1,306 research outputs found

    Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection

    Get PDF
    This paper presents a study of a planar antenna-array inspired by the metamaterial concept where the resonant elements have sub-wavelength dimensions for application in microwave medical imaging systems for detecting tumors in biological tissues. The proposed antenna consists of square-shaped concentric-rings which are connected to a central patch through a common feedline. The array structure comprises several antennas that are arranged to surround the sample breast model. One antenna at a time in the array is used in transmission-mode while others are in receive-mode. The antenna array operates over 2-12 GHz amply covering the frequency range of existing microwave imaging systems. Measured results show that compared to a standard patch antenna array the proposed array with identical dimensions exhibits an average radiation gain and efficiency improvement of 4.8 dBi and 18%, respectively. The average reflection-coefficient of the array over its operating range is better than S-11 <= -20 dB making it highly receptive to weak signals and minimizing the distortion encountered with the transmission of short duration pulse-trains. Moreover, the proposed antenna-array exhibits high-isolation on average of 30dB between radiators. This means that antennas in the array (i) can be closely spaced to accommodate more radiators to achieve higher-resolution imaging scans, and (ii) the imagining scans can be done over a wider frequency range to ascertain better contrast in electrical parameters between malignant tumor-tissue and the surrounding normal breast-tissue to facilitate the detection of breast-tumor. It is found that short wavelength gives better resolution. In this experimental study a standard biomedical breast model that mimics a real-human breast in terms of dielectric and optical properties was used to demonstrate the viability of the proposed antenna over a standard patch antenna in the detection and the localization of tumor. These results are encouraging for clinical trials and further refinement of the antenna-array

    State-of-the art of acousto-optic sensing and imaging of turbid media

    Get PDF
    Acousto-optic (AO) is an emerging hybrid technique for measuring optical contrast in turbid media using coherent light and ultrasound (US). A turbid object is illuminated with a coherent light source leading to speckle formation in the remitted light. With the use of US, a small volume is selected,which is commonly referred to as the “tagging” volume. This volume acts as a source of modulated light, where modulation might involve phase and intensity change. The tagging volume is created by focusing ultrasound for good lateral resolution; the axial resolution is accomplished by making either the US frequency, amplitude, or phase time-dependent. Typical resolutions are in the order of 1 mm. We will concentrate on the progress in the field since 2003. Different schemes will be discussed to detect the modulated photons based on speckle detection, heterodyne detection, photorefractive crystal (PRC) assisted detection, and spectral hole burning (SHB) as well as Fabry-Perot interferometers. The SHB and Fabry-Perot interferometer techniques are insensitive to speckle decorrelation and therefore suitable for in vivo imaging. However, heterodyne and PRC methods also have potential for in vivo measurements. Besides measuring optical properties such as scattering and absorption, AO can be applied in fluorescence and elastography applications

    A mm-Wave 2D Ultra-Wideband Imaging Radar for Breast Cancer Detection

    Get PDF
    This paper presents the preliminary design of a mm-wave ultra-wideband (UWB) radar for breast cancer detection. A mass screening of women for breast cancer is essential, as the early diagnosis of the tumour allows best treatment outcomes. A mm-wave UWB radar could be an innovative solution to achieve the high imaging resolution required without risks for the patient. The 20–40 GHz frequency band used in the system proposed in this work guarantees high cross/range resolution performances. The developed preliminary architecture employs two monomodal truncated double-ridge waveguides that act as antennas; these radiators are shifted by microstep actuators to form a synthetic linear aperture. The minimum antenna-to-antenna distance achievable, the width of the synthetic aperture, and the minimum frequency step determine the performance of the 2D imaging system. Measures are performed with a mm-wave vector network analyzer driven by an automatic routine, which controls also the antennas shifts. The scattering matrix is then calibrated and the delay-multiply-and-sum (DMAS) algorithm is applied to elaborate a high-resolution 2D image of the targets. Experimental results show that 3 mm cross and 8 mm range resolutions were achieved, which is in line with theoretical expectations and promising for future developments

    Electronic bandgap miniaturized UWB antenna for near-field microwave investigation of skin

    Get PDF
    Near-field microwave investigation and tomography has many practical applications, especially where the trend of fields and signals in different environments is vital. This article shows an elliptical patch ultra-wideband antenna fed by a transmission line for the near-field characterization of cancerous cells in the skin. The antenna comprises an elliptical patch, stub loading to shift the band to lower bands, and an electronic bandgap structure on the ground side. Even though the antenna has a low profile of 15 × 15 mm2, the proposed antenna has more promising results than recent studies. Furthermore, both simulated near-field and far-field results show a broad bandwidth of 3.9–30 GHz and a resonance at 2.4 GHz applicable for industrial, scientific, and medical band applications. The proposed antenna also illustrates a peak gain of 6.48 dBi and a peak directivity of 7.09 dBi. Free space and skin (on a layer of breast fat and a tumor with a diameter of 4 mm at the boundary of skin and breast) are used as test environments during the simulation and measurement of near-field and far-field investigations while considering a phantom breast shape. Both far-field and near-field microwave investigations are performed in Computer Simulation Technology studio, and results are then compared with the measured data. The simulated and measured results are in good agreement, and the focused energy around the tumor is completely reconstructed. Therefore, the proposed antenna can be an adequate candidate for the differentiation of breast skin and tumor to reconstruct the tumor’s image

