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Abstract Constructing simply nanostructured zero-, one-, and two-dimensional crystallites into three-
dimensional multifunctional assemblies and systems at low-cost is essential and highly challenging in
materials science and engineering. Compared to the simply nanostructured components, a three-dimensional
(3D) complex made with a precisely controlled spatial organization of all structural nanocomponents can
enable us to concert functionalities from all the nanocomponents. Methodologically, so doing in nm-scales
via a solution chemistry route may be much easier and less expensive than via other mechanisms. Hence, we
discuss herein some recent advances in multistep solution syntheses of nanostructured 3D complexes of
semiconductors with a focus mainly on their synthetic strategies and detailed mechanisms.

& 2013 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

During the past a few decades, nanostructured inorganic semi-
conductors with a wide range of structural complexities have been
extensively researched. This is mainly because of their tunable
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chemical/physical properties that are potentially useful in a wide
range of important applications, e.g. nanolasing [1], electronics
[2], optoelectronics [3], catalysis [4], solar cells [5], sensing [6],
separation [7], etc. In comparison with 0D, 1D, and 2D micro/
nanostructures, nanostructured 3D complexes often provide us
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with improved or even new functionalities [8,9] due to their
unique complexity in shape, organization, and orientation of their
nanocomponents [10,11]. Firstly, 3D topology really matters in
applied nanoscience. One outstanding example is the use of
inverted pyramid texturing geometry for trapping light effectively
[12] in high-efficiency Si solar cells [13]. Hybrid solar cells based
on CdSe nanotetrapods, as another great example, have demon-
strated a higher external quantum efficiency (EQE) than that based
on CdSe nanorods [14], due to the extensive intra-crystallite
light scattering and thus-enhanced light absorption of the inter-
penetrating nanotetrapod networks [15]. Under this inspiration,
one should be able to build in theory, much freely by design,
a long list of low-cost multifunctional assemblies and even
systems that can spatially concert functionalities of all the
nanocomponents [16,17]. This indeed calls for new total
nanosyntheses specifically good for making future multifunctional
crystallites with structural complexities too high to be realized
at low cost by other means, e.g. 3D nanomachining or nanoprint-
ing. In order to materialize a structure- or function-oriented
design, a total nanosynthesis may need to alternate the use of
techniques for mimicking the addition, protection, and elimin-
ation that are routinely used in a typical organic total synthesis.

Compared to high temperature solid-state synthetic methods
such as chemical vapor deposition (CVD) [18], physical
vapor deposition (PVD) [19,20], and vapor–liquid–solid (VLS)
growths [21], solution synthesis offers two main advantages: (1)
the relatively mild reaction conditions allow for easy operation
and wider choices of substrates; (2) reactions could be scaled up
easily at low cost. In literature, multistep solution syntheses of
novel types of nanostructured 3D complexes via a variety of
ways have been reported in a rather sporadic manner. Here,
our discussion will focus on the nanostructured 3D complexes
formed in a stepwise fashion from solution routes, especially those
easy to control and scale up in potential industrial production.
The stepwise syntheses occurred either in consecutive reaction
steps or in a one-pot process. Hence, the discussion will cover
those complex structures grown under the help of templates
and other methods such as micropatterning, photolithography,
and Langmuir–Blodgett (LB) thin-film fabrication. In parallel,
complex structures consisting of both semiconductor and non-
semiconductor components will be included in the discussion.
Although heterojunctions are fundamentally different from homo-
junctions and have been widely studied and integrated into
devices for real applications [22], our emphasis will be put more
on their formation mechanisms than on their structure-
related functionalities due to the limit of space here. However,
even within the narrow scope of the above-mentioned focuses,
it is still far from being possible to cover all important works
published in this fast progressing field in the relative short
discussion below.
2. Nanostructured 3D complexes grown on 0D nanocores:
from multipods to flower-like structures and spheres

Hierarchical structures are classified according to the dimension-
alities of building units and the consecutive hierarchical structures
[23,24]. However, nanostructured 3D complexes could consist of
multi-nanocomponents with different dimensionalities, the 3D
complex structures reviewed here will be classified by differentiat-
ing the different combinations of nanocomponents with different
dimensionalities, the orders of topological complexity of the final
structures, and the methods employed in their syntheses. In this
section, we will discuss those structures grown on 0D nanocore
materials that could be nuclei, polyhedrons, cubes, or spheres.
As the densities of subsequently grown 1D nanowires or nanorods
increase, the final morphologies evolve from multipods, to flower-
like structures, and then to spheres.

Fig. 1a illustrates the stepwise formation and TEM image of
CdTe nanotetrapods [10,11]. Firstly, tetrahedral nuclei of zinc
blende phase formed. Due to the identical nature of the (111)
facets of zinc blende phase and (0001) facets of wurtzite phase,
subsequent epitaxial growth of CdTe legs of wurtzite phase on
four (0001) facets led to the formation of CdTe nanotetrapods.
This mechanism also applies to the formation of other tetrapods
and branched structures [25]. Under other conditions, pyramid
nuclei of wurtzite phase form first. These nuclei then aggregate
through multiple wurtzite twinning to form bigger nuclei of
different shapes from which further multiple wurtzite twinning
leads to the formation of CdTe bipods, tripods, and tetrapods [26].
Similar crystal growths driven by multiple crystal twinning apply
to the formation of MnS bipod, tripod, and tetrapod [27] and
branched Cu2O nanoparticles [28]. Formation of nuclei followed
by growths of branches on nuclei to afford multipods is quite
common, as further proven by the syntheses of ε-MnO2 nanos-
tructures with three to six branches grown on nuclei formed in situ
depending on reaction parameters [29]. In all of them, the crystal
habits and reaction conditions play determining roles in shaping
nuclei and directing the subsequent branch growths.

In order to prepare structures with novel morphologies, bigger
0D nano/microparticle with designed structures and chemical
compositions are grown first and then used as cores to support
further branch growths. Fig. 1b illustrates the growth of ZnO
nanorods on Ag truncated nanocubes [30]. Ag truncated nanocubes
were prepared first and then immersed in hydrothermal reactions
between Zn(NO3)2 and hexamethylenetetramine (HMT) for ZnO
branch growth. Each Ag truncated nanocube (� 150 nm in
diameter) consists of eight {111} facets and six {100} facets and
all four ZnO nanorods were selectively grown on {111} facets due
to the good lattice match and symmetry match between the
corresponding planes of ZnO and Ag, and the direct interfacing
of the Zn layer with Ag that could initiate the formation of the ZnO
lattice. The use of metal nanoparticles as nanocores to graft
semiconductor nanowires/rods also applies to the syntheses of
multipods of Au–, Ag–, and Pd–PbSe [31], etc. As another
example, cuboctahedral Cu2−xSe (10–15 nm in diameter) nanocrys-
tals of cubic berzelianite phase were firstly prepared [32] and
injected into reactions of preparing CdS nanoparticles [33]. The Cu2
−xSe seeds underwent cation exchanges to form cubic sphalerite
CdSe seeds that inherited the original cuboctahedral shapes. Fast
growth along eight {111} facets of each cuboctahedral CdSe seed
led to the formation of octapods with CdSe core and eight CdS legs.

For all the multipods discussed in the above, the nanocores onto
which branches were grown are crystalline. Fig. 1c illustrates the
use of amorphous SiO2 microspheres as cores for further grafting of
ZnO microrods. SiO2 microspheres were prepared first [34] and
immersed into hydrothermal reactions between Zn(NO3)2 and HMT
[35]. Different numbers of ZnO microrods could be grafted onto
each microsphere and the SEM image of a decapod is shown in
Fig. 1c (right). The surface of SiO2 microspheres could be largely
covered by either Si–OH or Si–O–Si groups [36] both of which
could coordinate to Zn2+ cations in the solutions. The coordinated
Zn2+ ions then reacted with OH− groups that were released from the
hydrolysis of HMT, leading to the formation of ZnO microrods on



Fig. 1 3D complex structures grown on 0D cores: from multipods, to flower-like structures, and to spheres. Schematic representations of the
formation and TEM image of CdTe tetrapods (a), SEM images of the heterostructure of four ZnO nanorods on Ag truncated nanocubes (b), the
heterostructure of a few ZnO nanorods on SiO2 microspheres (c), a hexapod with ZnO microrods on Fe3O4@SiO2 microsphere (d), flower-like
ZnO microstructure (e), and urchin-like CuO microstructures (f). (a) Reproduced with permission from Nature Mater. 2 (2003) 355–356 and
Nature Mater. 2 (2003) 382–385; (b) from J. Am. Chem. Soc. 131(34) (2009) 12036–12037; (c) from Smart Mater. Struct. 15(2) (2006) N46–N50;
(e) from Proc. Natl. Acad. Sci. U.S.A. 107(31) (2010) 13588–13592; (f) from Mater. Res. Bull. 43(3) (2008) 771–775.
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SiO2 microspheres. To bring more functionalities (e.g. magnetism)
into “spiky” structures as prepared above, we recently succeeded in
grafting ZnO microrods onto the surface of Fe3O4@SiO2 core–shell
microspheres (Fig. 1d). Fe3O4 microspheres with permanent mag-
netism were prepared first [37] and then coated with SiO2 shell
through modified Stöber process [38]. Then the resulting Fe3O4@-
SiO2 core–shell microspheres were immersed into similar hydro-
thermal reactions between Zn(NO3)2 and HMT for grafting ZnO
microrods. It is also believed that the Si–OH or Si–O–Si groups on
SiO2 shells attribute to the nucleation and further growth of ZnO
microrods. In many cases, many 1D nanowires or nanorods were
grown on 0D nanocores, which could be nuclei or as-grown spheres
or polyhedrons, to form flower-like structures. Fig. 1e illustrates the
formation of the flower-like assembly of Al-doped (2–3.5%) ZnO
microrods [39]. A solution containing Zn(CH3COO)2, Al(NO3)3,
and NaOH in mixed solvent of water/ethanol (1/1) was sonicated
first and then transferred to a Teflon-line autoclave for solvothermal
synthesis. Cores first nucleated out and ZnO nanorods were grown
on them from many directions. The nature of the inside core is not
well understood yet. Such kinds of flower-like semiconductor
assemblies include binary compounds such as TiO2 [40], Fe2O3

[41], SnO2 [42,43], ZnO [44], CdS [45,46] CdSe [46,47], and
tertiary compounds such as PbTiO3 [48], β-AgVO3 [49] In addition
to the use of 1D nanowires or nanorods as the building units, 2D
structures such as nanoplates/sheets could be grown on nuclei from
many directions to form flower-like structures [50]. As-grown 0D
structures either crystalline or amorphous could be used as
nanocores to grow many branches to afford flower-like structures
such as Au–CdSe and Ag–CdSe [51], SiO2–ZnO [35]. There are
some flower-like structures, either similar to or different from the
flower-like structures discussed here, the formation mechanisms of
which are not completely understood yet [52].

Sphere-like structures would be obtained if branches were
grown at all directions. Fig. 1f illustrates the formation of CuO
urchin-like nanostructures that were prepared via a hydrothermal
microwave route using polyethyleneglycol (PEG), Cu2+ ion, and
NH4OH as starting materails [53]. Firstly, the reaction between
Cu2+ ion and NH4OH in the presence of PEG led to the formation
of initial nuclei that were adsorbed by PEG through OH- groups.
The resulting particles served as cores onto which CuO NWs were
grown at all directions to afford CuO urchin-nanostructures. The
mechanism applies to the formation of other microspheres [54] and
hemispheres [55] with the help of self-assembly processes in some
cases. This kind of sphere-like heterostructures could also be made
by grafting 1D nanowires/nanorods from all directions onto
preexistent spheres of same or different chemical compositions
such as γ-Fe2O3@SiO2 core–shell [56], polystyrene [57], Zn [58],
ZnO [59], Al2O3 [59], etc.
3. Nanostructured 3D complexes grown on 1D-, 2D- and
3D-nanostructures

1D nanostructures (rods, wires, and tubes) have been the most
widely used building units of 3D complexes and they could be
used as backbones or branches grown on other backbones. Fig. 2a
shows the scheme of growing 1D branches onto 1D backbones.
Fig. 2b shows the SEM image of an array of the carbon-nanotubes
(CNTs)-ZnO heterostructure in which each CNT is covered by
densely packed ZnO nanowire arrays (inset in Fig. 2b) [60].
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Vertical array of CNTs was firstly deposited on a small Ta plate
[61] and then coated with a thin film of ZnO by radiofrequency
sputtering coating. Subsequent hydrothermal reaction in a solution
saturated with Zn(OH)4

2- led to the grafting of densely packed ZnO
nanowires onto each CNT. The coated ZnO film attributes to the
nucleation and further growth of dense ZnO nanowires. Other
nanowires such as CdSe nanowires were also grown onto CNTs
[62] and 1D structures were could be grafted onto other nanotubes
such as α-Fe2O3 nanotube [63] and ZnO microtube [64].

Semiconductors of 1D nanowires or nanorods such as Si [65–67],
ZnO [68–70], TiO2 [71–76], SnO2 [77], Fe2O3 [78], WOx [79,80],
have been widely used as backbones onto which 1D or 2D structures
of same or different chemical compositions have been grafted. Fig. 2c
shows the SEM image of a structure composed of a ZnO microrod
with secondary branches. ZnO microrods with well-defined hexago-
nal crystallographic planes were first deposited onto a glass substrate
when a substrate cleaned with wet chem wipes was put into a vial
containing Zn(NO3)2 and HMT for hydrothermal reaction. Then the
glass substrate with ZnO microrods was immersed into an aqueous
solution containing Zn2+ ions and certain concentration of diamino-
propane at 60 1C for a few hours. Diaminopropane could control
branch nucleation and growth by affecting the ZnO solubility through
the formation of Zn-diaminopropane complexes and pH [81]. Each of
six side surfaces is entirely covered by layers of ZnO nanorods [82].
The densities, diameters, and lengths of the nanorods could be tuned
by controlling the concentration of diaminopropane and reaction time.
Actually, similar branch growth patterns but with less densely packed
branches were also prepared. The coverage of branched materials on
backbone structures could be affected by other factors such as
densities of pre-deposited seeds [83], their lattice mismatch [74],
reaction parameters, etc.

In addition, metal nanowires or nanorods could also be used as
backbones to grow semiconductor nanobranches [84] or grown
onto semiconductor nanowires [83]. Besides the above-discussed
widely studied semiconductors, 1D nanowires or nanorods of other
semiconductors were also employed to build 3D complexes [85].
Fig. 2d shows the heterostructures of MnMoO4 nanowires with
CoMoO4 nanobranches. MnMoO4 nanowires were prepared first
and then CoMoO4 nanobranches were grafted through self-
assembly and “oriented attachment” mechanism [86]. CoMoO4

nanoparticles with high surface energy and thermodynamics
instability linked to adjacent particles so that they had the same
crystallographic orientation. CoMoO4 nanoparticles could also
attach to the surface of MnMoO4 nanowires to further decrease
Fig. 2 3D complex structures composed of 1D structures (tube, rod, wire)
(b) SEM of an array of ZnO nanowires on CNTs (inset is the SEM imag
microrod with ZnO secondary nanobranches; (d) CoMoO4 nanobranches on
(2006) 1036–1040; (c) from J. Am. Chem. Soc. 128(33) (2006) 10960–10
surface energy due to their good lattice match. For the same
reason, the lattice fringe’s orientation of CoMoO4 nanoparticles
and the direction of further crystal growth onto MnMoO4

nanowires were uniform to some extent. 1D semiconductor
nanowires were also grown on 1D structures of bigger dimensions
even to macroscopic scales such as carbon fiber [87], Kevlar fibers
[88], and optic fibers [89] to achieve specific functionalities.

On the basis of the above structures, further increasing the orders
of topological complexity could result in the formation a family of
structures called “dendrites” that are of great importance due to
their functionalities and wide potential applications [90–94].
A dendrite refers to a structure that has a primary stem from which
secondary, tertiary, or even higher order side branches grow out
[95]. Dendrite micro/nanostructures of different semiconductors
such as PbS [96], Cu2O [97], ZnSe [98], CdTe [47], α-Fe2O3 [99],
γ-Fe2O3 [100], Fe3O4 [100], ZnO [101–104], and TiO2 [105–107]
were prepared in a controllable fashion. Snowflakes structures also
belong to the family of dendrites [108]. Fig. 3a illustrates the
stepwise formation of dendrite crystals of α-Fe2O3 that were
obtained by heating aqueous solution of K3[Fe(CN)6] of a certain
concentration in a Teflon-sealed autoclave at suitable temperatures
for 2 days [108]. The slow dissociation of Fe3+ ions from [Fe
(CN)6]

3- ions under hydrothermal conditions played a vital role in
the crystal growth process. The growth along [1100] was much
faster than all the other directions, resulting in the formation of
needles. Subsequent growth along two crystallographically equiva-
lent directions (i.e. [1010] and [0110]) led to the formation of
secondary branches on both sides of each needle. As crystal growth
continued, tertiary branches could grow on secondary branches and
quaternary branches on tertiary branches. In the whole growth
process, the stem and branches at all orders became thicker and
longer and eventually interconnected with each other to form the
micro-pine dendrite structures. There are also some dendrites [109–
110], the formation mechanisms of which need further exploration.

In the formation of above-discussed complex structures grown on
1D backbones, branching from the sides of trunks and higher order
branches dominates. Milliron et al. demonstrated the selective
branching from two ends of a nanorod or four tips of a nanotetrapod
(Fig. 4) [25]. Starting CdSe nanorods (Fig. 4a) were prepared and
Te dissolved in tri(n-alkylphosphine) were added to solutions
containing CdSe nanorods to induce further growth of CdTe in
the presence of excessive Cd species. Wurtzite CdTe could nucleate
at one end of a CdSe nanorod, assisting the linear extension of CdTe
nanorod at one end. Simultaneously, zinc blende CdTe could
grown on 1D backbones. (a) Schematic representation of the structures;
e of ZnO nanowires on one CNT at higher magnification); (c) a ZnO
MnMoO4 nanowires (d). (b) Reproduced from Nanotechnology 17(4)
968; (d) from Nature Commun. 2 (2012) 381.



Fig. 4 3D complex nanostructures formed by selective branching from two ends of each nanorod or four tips of each nanotetrapod. (a) The
starting CdSe nanorods; (b) branched rods resulting from nucleation of CdTe on both ends of CdSe nanorod. A CdTe zincblende region at one end
creates the branch point; (c) the starting CdSe nanotetrapods; (d) branched tetrapods resulting from nucleation of CdTe zincblende branch points on
tips of nanotetrapods. Reproduced with permission from Nature 2004, 430, 190–195.

Fig. 3 (a) Schematic representation of the formation process and (b) SEM image of fractal dendrite crystals of α-Fe2O3. Reproduced with
permission from Angew. Chem. Int. Ed. 44(27) (2005) 4197–4201.
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nucleate at the other end of the CdSe nanorod, thus inducing the
growth of CdTe tripod at the other end (Fig. 4b). Similarly, starting
CdSe nanotetrapods (Fig. 4c) were prepared first, which was
followed by selective nucleation of zinc blende CdTe on all the
tips of CdSe nanotetrapods. Sequential growth of wurtzite CdTe
induced growth of CdTe tripods at tips of CdSe nanotetrapods
(Fig. 4d). This mechanism also applies to formation of highly
branched Labyrinthine-shaped CdSe nanostructures [111].

Structures of higher dimensionalities such as 2D nanoplates
or nanosheets could also be deposited onto 1D backbones
[68,72,73,85]. Besides 1D structures, 2D structures [112–115], such
as discs and plates were also used as supports to grow 3D complex
structures. Fig. 5a illustrates the stepwise growth of α-Fe2O3–SnO2

nanocombs (Fig. 5c) by grafting SnO2 nanorod arrays onto both
sides of α-Fe2O3 nanoflakes (Fig. 5b) [115]. α-Fe2O3 nanoflakes
were prepared first by annealing a cleaned Fe foil at 400 1C and
then the substrate was immersed into aqueous solution Na2Sn(OH)6
for hydrothermal reactions. SnO2 nanorods were grown on (7001)
planes of Fe2O3 nanoflakes through epitaxial growth due to the
good lattice match between the corresponding planes. 3D structures
such as nanotetrapods [116] were also used as supports for further
growth 3D complex structures.
4. Multistep syntheses of nanostructured 3D complexes with
higher orders of topological complexity

In previous sections, we discussed nanostructured 3D complexes
that were prepared in no more than two reaction steps even though
their formations could take a few steps. In one case, nuclei form
first and growths of complex structures from nuclei follow. In
another case, 0D, 1D, 2D, and 3D starting structures are prepared
first as nanocores or supporting materials for further growths of
complex structures (in some cases, seeding on the starting
structures is necessary for further growths). In order to make
structures with higher orders of topological complexity, the
method of “multistep (n≥3) sequential nucleation and growth”
has been employed and received considerable attention. Fig. 6a
illustrates this strategy to prepare the micropatterned array of
tertiary ZnO “cactus” structures through four growth stages on a
micropatterned substrate [117]. The first step involved the creation
of patterned nucleation sites on a Ag substrate through micro-
patterning, which was followed by growth of oriented nanorods
from the nucleation sites. Subsequent growths of secondary
branches from the primary nanorods and tertiary branches from
the secondary branches led to the formation of patterned arrays of
ZnO “cactus”. Fig. 6b and c exemplify “engineering” the complex
structures by tuning the orders of adding structure directing agents
(SDAs) [82], which can greatly enrich the database of complex
structures prepared through the “multistep sequential nucleation
and growth” method. For the syntheses shown in Fig. 6b, ZnO
microrods were first deposited onto a glass substrate and then the
substrate with microrods was immersed into an aqueous solution
of Zn2+ and diaminopropane to grow structures of microrods with
secondary nanobranches. Diaminopropane directed both the
nucleation and growth of secondary nanobranches [81]. Then the
substrate was immersed into an aqueous solution of Zn2+ and
citrate ions for grafting tertiary nanoplates. Tertiary nanoplates



Fig. 5 (a) Schematic representation of the formation of nanocomb-like heterostructure of SnO2 nanorods on Fe2O3 nanoflakes; (b–c) SEM images
of starting Fe2O3 nanoflakes (b) and nanocomb-like heterostructure of SnO2-Fe2O3. (c). Reproduced with permission from Nanoscale 4(15) (2012)
4459–4463.
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were grown onto both the primary microrod and the secondary
nanobranches. Citrate ions tended to induce the growth of
nanoplates [118] since citrate ions could preferentially adsorb
onto the basal planes of ZnO [119] and thus inhibit the
growths along {1000} directions. In contrast, when citrate ions
were added in the secondary growth and DAP in the tertiary
growth, both the secondary structures and the tertiary structures
obtained (Fig. 6c) differ dramatically from those obtained in the
previous case. The two kinds of 3D tertiary structures may barely
find any analogs in nature. Multistep nucleation and growth have
also proved successful in preparing many unprecedented structures
such as wagon-wheel-like ZnO crystals and multilayered ZnO
structure composed of alternating layers of ZnO microrods and
microplates [117].

Beside crystal growth, selective dissolution could be integrated
into the above-mentioned “multistep sequential nucleation and
growth” method to further increase the complexity orders and
diversity of 3D complexes. Fig. 7 exemplifies selective dissolution
as a power method in preparing 3D complexes with novel
morphologies [120]. CdSe nanotetrapods (Fig. 7b) were firstly
prepared [121] and encapsulated with silica shells [122] to
afford silica-coated CdSe nanotetrapods which were easily dis-
persible due to their unique morphologies and colloidally
stable in aqueous solutions due to the silica coating. The inner
silica shells were then removed by dilute HF with optimized
concentration after proper etching time while the outer shells
remained intact due to the inhomogeneous nature of silica shells
since the outermost layers possess higher degrees of Si–O cross-
linking and thus higher stability against etching [123]. Then Pt
nanoparticles were decorated onto CdSe nanotetrapods, which
would be impossible without removal of the inner silica
shells since the intimate contact between CdS and the silica
shells would inhibit nucleation and growths of Pt nanoparticles. Pt-
nanoparticles-decorated CdSe nanotetrapods within hollow
SiO2 interiors, when exposed to Ag+ or Pd2+ solution for 1 h,
underwent further cation exchange to afford Pt-nanoparticle-
decorated Ag2S or PdS nanotetrapods within hollow SiO2 interiors
(Fig. 7b).
5. Nanostructured 3D complexes from templateless
self-assemblies

Self-assembly of as-grown nanocomponents is another powerful
method to grow nanostructured 3D complexes. Fig. 8a illustrates
the schematic formation of a chain from self-assembly of CdSe
octapods [124]. CdSe octapods (Fig. 8b) were prepared first
following previous published procedure [33] and dispersed in
toluene. Since the van der Waals attractions between octapods are
slightly stronger than that between octapods and toluene, octapods
then interlocked each other to form chains (Fig. 8c) within each of
which each octapod is tilted by 451 with respect to its nearest
neighbors (Fig. 8a). Addition of acetonitrile into a toluene solution
of CdSe octapods boosted the attraction between octapods and
between chains, thus guiding further assembly of chains into 3D
micrometer-sized superstructures of octapods (Fig. 8d and e). This



Fig. 6 Three kinds of 3D complex structures prepared using the method of “multistep sequential nucleation and growth”. (a) Scheme of the formation
and SEM image of tertiary ZnO “cactus” structures; (b–c) Schematic representations of the formation and SEM images of two tertiary ZnO structures with
novel morphologies by switching the orders of adding DAP and citrate as structure directing agents (SDAs) in secondary and tertiary growths.
(a) Reproduced with permission from Adv. Funct. Mater. 16(3) (2006) 335–344; (b) and (c) from J. Am. Chem. Soc. 128(33) (2006) 10960–10968.

Fig.7 Addition of selective dissolution to the method of “multistep sequential nucleation and growth” to increase the diversity and complexity
orders of 3D complex structures. (a) Schematic representation of the stepwise growth of complex metal-semiconductor heterostructure through five
steps; (b–c) TEM images of the starting CdSe tetrapod (b) and Pt-nanoparticle-decorated PtS nanotetrapods within a hollow SiO2 interior (c).
Reproduced with permission from J. Am. Chem. Soc., 134(21) (2012) 8754–8757.
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work is very inspiring since it shows that nanocomponents can be
assembled in a similar way as those molecular building units have
been assembled to afford metal-organic-frameworks (MOFs) with
many kinds of complex structures [125]. This direction should be
paid much attention in later syntheses of nanostructured 3D
complexes.



Fig. 8 3D hierarchical structures prepared from self-assembly of CdSe octapods. (a) Schematic representation of the assembly of CdSe octapods
(b, TEM image) into 1D chain (c, SEM image); (d) Schematic representation of the assembly of 1D chains into 3D clusters (e, SEM image). (b)
Reproduced with permission from Nano Lett. 10(9) (2010) 3770–3776; and others from Nature Mater. 10 (2011) 872–876.

Fig. 9 Large scale integration of arrays of crossed nanowires through the combination of Langmuir–Blodgett technique and photolithography. (a)
Schematic representation of the stepwise assembly of 1D nanowires into 3D arrays of crossed nanowires; (b) SEM image of patterned arrays of
crossed nanowires. Reproduced with permission from Nano Lett. 3(9) (2003) 1255–1259.
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Scientists have also tried other kinds of methods to assemble
nanocomponents into 3D complex structures. For example, the
Langmuir–Blodgett (LB) technique [126] was used to organize
inorganic nanorods into 2D and 3D assemblies [127] and prepare
large area nanowire masks for deposition and etching [128].
Whang et al. further combined LB technique and photolithography
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to organize nanowires into arrays of crossed nanowires/nanotubes
structures over large areas (Fig. 9) [129]. A nanowire-surfactant
monolayer (blue lines) on an aqueous subphase was compressed
on a Langmuir–Blodgett trough to a specified pitch (Fig. 9a). The
aligned nanowires were then transferred to the surface of a
substrate to afford a uniform parallel array upon which a second
layer of aligned parallel nanowire array (red lines) was put
perpendicular to the first layer, resulting in the formation of
crossed nanowires structures. If combined with photolithography,
the two layers of nanowires could be arranged orthogonally to
afford patterned arrays of crossed nanowires arrays (Fig. 9b).
Electric-field was used to induce the formation of crossed
nanowire arrays with lower complexities [130], showing its
potential in organizing simple nanowires into 3D complexes
especially if combined with other methods.
6. Nanostructured 3D complexes from template-assisted
nanogrowths

Another important strategy to prepare nanostructured 3D com-
plexes is template-assisted growth and the template could be soft
or hard. Soft templates have been used to prepare many kinds of
3D complexes of semiconductors [131,132]. Conventional hard
templates such as mesoporous silica templates with uniform pores
have been used to successfully prepare 3D complexes of semi-
conductors [133,134]. In order to increase the complexity of
the assembled 3D structures and enhance their functionalities,
Rauber et al. developed a direct synthesis of highly ordered
large-area nanowire networks assisted by hard templates [135].
Fig. 10a illustrates the scheme of the template fabrication and
formation of a 3D complex nanowire network. A polycarbonate
membrane was first irradiated by Au and U ions in several steps
from different directions in a designed way as indicated by the
angles (α) and then etched by aqueous NaOH solution, resulting in
the formation of a 3D network of cylindrical nanochannels.
Then CdTe nanowires were filled up the nanochannels through
electrodeposition. Subsequent removal of the polymer matrix
afforded a freestanding 3D CdTe nanowire network (Fig. 10b)
that demonstrate excellent electrical transport properties and
efficient access of reactants to catalytic centers due to their
porosity. This newly developed method allows good control of
Fig. 10 A 3D complex nanowire network with designed patterns prepar
template fabrication and formation of the complex network; (b) SEM of a C
11(6) (2011) 2304–2310.
various parameters such as size, shape, chemical composition,
orientation, and complexity of the macroscopically stable nano-
wire networks.
7. Summary and outlook

In summary, we have discussed recent progresses in multistep
solution syntheses of nanostructured 3D complexes with fascinat-
ing morphologies. The structures are classified by the different
combinations of nanocomponents with different dimensionalities,
the orders of the topological complexities of the final structures,
and synthetic methods. 1D nanocomponents have been found to be
most frequently used either as backbones, grafting materials, or
basic building units for assembly methods. The use of 2D and 3D
nanocomponents for further growths and assembly methods could
help grow nanostructured 3D complexes with higher orders of
topological complexity. And most of the structures reported so far
contain one or two chemical compositions and most of them are
secondary or tertiary structures. Nanostructured 3D complexes
containing more chemical compositions and having higher orders
of topological complexity should be pursued since they might
demonstrate better or even unprecedented functionalities. All the
synthetic methods could be combined in different ways and new
synthetic methods should be developed.

For all the proposed future research directions, the syntheses of
nanostructured 3D complexes should be functionality-driven so
that these 3D complex structures could find technological applica-
tions, which is crucial to the success of nanoscience and
nanotechnology. For doing so, scientists and engineers need to
pin down the exact growth mechanisms of many reported
structures. They also need to correlate structures and functional-
ities, which is a daunting task since many factors such as overall
topologies, organizations and orientations of nanocomponents,
synergistic effects from different nanocomponents, surface states,
junctions, etc. all play important roles in affecting the functional-
ities. System-level planning of experimental efforts and theoretical
modeling [136] should help scientists and engineers understand the
structure–functionality correlations and predict, design, and pre-
pare structures with higher orders of topological complexity and
improved/new functionalities.
ed from template-assisted growth. (a) Schematic representation of the
dTe nanowire network. Reproduced with permission from Nano Lett.



H. Zhou, Z. Ryan Tian282
Acknowledgment

This work was partially supported by ABI and NSF through
EPSCoR and MRSEC programs.

References

[1] M.H. Huang, S. Mao, H. Feick, et al., Room-temperature ultraviolet
nanowire nanolasers, Science 292 (5523) (2001) 1897–1899.

[2] X.F. Duan, C. Niu, V. Sahi, et al., High-performance thin-film
transistors using semiconductor nanowires and nanoribbons, Nature
425 (2003) 274–278.

[3] B. Polyakov, B. Daly, J. Prikulis, et al., High-density arrays of
germanium nanowire photoresistors, Advanced Materials 18 (14)
(2006) 1812–1816.

[4] X.B. Chen, S.H. Shen, L.J. Guo, et al., Semiconductor-based
photocatalytic hydrogen generation, Chemical Reviews 110 (11)
(2010) 6503–6570.

[5] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338–344.
[6] F. Favier, E.C. Walter, M.P. Zach, et al., Hydrogen sensors and

switches from electrodeposited palladium mesowire arrays, Science
293 (5538) (2001) 2227–2231.

[7] B.J. Hinds, N. Chopra, T. Rantell, et al., Aligned multiwalled
carbon nanotube membranes, Science 303 (5654) (2004) 62–65.

[8] M.J. Bierman, S. Jin, Potential applications of hierarchical branch-
ing nanowires in solar energy, Energy and Environmental Science 2
(10) (2009) 1050–1059.

[9] W.L. Zhou, Z.L. Wang, Three-Dimensional Nanoarchitectures:
Designing Next-Generation Devices, Springer, New York, 2011.

[10] D. Wang, C.M. Lieber, Nanocrystals branch out, Nature Materials 2
(2003) 355–356.

[11] L. Manna, D.J. Milliron, A. Meisei, et al., Controlled growth of
tetrapod-branched inorganic nanocrystal, Nature Materials 2 (2003)
382–385.

[12] A.W. Smith, A. Rohatgi, Ray tracing analysis of the inverted
pyramid texturing geometry for high efficiency silicon solar cells,
Solar Energy Materials and Solar Cells 29 (1) (1993) 37–49.

[13] A.W. Blakers, A.H. Wang, A.M. Milne, et al., 22.8% efficient
silicon solar cell, Applied Physics Letters 55 (13) (1989) 1363–
1365.

[14] D.J. Milliron, I. Gur, A.P. Alivisatos, Hybrid organic-nanocrystal
solar cells, MRS Bulletin 30 (01) (2005) 41–44.

[15] N.S. Lewis, Toward cost-effective solar energy use, Science 315
(5813) (2007) 798–801.

[16] Y.W. Cheng, S.T. Lu, H.B. Zhang, et al., Synergistic effects from
graphene and carbon nanotubes enable flexible and robust electro-
des for high-performance supercapacitors, Nano Letters 12 (8)
(2012) 4206–4211.

[17] J. Hensel, G.M. Wang, Y. Li, et al., Synergistic effect of CdSe
quantum dot sensitization and nitrogen doping of TiO2 nanostruc-
tures for photoelectrochemical solar hydrogen generation, Nano
Letters 10 (2) (2010) 478–483.

[18] K. Hata, D.N. Futaba, K. Mizuno, et al., Water-assisted highly
efficient synthesis of impurity-free single-walled carbon nanotubes,
Science 306 (5700) (2004) 1362–1364.

[19] J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures,
Nano Letters 2 (11) (2002) 1287–1291.

[20] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting
oxides, Science 291 (5510) (2001) 1947–1949.

[21] J.B. Hannon, S. Kodambaka, F.M. Ross, et al., The influence of the
surface migration of gold on the growth of silicon nanowires,
Nature 440 (2006) 69–71.

[22] Z.I. Alferov, The history and future of semiconductor heterostruc-
tures, Semiconductors 32 (1) (1998) 1–14.

[23] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanos-
tructures: overview, Sensors and Actuators B: Chemical 140 (2009)
319–336.
[24] P.X. Gao, Metal Oxide Nanostructures and Their Applications, in:
A. Umar (Ed.), American Scientific Publisher: Stevenson Ranch,
CA, USA, 2010, pp. 513–545.

[25] D.J. Milliron, S.M. Hughes, Y. Cui, et al., Colloidal nanocrystal
heterostructures with linear and branched topology, Nature 430
(2004) 190–195.

[26] L. Carbone, S. Kudera, E. Carlino, et al., Multiple wurtzite
twinning in CdTe nanocrystals induced by methylphosphonic
acid, Journal of the American Chemical Society 128 (3) (2006)
748–755.

[27] Y.W. Jun, Y.Y. Jung, J.W. Cheon, Architectural control of magnetic
semiconductor nanocrystals, Journal of the American Chemical
Society 124 (4) (2002) 615–619.

[28] Y.Y. Ma, Z.Y. Jiang, Q. Kuang, et al., Twin-crystal nature of the
single-crystal-like branched Cu2O particles, Journal of Physical
Chemistry C 112 (35) (2008) 13405–13409.

[29] Y.S. Ding, X.F. Shen, S. Gomez, et al., Hydrothermal growth of
manganese dioxide into three-dimensional hierarchical nanoarchi-
tectures, Advanced Functional Materials 16 (4) (2006) 549–555.

[30] F.R. Fan, Y. Ding, D.Y. Liu, et al., Facet-selective epitaxial growth
of heterogeneous nanostructures of semiconductor and metal: ZnO
nanorods on Ag nanocrystals, Journal of the American Chemical
Society 131 (34) (2009) 12036–12037.

[31] K.T. Yong, Y. Sahoo, K.R. Choudhury, et al., Shape control of
PbSe nanocrystals using noble metal seed particles, Nano Letters 6
(4) (2006) 709–714.

[32] S. Deka, A. Genovese, Z. Yang, et al., Phosphine-free synthesis of p-
type copper(I) selenide nanocrystals in hot coordinating solvents,
Journal of the American Chemical Society 132 (26) (2010) 8912–8914.

[33] S. Deka, K. Miszta, D. Dorfs, et al., Octapod-shaped colloidal
nanocrystals of cadmium chalcogenides via one-pot cation exchange
and seeded growth, Nano Letters 10 (9) (2010) 3770–3776.

[34] W. Wang, B.H. Gu, L. Liang, et al., Fabrication of near-infrared
photonic crystals using N49 Technical note highly-monodispersed
submicrometer SiO2 spheres, Journal of Physical Chemistry B 107
(44) (2003) 12113–12117.

[35] T.R. Zhang, W.J. Dong, J. Kasbohm, et al., Design and hierarchical
synthesis of branched heteromicrostructures, Smart Materials and
Structures 15 (2) (2006) N46–N50.

[36] S. Srinivasan, A.K. Datye, M.H. Smith, et al., Interaction of
titanium isopropoxide with surface hydroxyls on silica, Journal of
Catalysis 145 (2) (1994) 565–573.

[37] T. Sugimoto, E. Matjević, Formation of uniform spherical magnetite
particles by crystallization from ferrous hydroxide gels, Journal of
Colloid and Interface Science 74 (1) (1980) 227–243.

[38] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse
silica spheres in the micron size range, Journal of Colloid and
Interface Science 26 (1) (1968) 62–69.

[39] U.K. Gautama, M. Imuraa, C.S. Routb, et al., Unipolar assembly of
zinc oxide rods manifesting polarity-driven collective luminescence,
Proceedings of the National Academy of Sciences of the USA 107
(31) (2010) 13588–13592.

[40] S.S. Mali, C.A. Betty, P.N. Bhosale, et al., Hydrothermal synthesis
of rutile TiO2 nanoflowers using Brønsted Acidic Ionic Liquid
[BAIL]: synthesis, characterization and growth mechanism, Crys-
tEngComm 14 (6) (2012) 1920–1924.

[41] S.Y. Zeng, K.B. Tang, T.W. Li, et al., Facile route for the
fabrication of porous hematite nanoflowers: its synthesis, growth
mechanism, application in the lithium ion battery, and magnetic and
photocatalytic properties, Journal of Physical Chemistry 112 (13)
(2008) 4836–4843.

[42] L.P. Qin, J.Q. Xu, X.W. Dong, et al., The template-free synthesis of
square-shaped SnO2 nanowires: the temperature effect and acetone
gas sensors, Nanotechnology 19 (18) (2008) 185705.

[43] G. Cheng, K. Wu, P.T. Zhao, et al., Controlled growth of oxygen-
deficient tin oxide nanostructures via a solvothermal approach in
mixed solvents and their optical properties, Nanotechnology 18 (35)
(2007) 355604.

http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref1
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref1
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref2
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref2
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref2
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref3
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref3
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref3
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref4
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref4
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref4
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref5
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref6
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref6
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref6
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref7
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref7
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref8
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref8
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref8
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref9
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref9
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref10
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref10
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref11
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref11
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref11
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref12
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref12
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref12
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref13
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref13
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref13
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref14
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref14
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref15
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref15
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref16
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref16
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref16
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref16
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref17
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref17
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref17
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref17
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref17
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref18
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref18
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref18
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref19
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref19
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref20
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref20
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref21
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref21
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref21
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref22
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref22
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref23
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref23
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref23
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref24
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref24
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref24
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref25
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref25
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref25
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref26
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref26
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref26
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref26
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref27
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref27
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref27
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref28
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref28
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref28
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref28
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref29
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref29
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref29
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref30
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref30
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref30
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref30
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref31
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref31
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref31
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref32
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref32
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref32
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref33
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref33
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref33
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref34
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref34
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref34
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref34
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref34
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref35
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref35
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref35
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref36
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref36
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref36
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref37
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref37
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref37
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref38
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref38
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref38
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref39
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref39
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref39
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref39
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref40
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref40
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref40
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref40
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref40
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref41
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref41
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref41
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref41
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref41
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref42
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref42
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref42
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref42
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref43
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref43
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref43
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref43


Recent advances in multistep solution nanosynthesis of nanostructured three-dimensional complexes of semiconductive materials 283
[44] H.J. Zhang, R.F. Wu, Z.W. Chen, et al., Self-assembly fabrication
of 3D flower-like ZnO hierarchical nanostructures and their gas
sensing properties, CrysEngComm 14 (5) (2012) 1775–1782.

