2,159 research outputs found

    A General Life History Theory for Effects of Caloric Restriction on Health Maintenance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caloric restriction (CR) has been shown to keep organisms in a relatively youthful and healthy state compared to ad libitum fed counterparts, as well as to extend the lifespan of a diverse set of organisms. Several attempts have been made to understand the underlying mechanisms from the viewpoint of energy tradeoffs in organisms' life histories. However, most models are based on assumptions which are difficult to justify, or are endowed with free-adjusting parameters whose biological relevancy is unclear.</p> <p>Results</p> <p>In this paper, we derive a general quantitative, predictive model based on physiological data for endotherms. We test the hypothesis that an animal's state of health is correlated with biological mechanisms responsible for the maintenance of that animal's functional integrities. Such mechanisms require energy. By suppressing animals' caloric energy supply and biomass synthesis, CR alters animals' energy allocation strategies and channels additional energy to those maintenance mechanisms, therefore enhancing their performance. Our model corroborates the observation that CR's effects on health maintenance are positively correlated with the degree and duration of CR. Furthermore, our model shows that CR's effects on health maintenance are negatively correlated to the temperature drop observed in endothermic animals, and is positively correlated to animals' body masses. These predictions can be tested by further experimental research.</p> <p>Conclusion</p> <p>Our model reveals how animals will alter their energy budget when food availability is low, and offers better understanding of the tradeoffs between growth and somatic maintenance; therefore shedding new light on aging research from an energetic viewpoint.</p

    A synthesis of evidence for policy from behavioural science during COVID-19

    Get PDF
    Scientific evidence regularly guides policy decisions1, with behavioural science increasingly part of this process2. In April 2020, an influential paper3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to efforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams finding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy effectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed effects and there were no effects for highlighting individual benefits or protecting others. No available evidence existed to assess any distinct differences in effects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientific evidence in policy formulation and prioritization

    A synthesis of evidence for policy from behavioural science during COVID-19

    Get PDF
    Scientific evidence regularly guides policy decisions 1, with behavioural science increasingly part of this process 2. In April 2020, an influential paper 3 proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to efforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams finding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy effectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed effects and there were no effects for highlighting individual benefits or protecting others. No available evidence existed to assess any distinct differences in effects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientific evidence in policy formulation and prioritization

    Computational complexity of the landscape I

    Get PDF
    We study the computational complexity of the physical problem of finding vacua of string theory which agree with data, such as the cosmological constant, and show that such problems are typically NP hard. In particular, we prove that in the Bousso-Polchinski model, the problem is NP complete. We discuss the issues this raises and the possibility that, even if we were to find compelling evidence that some vacuum of string theory describes our universe, we might never be able to find that vacuum explicitly. In a companion paper, we apply this point of view to the question of how early cosmology might select a vacuum.Comment: JHEP3 Latex, 53 pp, 2 .eps figure

    Influences on Decision-Making Regarding Antipsychotic Prescribing in Nursing Home Residents With Dementia: A Systematic Review and Synthesis of Qualitative Evidence.

    Get PDF
    BACKGROUND: Antipsychotic prescribing is prevalent in nursing homes for the management of behavioral and psychological symptoms of dementia (BPSD), despite the known risks and limited effectiveness. Many studies have attempted to understand this continuing phenomenon, using qualitative research methods, and have generated varied and sometimes conflicting findings. To date, the totality of this qualitative evidence has not been systematically collated and synthesized. AIMS: To synthesize the findings from individual qualitative studies on decision-making and prescribing behaviors for antipsychotics in nursing home residents with dementia, with a view to informing intervention development and quality improvement in this field. METHODS: A systematic review and synthesis of qualitative evidence was conducted (PROSPERO protocol registration CRD42015029141). Six electronic databases were searched systematically from inception through July 2016 and supplemented by citation, reference, and gray literature searching. Studies were included if they used qualitative methods for both data collection and analysis, and explored antipsychotic prescribing in nursing homes for the purpose of managing BPSD. The Critical Appraisal Skills Program assessment tool was used for quality appraisal. A meta-ethnography was conducted to synthesize included studies. The Confidence in the Evidence from Reviews of Qualitative research approach was used to assess the confidence in individual review findings. All stages were conducted by at least 2 independent reviewers. RESULTS: Of 1534 unique records identified, 18 met the inclusion criteria. Five key concepts emerged as influencing decision-making: organizational capacity; individual professional capability; communication and collaboration; attitudes; regulations and guidelines. A "line of argument" was synthesized and a conceptual model constructed, comparing this decision-making process to a dysfunctional negative feedback loop. Our synthesis indicates that when all stakeholders come together to communicate and collaborate as equal and empowered partners, this can result in a successful reduction in inappropriate antipsychotic prescribing. CONCLUSIONS: Antipsychotic prescribing in nursing home residents with dementia occurs in a complex environment involving the interplay of various stakeholders, the nursing home organization, and external influences. To improve the quality of antipsychotic prescribing in this cohort, a more holistic approach to BPSD management is required. Although we have found the issue of antipsychotic prescribing has been extensively explored using qualitative methods, there remains a need for research focusing on how best to change the prescribing behaviors identified

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102

    Hillslope Hydrology in Global Change Research and Earth System Modeling

    Get PDF
    Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope-scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid-level water, energy, and biogeochemical fluxes. In contrast to the one-dimensional (1-D), 2- to 3-m deep, and free-draining soil hydrology in most ESM land models, we hypothesize that 3-D, lateral ridge-to-valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions. Plain Language Summary Hillslopes are key landscape features that organize water availability on land. Valley bottoms are wetter than hilltops, and sun-facing slopes are warmer and drier than shaded ones. This hydrologic organization leads to systematic differences in soil and vegetation between valleys and hilltops, and between sunny and shady slopes. Although these patterns are fundamental to understanding the structures and functions of water and terrestrial ecosystems, they are too fine grained to be represented in global-scale Earth System Models. Here we bring together Critical Zone scientists who study the interplay of vegetation, the porous upper layer of the continental crust from vegetation to bedrock, and moisture dynamics deep into the weathered bedrock underlying hillslopes and Earth System Model scientists who develop global models, to ask: Do hillslope-scale processes matter to predicting global change? The answers will help scientists understand where and why hillslopes matter, and to better predict how terrestrial ecosystems, including societies, may affect and be affected by our rapidly changing planet.National Science Foundation [NSF-EAR-1528298, NSF-EAR-0753521]6 month embargo; published online: 27 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore