1,872 research outputs found

    Self-Assembled Peptide Nanofiber Templated One-Dimensional Gold Nanostructures Exhibiting Resistive Switching

    Get PDF
    Cataloged from PDF version of article.An amyloid-like peptide molecule self-assembling into one-dimensional nanofiber structure in ethanol was designed and synthesized with functional groups that can bind to gold ions. The peptide nanofibers were used as templates for nucleation and growth of one-dimensional gold nanostructures in the presence of ascorbic acid as reducing agent. We performed multistep seed-mediated synthesis of gold nanoparticles by changing peptide/gold precursor and peptide/reducing agent ratios. Gold nanostructures with a wide range of morphologies such as smooth nanowires, noodle-like one-dimensional nanostructures, and uniform aggregates of spherical nanoparticles were synthesized by use of an environmentally friendly synthesis method. Nanoscale electrical properties of gold-peptide nanofibers were investigated using atomic force microscopy. Bias dependent current (IV) measurements on thin films of gold-peptide nanofiber hybrid revealed tunneling dominated transport and resistive switching. Gold-peptide nanofiber composite nanostructures can provide insight into electrical conduction in biomolecular/inorganic composites, highlighting their potential applications in electronics and optics. © 2012 American Chemical Society

    Recent advances in multistep solution nanosynthesis of nanostructured three-dimensional complexes of semiconductive materials

    Get PDF
    AbstractConstructing simply nanostructured zero-, one-, and two-dimensional crystallites into three-dimensional multifunctional assemblies and systems at low-cost is essential and highly challenging in materials science and engineering. Compared to the simply nanostructured components, a three-dimensional (3D) complex made with a precisely controlled spatial organization of all structural nanocomponents can enable us to concert functionalities from all the nanocomponents. Methodologically, so doing in nm-scales via a solution chemistry route may be much easier and less expensive than via other mechanisms. Hence, we discuss herein some recent advances in multistep solution syntheses of nanostructured 3D complexes of semiconductors with a focus mainly on their synthetic strategies and detailed mechanisms

    Feasibility of nanofluid-based optical filters

    Get PDF
    In this article we report recent modeling and design work indicating that mixtures of nanoparticles in liquids can be used as an alternative to conventional optical filters. The major motivation for creating liquid optical filters is that they can be pumped in and out of a system to meet transient needs in an application. To demonstrate the versatility of this new class of filters, we present the design of nanofluids for use as long-pass, short-pass, and bandpass optical filters using a simple Monte Carlo optimization procedure. With relatively simple mixtures, we achieve filters with <15% mean-squared deviation in transmittance from conventional filters. We also discuss the current commercial feasibility of nanofluid-based optical filters by including an estimation of today's off-the-shelf cost of the materials. While the limited availability of quality commercial nanoparticles makes it hard to compete with conventional filters, new synthesis methods and economies of scale could enable nanofluid-based optical filters in the near future. As such, this study lays the groundwork for creating a new class of selective optical filters for a wide range of applications, namely communications, electronics, optical sensors, lighting, photography, medicine, and many more

    Hydrophobic and hydrophilic au and ag nanoparticles. Breakthroughs and perspectives

    Get PDF
    This review provides a broad look on the recent investigations on the synthesis, characterization and physico-chemical properties of noble metal nanoparticles, mainly gold and silver nanoparticles, stabilized with ligands of different chemical nature. A comprehensive review of the available literature in this field may be far too large and only some selected representative examples will be reported here, together with some recent achievements from our group, that will be discussed in more detail. Many efforts in finding synthetic routes have been performed so far to achieve metal nanoparticles with well-defined size, morphology and stability in different environments, to match the large variety of applications that can be foreseen for these materials. In particular, the synthesis and stabilization of gold and silver nanoparticles together with their properties in different emerging fields of nanomedicine, optics and sensors are reviewed and briefly commented

    One-step continuous synthesis of biocompatible gold nanorods for optical coherence tomography

    Get PDF
    We present a novel one-step flow process to synthesize biocompatible gold nanorods with tunable absorption and biocompatible surface ligands. Photothermal optical coherence tomography (OCT) of human breast tissue is successfully demonstrated using tailored gold nanorods designed to have strong absorption in the near-infrared range.National Science Foundation (U.S.) (grant CHE-0714189)National Institutes of Health (U.S.) (R01-CA75289-15)National Institutes of Health (U.S.) (K99-EB010071-01A1)United States. Air Force Office of Scientific Research (FA9550-10-1-0063)Deutsche Forschungsgemeinschaft (DFG-GSC80-SAOT)Spain. Ministerio de Educación y Ciencia (MEC)US-UK Fulbright Commissio

    Enhanced Lifetime Of Excitons In Nonepitaxial Au/cds Core/shell Nanocrystals

    Get PDF
    The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a backward charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (tau approximate to 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase

    Anisotropically Shaped Magnetic/Plasmonic Nanocomposites for Information Encryption and Magnetic-Field-Direction Sensing.

    Get PDF
    Instantaneous control over the orientation of anisotropically shaped plasmonic nanostructures allows for selective excitation of plasmon modes and enables dynamic tuning of the plasmonic properties. Herein we report the synthesis of rod-shaped magnetic/plasmonic core-shell nanocomposite particles and demonstrate the active tuning of their optical property by manipulating their orientation using an external magnetic field. We further design and construct an IR-photoelectric coupling system, which generates an output voltage depending on the extinction property of the measured nanocomposite sample. We employ the device to demonstrate that the nanocomposite particles can serve as units for information encryption when immobilized in a polymer film and additionally when dispersed in solution can be employed as a new type of magnetic-field-direction sensor

    Interactions Between Plasmonic Nanostructures and Proteins

    Get PDF
    In the development of a nanodevice for biomedical applications, the study of the interactions with the biomolecules is essential. Proteins, in particular, are known to be easily adsorbed on the surface of the nanoparticles and the resulting complex is the one that will be effectively internalized by the target cells. Owing to the versatility of the preparation methods available and the unique optical properties, gold nanomaterials represent an excellent choice to study this interaction. This chapter will initially describe the synthesis of gold nanorods and nanoshells that are able to absorb light in the near-infrared (NIR) region. Then, the methods available for the functionalization of their surface will be discussed. The surface plasmon absorption will be used as an optical tool to monitor the process of preparation and surface modification. In the last section of the chapter, fluorescence and microscopy techniques will be used to follow the formation and characterize the protein-nanoparticle complex. The modifications of the emission spectra of two model proteins, bovine serum albumin (BSA) and myoglobin (Mb), will be analyzed in detail. The data will demonstrate that structural rearrangements following the adsorption on the surface of the nanoparticles are responsible for the changes in the fluorescence of the tryptophan residues of the protein. The data will be discussed in terms of static and dynamic quenching, proving the formation of a protein-nanoparticle complex. Atomic force microscopy (AFM) measurements will allow the direct visualization of this complex

    Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel

    Get PDF
    The spatially-targeted fabrication of bimetallic microstructures coexisting in the supporting hydrogel is demonstrated by multi-photon photoreduction. Microstructures composed of gold and silver were fabricated along a predefined trajectory by taking advantages of the hydrogel's ionic permeability. Different resonant wavelengths of optical absorption were obtained for gold, silver, and their bimetallic structures. Transmission electron microscopy and energy dispersive X-ray analysis revealed that the optical properties are attributable to the formation of bimetallic structure consisted of core-shell nanoparticles. The fabrication of dissimilar metal structures within hydrogel is a promising technique for optically driven actuators in soft robotics and sensing applications by allowing for site-selective optical properties. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches

    Get PDF
    This chapter overviews different approaches for the synthesis of nanostructured materials based on alternative methodologies to the most conventional and widespread colloidal wet chemical route and with a great potential applicability to large-scale and continuous production of nanomaterials. Their major outcomes, current progress in synthesis of micro and nanostructures by using microfluidics techniques and potential applications for the next future are reviewed throughout three different sections. Emphasis is placed on nanomaterials production basics, nanomaterials production techniques and microfluidic reactors (types, materials, designs). The integration of nanoparticle and microreactor technologies delivers enormous possibilities for the further development of novel materials and reactors. In this chapter, recent achievements in the synthesis of nanoparticles in microfluidic reactors are stated. A variety of strategies for synthesizing inorganic and polymeric nanoparticles are presented and compared, including continuous flow, gas–liquid segmented flow and droplet-based microreactor
    • …
    corecore