[45] M. Li, Y. Liu, H. Shen, Synthesis and characterization of large-scale
hierarchical CdS microflowers, Chalcogenide Letters 8 (9) (2011)
555–560.

[46] W.T. Yao, S.H. Yu, S.J. Liu, et al., Architectural control syntheses
of CdS and CdSe nanoflowers, branched nanowires, and nanotrees
via a solvothermal approach in a mixed solution and their photo-
catalytic property, Journal of Physical Chemistry B 110 (24) (2006)
11704–11710.

[47] A.G. Kanaras, C. Sönnichsen, H.T. Liu, et al., Controlled synthesis
of hyperbranched inorganic nanocrystals with rich three-
dimensional structures, Nano Letters 5 (11) (2005) 2164–2167.

[48] P.M. Rørvik, T. Grande, M.A. Einarsrud, Hierarchial PbTiO3

nanostructures grown on SrTiO3 substrates, Crystal Growth and
Design 9 (4) (2009) 1979–1984.

[49] C.H. Han, Y.Q. Pi, Q.Y. An, et al., Substrate-assisted self-
organization of radial β-AgVO3 nanowire clusters for high rate
rechargeable lithium batteries, Nano Letters 12 (9) (2012) 4668–
4673.

[50] L.L. Wang, T. Fei, Z. Lou, et al., Three-dimensional hierarchical
flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing
properties, ACS Applied Materials and Interfaces 3 (12) (2011)
4689–4694.

[51] K.M. AbouZeid, M.B. Mohamed, M.S. El-Shall, Hybrid Au–CdSe and
Ag–CdSe nanoflowers and core–shell nanocrystals via one-pot hetero-
geneous nucleation and growth, Small 7 (23) (2011) 3299–3307.

[52] C. Cheng, Y.T. Shi, C. Zhu, et al., ZnO hierarchical structures for
efficient quasi-solid dye-sensitized solar cells, Physical Chemistry
Chemical Physics 13 (22) (2011) 10631–10634.

[53] D. Keyson, D.P. Volanti, L.S. Cavalcante, et al., CuO urchin-
nanostructures synthesized from a domestic hydrothermal micro-
wave method, Materials Research Bulletin 43 (3) (2008) 771–775.

[54] X.Y. Zeng, J.L. Yuan, Z.Y. Wang, et al., Nanosheet-based micro-
spheres of Eu3+-doped ZnO with efficient energy transfer from
ZnO to Eu3+ at room temperature, Advanced Materials 19 (24)
(2007) 4510–4514.

[55] M. Mo, J.C. Yu, L. Zhang, et al., Self-assembly of ZnO nanorods
and nanosheets into hollow microhemispheres and microspheres,
Advanced Materials 17 (6) (2005) 756–760.

[56] Z. Ren, Y.B. Guo, G. Wrobel, et al., Three dimensional koosh ball
nanoarchitecture with a tunable magnetic core, fluorescent nanowire
shell and enhanced photocatalytic property, Journal of Materials
Chemistry 22 (14) (2012) 6862–6868.

[57] C. Lévy-Clément, X.D. Wang, C. Benoit-Moez, et al., Applications
of colloidal crystal patterning for synthesis of 1D and 3D
nanostructured semiconductors, Physics Status Solidi A 208 (6)
(2011) 1426–1432.

[58] P. Jiang, J.J. Zhou, H.F. Fang, et al., Hierarchical shelled ZnO
structures made of bunched nanowire arrays, Advanced Functional
Materials 17 (8) (2007) 1303–1310.

[59] D. Barpuzary, Z. Khan, N. Vinothkumar, et al., Hierarchically
grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for
efficient visible-light-driven photocatalytic hydrogen generation,
Journal of Physical Chemistry C 116 (1) (2012) 150–156.

[60] W.D. Zhang, Growth of ZnO nanowires on modified well-aligned
carbon nanotube arrays, Nanotechnology 17 (4) (2006) 1036–1040.

[61] W.D. Zhang, Y. Wen, S.M. Liu, et al., Synthesis of vertically
aligned carbon nanotubes on metal deposited quartz plates, Carbon
40 (11) (2002) 1981–1989.

[62] N. Fu, Z. Li, A. Myalitsin, et al., One-dimensional heterostructures
of single-walled carbon nanotubes and CdSe nanowires, Small 6 (3)
(2010) 376–380.

[63] D.F. Zhang, L.D. Sun, C.J. Jia, et al., Hierarchical assembly of
SnO2 nanorod arrays on α-Fe2O3 nanotubes: a case of interfacial
lattice compatibility, Journal of the American Chemical Society 127
(39) (2005) 13492–13493.
[64] M.S. Mo, S.H. Lim, Y.W. Ma, et al., In situ self-assembly of thin
ZnO nanoplatelets into hierarchical mesocrystal microtubules with
surface grafting of nanorods: a general strategy towards hollow
mesocrystal structures, Advanced Materials 20 (2) (2008) 339–342.

[65] P. Sudhagar, T. Song, D.H. Lee, et al., High open circuit voltage
quantum dot sensitized solar cells manufactured with ZnO nanowire
arrays and Si/ZnO branched hierarchical structures, Journal of
Physical Chemistry Letters 2 (16) (2011) 1984–1990.

[66] K. Sun, Y. Jing, N. Park, et al., Solution synthesis of large-scale,
high-sensitivity ZnO/Si hierarchical nanoheterostructure photode-
tectors, Journal of the American Chemical Society 132 (44) (2010)
15465–15467.

[67] K. Sun, Y. Jing, C. Li, et al., 3D branched nanowire heterojunction
photoelectrodes for high-efficiency solar water splitting and H2

generation, Nanoscale 4 (5) (2012) 1515–1521.
[68] S. Haller, T. Suguira, D. Lincot, et al., Design of a hierarchical

structure of ZnO by electrochemistry for ZnO-based dye-sensitized
solar cells, Physica Status Solidi A 207 (10) (2010) 2252–2257.

[69] H.M. Cheng, W.H. Chiu, C.H. Lee, et al., Formation of branched
ZnO nanowires from solvothermal method and dye-sensitized solar
cells applications, Journal of Physical Chemistry C 112 (42) (2008)
16359–16364.

[70] Y.F. Zhu, G.H. Zhou, H.Y. Ding, et al., Synthesis of highly-ordered
hierarchical ZnO nanostructures and their application in dye-
sensitized solar cells, Crystal Research and Technology 45 (10)
(2010) 1075–1078.

[71] C.H. Wang, C.L. Shao, X.T. Zhang, et al., SnO2 nanostructures-
TiO2 nanofibers heterostructures: controlled fabrication and high
photocatalytic properties, Inorganic Chemistry 48 (15) (2009) 7261–
7268.

[72] N.X. Wang, C.H. Sun, Y. Zhao, et al., Fabrication of three-
dimensional ZnO/TiO2 heteroarchitectures via a solution process,
Journal of Materials Chemistry 18 (33) (2008) 3909–3911.

[73] Q.J. Zhang, C.H. Sun, J. Yan, et al., Perpendicular rutile nanosheets
on anatase nanofibers: heterostructured TiO2 nanocomposites via a
mild solvothermal method, Solid State Sciences 12 (7) (2010)
1274–1277.

[74] M. Shang, W.Z. Wang, W.Z. Yin, et al., General strategy for a
large-scale fabric with branched nanofiber–nanorod hierarchical
heterostructure: controllable synthesis and applications, Chemistry
—A European Journal 16 (37) (2010) 11412–11419.

[75] H.G. Yang, H.C. Zeng, Synthetic architectures of TiO2/
H2Ti5O11 �H2O, ZnO/H2Ti5O11 �H2O, ZnO/TiO2/H2Ti5O11 �H2O,
and ZnO/TiO2 nanocomposites, Journal of the American Chemical
Society 127 (1) (2005) 270–278.