    Hardware architectures for compact microwave and millimeter wave cameras

    Get PDF
    Millimeter wave SAR imaging has shown promise as an inspection tool for human skin for characterizing burns and skin cancers. However, the current state-of-the-art in microwave camera technology is not yet suited for developing a millimeter wave camera for human skin inspection. Consequently, the objective of this dissertation has been to build the necessary foundation of research to achieve such a millimeter wave camera. First, frequency uncertainty in signals generated by a practical microwave source, which is prone to drift in output frequency, was studied to determine its effect on SAR-generated images. A direct relationship was found between the level of image distortions caused by frequency uncertainty and the product of frequency uncertainty and distance between the imaging measurement grid and sample under test. The second investigation involved the development of a millimeter wave imaging system that forms the basic building block for a millimeter wave camera. The imaging system, composed of two system-on-chip transmitters and receivers and an antipodal Vivaldi-style antenna, operated in the 58-64 GHz frequency range and employed the ω-k SAR algorithm. Imaging tests on burnt pigskin showed its potential for imaging and characterizing flaws in skin. The final investigation involved the development of a new microwave imaging methodology, named Chaotic Excitation Synthetic Aperture Radar (CESAR), for designing microwave and millimeter wave cameras at a fraction of the size and hardware complexity of previous systems. CESAR is based on transmitting and receiving from all antennas in a planar array simultaneously. A small microwave camera operating in the 23-25 GHz frequency was designed and fabricated based on CESAR. Imaging results with the camera showed it was capable of basic feature detection for various applications --Abstract, page iv

    ANALYSIS AND DESIGN OF ANTENNA PROBES FOR DETECTION / IMAGING APPLICATIONS

    Get PDF
    Analysis and Design of Antenna Probes for Detection / Imaging Applications Ayman Elboushi, Ph.D. Concordia University. As a result of increasing international terrorist threats, the need for an efficient inspecting tool has become urgent. Not only for seeing through wall applications, but also to be employed as a safe human body scanner at public places such as airports and borders. The usage of microwave and millimeter wave antennas and systems for detection / imaging applications is currently of increasing research interest targeting the enhancement of different security systems. There are many challenges facing researchers in order to develop such systems. One of the challenges is the proper design of a low cost, reduced size and efficient antenna probe to work as a scanning sensor. In this thesis, two different technology choices of antenna probes for the feasibility of constructing detection / imaging systems are investigated. The first one covers the Ultra Wide Band (UWB) range (3.1 GHz to 10.6 GHz), while the second operates over the Millimeter-Wave (MMW) range. In addition to the development of several antenna probes, two detection / imaging systems are demonstrated and showed reasonably accurate detection results. Three different UWB monopole antenna prototypes, with different radiator shapes (circular, crescent and elliptical) have been introduced. These antennas are designed using a standard printed circuit board (PCB) process to work as probing sensors in a proposed UWB detection / imaging system. In order to enhance the resolution and the detection accuracy of the probe, 4-element Balanced Antipodal Vivaldi Antenna (BAVA) array fed by 1-to-4 UWB modified Wilkinson power divider has been developed. Some successful experiments have been conducted using the proposed UWB detection / imaging system combined with the fabricated antenna probes to detect the presence of a gap between two walls made of different material types, to evaluate the gap width and to estimate the size and exact location of a hidden target between the walls. The second research theme of this thesis is to develop small-sized, light-weight and high gain MMW scanning antenna probes. For the realization of such probes, several gain enhancement techniques have been adopted, including hybridization and a multi-element array principle. Several high-gain hybrid antennas have been designed, fabricated and tested. For demonstration purposes, experiments have been carried out for detecting and imaging a small metallic coin under the jeans layer of a three-layer target emulating a human body’s covering layers. A performance comparison between a standard metallic MMW horn and hybrid microstrip patch/conical horn antenna has been made. The proposed reduced size antenna sensor shows increased efficiency compared with the bulky horn antenna. Resolution enhancement of the reconstructed image of the hidden target is implemented using a new triple-antenna MMW sensor. The triple-antenna sensor consists of three adjacent microstrip patch / conical horn antennas separated by 1.5 wavelengths at the center frequency for coupling reduction between these elements. The middle element of the sensor is used for monitoring the time domain back-reflected signal from the target under inspection, while the side elements are used for monitoring the scattered signals. By the aid of a special signal processing algorithm, an enhanced image of the concealed object can be obtained by combining the three readings of each point in the area under study. The proposed system shows a great ability for detecting a hidden target and enhances the reconstructed image resolution

    Application-Specific Broadband Antennas for Microwave Medical Imaging

    Get PDF
    The goal of this work is the introduction of efficient antenna structures on the basis of the requirement of different microwave imaging methods; i.e. quantitative and qualitative microwave imaging techniques. Several criteria are proposed for the evaluation of single element antenna structures for application in microwave imaging systems. The performance of the proposed antennas are evaluated in simulation and measurement scenarios

    A review of recent innovations in remote health monitoring

    Get PDF
    The development of remote health monitoring systems has focused on enhancing healthcare services’ efficiency and quality, particularly in chronic disease management and elderly care. These systems employ a range of sensors and wearable devices to track patients’ health status and offer real-time feedback to healthcare providers. This facilitates prompt interventions and reduces hospitalization rates. The aim of this study is to explore the latest developments in the realm of remote health monitoring systems. In this paper, we explore a wide range of domains, spanning antenna designs, small implantable antennas, on-body wearable solutions, and adaptable detection and imaging systems. Our research also delves into the methodological approaches used in monitoring systems, including the analysis of channel characteristics, advancements in wireless capsule endoscopy, and insightful investigations into sensing and imaging techniques. These advancements hold the potential to improve the accuracy and efficiency of monitoring, ultimately contributing to enhanced health outcomes for patients.Publisher's VersionQ2WOS:001130630400001PMID:3813832
    • …
    corecore