483 research outputs found

    Synthetic Aperture Radar Image Change Detection via Layer Attention-Based Noise-Tolerant Network

    Full text link
    Recently, change detection methods for synthetic aperture radar (SAR) images based on convolutional neural networks (CNN) have gained increasing research attention. However, existing CNN-based methods neglect the interactions among multilayer convolutions, and errors involved in the preclassification restrict the network optimization. To this end, we proposed a layer attention-based noise-tolerant network, termed LANTNet. In particular, we design a layer attention module that adaptively weights the feature of different convolution layers. In addition, we design a noise-tolerant loss function that effectively suppresses the impact of noisy labels. Therefore, the model is insensitive to noisy labels in the preclassification results. The experimental results on three SAR datasets show that the proposed LANTNet performs better compared to several state-of-the-art methods. The source codes are available at https://github.com/summitgao/LANTNetComment: Accepted by IEEE Geoscience and Remote Sensing Letters (GRSL) 2022, code is available at https://github.com/summitgao/LANTNe

    Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle Recognition

    Full text link
    Vehicle recognition is a fundamental problem in SAR image interpretation. However, robustly recognizing vehicle targets is a challenging task in SAR due to the large intraclass variations and small interclass variations. Additionally, the lack of large datasets further complicates the task. Inspired by the analysis of target signature variations and deep learning explainability, this paper proposes a novel domain alignment framework named the Hierarchical Disentanglement-Alignment Network (HDANet) to achieve robustness under various operating conditions. Concisely, HDANet integrates feature disentanglement and alignment into a unified framework with three modules: domain data generation, multitask-assisted mask disentanglement, and domain alignment of target features. The first module generates diverse data for alignment, and three simple but effective data augmentation methods are designed to simulate target signature variations. The second module disentangles the target features from background clutter using the multitask-assisted mask to prevent clutter from interfering with subsequent alignment. The third module employs a contrastive loss for domain alignment to extract robust target features from generated diverse data and disentangled features. Lastly, the proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset, and extensive qualitative and quantitative analyses validate the effectiveness of our framework

    Causal SAR ATR with Limited Data via Dual Invariance

    Full text link
    Synthetic aperture radar automatic target recognition (SAR ATR) with limited data has recently been a hot research topic to enhance weak generalization. Despite many excellent methods being proposed, a fundamental theory is lacked to explain what problem the limited SAR data causes, leading to weak generalization of ATR. In this paper, we establish a causal ATR model demonstrating that noise NN that could be blocked with ample SAR data, becomes a confounder with limited data for recognition. As a result, it has a detrimental causal effect damaging the efficacy of feature XX extracted from SAR images, leading to weak generalization of SAR ATR with limited data. The effect of NN on feature can be estimated and eliminated by using backdoor adjustment to pursue the direct causality between XX and the predicted class YY. However, it is difficult for SAR images to precisely estimate and eliminated the effect of NN on XX. The limited SAR data scarcely powers the majority of existing optimization losses based on empirical risk minimization (ERM), thus making it difficult to effectively eliminate NN's effect. To tackle with difficult estimation and elimination of NN's effect, we propose a dual invariance comprising the inner-class invariant proxy and the noise-invariance loss. Motivated by tackling change with invariance, the inner-class invariant proxy facilitates precise estimation of NN's effect on XX by obtaining accurate invariant features for each class with the limited data. The noise-invariance loss transitions the ERM's data quantity necessity into a need for noise environment annotations, effectively eliminating NN's effect on XX by cleverly applying the previous NN's estimation as the noise environment annotations. Experiments on three benchmark datasets indicate that the proposed method achieves superior performance

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    Get PDF
    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators

    Aeronautics and space report of the President, 1980 activities

    Get PDF
    The year's achievements in the areas of communication, Earth resources, environment, space sciences, transportation, and space energy are summarized and current and planned activities in these areas at the various departments and agencies of the Federal Government are summarized. Tables show U.S. and world spacecraft records, spacecraft launchings for 1980, and scientific payload anf probes launched 1975-1980. Budget data are included
    • …
    corecore