[76] J.K. Oh, J.K. Lee, H.S. Kim, et al., TiO2 branched nanostructure
electrodes synthesized by seeding method for dye-sensitized solar
cells, Chemical Materials 22 (3) (2010) 1114–1118.

[77] C.W. Cheng, B. Liu, H.Y. Yang, et al., Hierarchical assembly of
ZnO nanostructures on SnO2 backbone nanowires: low-temperature
hydrothermal preparation and optical properties, ACS Nano 3 (10)
(2009) 3069–3076.

[78] M.T. Niu, F. Huang, L.F. Cui, et al., Hydrothermal synthesis, structural
characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semicon-
ductor nanoheterostructures, ACS Nano 4 (2) (2010) 681–688.

[79] H.J. Kim, S.H. Jeon, M.Y. Lee, et al., Fabrication of a novel
hierarchical assembly of ZnO nanowires on WOx nanowhiskers for
highly efficient field electron emission, Journal of Materials
Chemistry 21 (35) (2011) 13458–13463.

[80] H.J. Kim, M.S. Seol, J.H. Lee, et al., Highly efficient photoelec-
trochemical hydrogen generation using hierarchical ZnO/WOx
nanowires cosensitized with CdSe/CdS, Journal of Physical Chem-
istry C 115 (51) (2011) 25429–25436.

[81] T.L. Sounart, J. Liu, J.A. Voigt, et al., Secondary nucleation and
growth of ZnO, Journal of the American Chemical Society 129 (51)
(2007) 15786–15793.

[82] T.R. Zhang, W.J. Dong, M. Keeter-Brewer, et al., Site-specific
nucleation and growth kinetics in hierarchical nanosyntheses of

http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref44
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref44
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref44
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref45
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref45
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref45
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref46
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref46
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref46
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref46
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref46
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref47
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref47
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref47
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref48
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref48
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref48
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref48
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref49
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref49
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref49
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref49
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref49
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref50
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref50
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref50
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref50
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref50
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref50
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref51
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref51
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref51
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref52
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref52
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref52
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref53
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref53
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref53
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref54
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref54
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref54
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref54
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref54
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref55
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref55
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref55
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref56
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref56
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref56
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref56
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref57
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref57
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref57
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref57
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref58
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref58
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref58
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref59
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref59
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref59
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref59
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref59
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref59
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref60
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref60
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref61
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref61
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref61
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref62
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref62
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref62
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref63
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref64
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref64
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref64
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref64
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref65
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref65
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref65
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref65
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref66
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref66
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref66
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref66
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref67
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref67
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref67
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref68
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref68
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref68
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref69
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref69
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref69
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref69
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref70
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref70
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref70
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref70
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref71
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref71
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref71
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref71
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref71
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref71
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref72
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref72
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref72
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref72
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref73
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref73
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref73
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref73
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref73
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref74
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref74
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref74
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref74
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref75
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref76
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref76
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref76
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref76
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref77
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref77
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref77
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref77
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref77
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref78
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref78
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref78
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref78
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref78
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref78
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref79
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref79
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref79
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref79
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref80
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref80
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref80
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref80
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref81
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref81
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref81
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref82
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref82


H. Zhou, Z. Ryan Tian284
branched ZnO crystallites, Journal of the American Chemical
Society 128 (33) (2006) 10960–10968.

[83] X.C. Jianga, B.Z. Tian, J. Xianga, et al., Rational growth of
branched nanowire heterostructures with synthetically encoded
properties and function, Proceedings of the National Academy of
Sciences of the USA 108 (30) (2011) 12212–12216.

[84] C.D. Gu, C. Cheng, H.Y. Huang, et al., Growth and photocatalytic
activity of dendrite-like ZnO@Ag heterostructure nanocrystals,
Crystal Growth and Design 9 (7) (2009) 3278–3285.

[85] P. Zhang, C. Shao, M. Zhang, et al., Bi2MoO6 ultrathin nanosheets
on ZnTiO3 nanofibers: a 3D open hierarchical heterostructures
synergistic system with enhanced visible-light-driven photocatalytic
activity, Journal of Hazardous Materials (217–218) (2012) 422–428.

[86] L.Q. Mai, F. Yang, Y.L. Zhao, et al., Hierarchical MnMoO4/
CoMoO4 heterostructured nanowires with enhanced supercapacitor
performance, Nature Communications 2 (2012) 381.

[87] L. Yang, S. Cheng, Y. Ding, et al., Hierarchical network architec-
tures of carbon fiber paper supported cobalt oxide nanonet for high-
capacity pseudocapacitors, Nano Letters 12 (1) (2012) 321–325.

[88] Y. Qin, X.D. Wang, Z.L. Wang, Microfibre–nanowire hybrid
structure for energy scavenging, Nature 451 (2008) 809–813.

[89] B. Weintraub, Y.G. Wei, Z.L. Wang, Optical fiber/nanowire hybrid
structures for efficient three-dimensional dye-sensitized solar cells,
Angewandte Chemie International Edition 48 (47) (2009) 8981–8985.

[90] A. Mohanty, N. Garg, R.C. Jin, A universal approach to the synthesis of
noble metal nanodendrites and their catalytic properties, Angewandte
Chemie International Edition 49 (29) (2010) 4962–4966.

[91] V. Polshettiwar, B. Baruwati, R.S. Varma, Self-assembly of metal
oxides intothree-dimensional nanostructures: synthesis and applica-
tion in catalysis, ACS Nano 3 (3) (2009) 728–736.

[92] K. Drozdowicz-Tomsia, F. Xie, E.M. Goldys, Deposition of silver
dentritic nanostructures on silicon for enhanced fluorescence,
Journal of Physical Chemistry C 114 (3) (2010) 1562–1569.

[93] X.G. Wen, Y.T. Xie, M.W. Cheung, et al., Dendritic nanostructures
of silver: facile synthesis, structural characterizations, and sensing
applications, Langmuir 22 (10) (2006) 4836–4842.

[94] P. Zhou, Z.H. Dai, M. Fang, et al., Novel dendritic palladium
nanostructure and its application in biosensing, Journal of Physical
Chemistry C 111 (34) (2007) 12609–12616.

[95] P. Galenko, V. Zhuravlev, Physics of Dendrites: Computational
Experiments, World Scientific, Singapore, 1994.

[96] D. Kuang, A. Xu, Y. Fang, et al., Surfactant-assisted growth of
novel PbS dendritic nanostructures via facile hydrothermal process,
Advanced Materials 15 (20) (2003) 1747–1750.

[97] C.M. McShane, K.S. Choi, Photocurrent enhancement of n-type Cu2O
electrodes achieved by controlling dendritic branching growth, Journal
of the American Chemical Society 131 (7) (2009) 2561–2569.

[98] A.G Dong, R. Tang, W.E. Buhro, Solution-based growth and
structural characterization of homo- and heterobranched semicon-
ductor nanowires, Journal of the American Chemical Society 129
(40) (2007) 12254–12262.

[99] Q.T. Pan, K. Huang, S.B. Ni, et al., Synthesis of α-Fe2O3

dendrites by a hydrothermal approach and their application in
lithium-ion batteries, Journal of Physics D Applied Physics 42
(2009) 015417.

[100] G.B. Sun, B.X. Dong, M.H. Cao, et al., Hierarchical dendrite-like
magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high perfor-
mance of microwave absorption, Chemical Materials 23 (6) (2011)
1587–1593.

[101] S.H. Ko, D. Lee, H.W. Kang, et al., Nanoforest of hydrothermally
grown hierarchical ZnO nanowires for a high efficiency dye-
sensitized solar cell, Nano Letters 11 (2) (2011) 666–671.

[102] C.T. Wu, J.J. Wu, Room-temperature synthesis of hierarchical
nanostructures on ZnO nanowire anodes for dye-sensitized solar
cells, Journal of Materials Chemistry 21 (35) (2011) 13605–13610.

