23,956 research outputs found

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Case Based Reasoning for Chemical Engineering Design

    Get PDF
    With current industrial environment (competition, lower profit margin, reduced time to market, decreased product life cycle, environmental constraints, sustainable development, reactivity, innovation…), we must decrease the time for design of new products or processes. While the design activity is marked out by several steps, this article proposed a decision support tool for the preliminary design step. This tool is based on the Case Based Reasoning (CBR) method. This method has demonstrated its effectiveness in other domains (medical, architecture…) and more recently in chemical engineering. This method, coming from Artificial Intelligence, is based on the reusing of earlier experiences to solve new problems. The goal of this article is to show the utility of such method for unit operation (for example) pre-design but also to propose several evolutions for CBR through a domain as complex as the chemical engineering is (because of its interactions, non linearity, intensification problems…). During the pre-design step, some parameters like operating conditions are not precisely known but we have an interval of possible values, worse we only have a partial description of the problem.. To take into account this imprecision in the problem description, the CBR method is coupled with the fuzzy sets theory. After a mere presentation of the CBR method, a practical implementation is described with the choice and the pre-design of packing for separation columns

    Automatic construction of rules fuzzy for modelling and prediction of the central nervous system

    Get PDF
    The main goal of this work is to study the performance of CARFIR (Automatic Construction of Rules in Fuzzy Inductive Reasoning) methodology for the modelling and prediction of the human central nervous system (CNS). The CNS controls the hemodynamical system by generating the regulating signals for the blood vessels and the heart. The main idea behind CARFIR is to expand the capacity of the FIR methodology allowing it to work with classical fuzzy rules. CARFIR is able to automatically construct fuzzy rules starting from a set of pattern rules obtained by FIR. The new methodology preserves as much as possible the knowledge of the pattern rules in a compact fuzzy rule base. The prediction results obtained by the fuzzy prediction process of CARFIR methodology are compared with those of other inductive methodologies, i.e. FIR, NARMAX and neural networksPostprint (published version

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented
    corecore