral Properties and Finite-Size Effects

    Full text link
    We discuss the emergence of non-stationarity in open quantum many-body systems. This leads us to the definition of dissipative time crystals which display experimentally observable, persistent, time-periodic oscillations induced by noisy contact with an environment. We use the Loschmidt echo and local observables to indicate the presence of a finite sized dissipative time crystal. Starting from the closed Hubbard model we then provide examples of dissipation mechanisms that yield experimentally observable quantum periodic dynamics and allow analysis of the emergence of finite sized dissipative time crystals. For a disordered Hubbard model including two-particle loss and gain we find a dark Hamiltonian driving oscillations between GHZ states in the long-time limit. Finally, we discuss how the presented examples could be experimentally realized.Comment: 31 pages, 5 figures. Submitted to NJP: Focus on Time Crystal

    Verification and control of partially observable probabilistic systems

    Get PDF
    We present automated techniques for the verification and control of partially observable, probabilistic systems for both discrete and dense models of time. For the discrete-time case, we formally model these systems using partially observable Markov decision processes; for dense time, we propose an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give probabilistic temporal logics that can express a range of quantitative properties of these models, relating to the probability of an event’s occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or synthesise a controller for the model which makes it true. Our approach is based on a grid-based abstraction of the uncountable belief space induced by partial observability and, for dense-time models, an integer discretisation of real-time behaviour. The former is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies from the domains of task and network scheduling, computer security and planning

    Strings with Discrete Target Space

    Full text link
    We investigate the field theory of strings having as a target space an arbitrary discrete one-dimensional manifold. The existence of the continuum limit is guaranteed if the target space is a Dynkin diagram of a simply laced Lie algebra or its affine extension. In this case the theory can be mapped onto the theory of strings embedded in the infinite discrete line Z\Z which is the target space of the SOS model. On the regular lattice this mapping is known as Coulomb gas picture. ... Once the classical background is known, the amplitudes involving propagation of strings can be evaluated by perturbative expansion around the saddle point of the functional integral. For example, the partition function of the noninteracting closed string (toroidal world sheet) is the contribution of the gaussian fluctuations of the string field. The vertices in the corresponding Feynman diagram technique are constructed as the loop amplitudes in a random matrix model with suitably chosen potential.Comment: 65 pages (Sept. 91

    Multiscale modeling of rapid granular flow with a hybrid discrete-continuum method

    Full text link
    Both discrete and continuum models have been widely used to study rapid granular flow, discrete model is accurate but computationally expensive, whereas continuum model is computationally efficient but its accuracy is doubtful in many situations. Here we propose a hybrid discrete-continuum method to profit from the merits but discard the drawbacks of both discrete and continuum models. Continuum model is used in the regions where it is valid and discrete model is used in the regions where continuum description fails, they are coupled via dynamical exchange of parameters in the overlap regions. Simulation of granular channel flow demonstrates that the proposed hybrid discrete-continuum method is nearly as accurate as discrete model, with much less computational cost
    corecore