[103] M. McCune, W. Zhang, Y. Deng, A 3D ZnO nanowire-based dye-
sensitized solar cell (DSSC) with unique caterpillar-like structure,
Nano Letters 12 (7) (2012) 3656–3662.
[104] F.H. Zhao, J.G. Zheng, X.F. Yang, et al., Complex ZnO nanotree
arrays with tunable top, stem and branch structures, Nanoscale 2 (9)
(2010) 1674–1683.

[105] I.S. Cho, Z. Chen, A.J. Forman, et al., Branched TiO2 nanorods for
photoelectrochemical hydrogen production, Nano Letters 11 (11)
(2011) 4978–4984.

[106] J.Y. Liao, B.X. Lei, H.Y. Chen, et al., Oriented hierarchical single
crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for
efficient flexible dye-sensitized solar cells, Energy and Environ-
mental Sciences 5 (2) (2012) 5750–5757.

[107] F. Shao, J. Sun, L. Gao, et al., Forest-like TiO2 hierarchical
structures for efficient dye-sensitized solar cells, Journal of Materials
Chemistry 22 (14) (2012) 6824–6830.

[108] M.H. Cao, T.F. Liu, S. Gao, et al., Single-crystal dendritic micro-
pines of magnetic α-Fe2O3: large-scale synthesis, formation mechan-
ism, and properties, Angewandte Chemie International Editions 44
(27) (2005) 4197–4201.

[109] Q.Y. Lu, F. Gao, S. Komarneni, Biomolecule-assisted synthesis of
highly ordered snowflakelike structures of bismuth sulfide nanorods,
Journal of the American Chemical Society 126 (1) (2004) 54–55.

[110] G.J. Zhou, M.K. Lu, Z.L. Xiu, et al., Controlled synthesis of high-
quality PbS star-shaped dendrites, multipods, truncated nanocubes,
and nanocubes and their shape evolution process, Journal of
Physical Chemistry B 110 (13) (2006) 6543–6548.

[111] S.H.De Paoli Lacerda, J.F. Douglas, S.D. Hudson, et al., Quantum
mazes: luminescent labyrinthine semiconductor nanocrystals having
a narrow emission spectrum, ACS Nano 1 (4) (2007) 337–347.

[112] F. Xu, M. Dai, Yi.N. Lu, et al., Hierarchical ZnO nanowire
−nanosheet architectures for high power conversion efficiency in
dye-sensitized solar cells, Journal of Physical Chemistry C 114 (6)
(2010) 2776–2782.

[113] L.F. Xu, Q.W. Chen, D.S. Xu, Hierarchical ZnO nanostructures
obtained by electrodeposition, Journal of Physical Chemistry C 111
(31) (2007) 11560–11565.

[114] J.H. Qiu, M. Guo, X.D. Wang, Electrodeposition of hierarchical
ZnO nanorod-nanosheet structures and their applications in dye-
sensitized solar cells, ACS Applied Materials Interfaces 3 (7) (2011)
2358–2367.

[115] W.W. Zhou, Y.Y. Tay, X.T. Jia, et al., Controlled growth of
SnO2@Fe2O3 double-sided nanocombs as anodes for lithium-ion
batteries, Nanoscale 4 (15) (2012) 4459–4463.

[116] Y.C. Qiu, K.Y. Yan, H. Deng, et al., Secondary branching and
nitrogen doping of ZnO nanotetrapods: building a highly active
network for photoelectrochemical water splitting, Nano Letters 12
(1) (2012) 407–413.

[117] T.L. Sounart, J. Liu, J.A. Voigt, et al., Sequential nucleation and
growth of complex nanostructured films, Advanced Functional
Materials 16 (3) (2006) 335–344.

[118] Z.R. Tian, J.A. Voigt, J. Liu, et al., Complex and oriented ZnO
nanostructures, Nature Materials 2 (2003) 821–826.

[119] P.C. Hidber, T.J. Graule, L.J. Gauckler, Citric acid—a dispersant for
aqueous alumina suspensions, Journal of the American Ceramic
Society 79 (7) (1996) 1857–1867.

[120] J. Lian, Y. Xu, M. Lin, et al., Aqueous-phase reactions on hollow
silica-encapsulated semiconductor nanoheterostructures, Journal of
the American Chemical Society 134 (21) (2012) 8754–8757.

[121] A. Fiore, R. Mastria, M.G. Lupo, et al., Tetrapod-shaped colloidal
nanocrystals of II−VI semiconductors prepared by seeded growth,
Journal of the American Chemical Society 131 (6) (2009) 2274–2282.

[122] T. Selvan, T.T. Tan, J.Y. Ying, Robust, non-cytotoxic, silica-coated
CdSe quantum dots with efficient photoluminescence, Advanced
Materials 17 (13) (2005) 1620–1625.

[123] Y.J. Wong, L. Zhu, W.S. Teo, et al., Revisiting the Stöber method:
inhomogeneity in silica shells, Journal of the American Chemical
Society 133 (30) (2011) 11422–11425.

[124] K. Miszta, J. de Graaf, G. Bertoni, et al., Hierarchical self-assembly
of suspended branched colloidal nanocrystals into superlattice
structures, Nature Materials 10 (2011) 872–876.

http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref82
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref82
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref83
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref83
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref83
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref83
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref84
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref84
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref84
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref85
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref86
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref86
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref86
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref86
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref86
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref87
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref87
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref87
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref88
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref88
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref89
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref89
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref89
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref90
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref90
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref90
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref91
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref91
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref91
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref92
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref92
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref92
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref93
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref93
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref93
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref94
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref94
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref94
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref95
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref95
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref96
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref96
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref96
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref97
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref97
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref97
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref97
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref98
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref98
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref98
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref98
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref99
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref99
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref99
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref99
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref99
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref100
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref101
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref101
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref101
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref102
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref102
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref102
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref103
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref103
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref103
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref104
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref104
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref104
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref105
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref105
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref105
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref105
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref106
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref106
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref106
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref106
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref106
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref107
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref107
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref107
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref107
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref108
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref108
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref108
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref108
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref108
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref108
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref109
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref109
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref109
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref110
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref110
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref110
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref110
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref111
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref111
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref111
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref112
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref112
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref112
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref112
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref113
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref113
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref113
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref114
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref114
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref114
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref114
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref115
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref115
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref115
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref115
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref115
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref115
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref116
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref116
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref116
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref116
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref117
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref117
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref117
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref118
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref118
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref119
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref119
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref119
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref120
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref120
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref120
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref121
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref121
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref121
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref122
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref122
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref122
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref123
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref123
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref123
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref124
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref124
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref124


Recent advances in multistep solution nanosynthesis of nanostructured three-dimensional complexes of semiconductive materials 285
[125] M. Eddaoudi, D.B. Moler, H.L. Li, et al., Modular chemistry:
secondary building units as a basis for the design of highly porous
and robust metal-organic carboxylate frameworks, Accounts of
Chemical Research 34 (4) (2001) 319–330.

[126] A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir–
Blodgett to Self-assembly, Academic Press, New York, 1991.

[127] F. Kim, S. Kwan, J. Akana, et al., Langmuir–Blodgett nanorod
assembly, Journal of the American Chemical Society 123 (18)
(2001) 4360–4361.

[128] D. Whang, S. Jin, C.M. Lieber, Nanolithography using hierarchically
assembled nanowire masks, Nano Letters 3 (7) (2003) 951–954.

[129] D. Whang, S. Jin, Y. Wu, et al., Large-scale hierarchical organiza-
tion of nanowire arrays for integrated nanosystems, Nano Letters 3
(9) (2003) 1255–1259.

[130] Z.H. Zhong, D.L. Wang, Y. Cui, et al., Nanowire crossbar arrays as
address decoders for integrated nanosystems, Science 302 (5649)
(2003) 1377–1379.

[131] Y.S. Luo, S.Q. Li, Q.F. Ren, et al., Facile synthesis of flowerlike
Cu2O nanoarchitectures by a solution phase route, Crystal Growth
and Design 7 (1) (2007) 87–92.

[132] L. Zhang, N. Gaponik, J. Müller, et al., Branched wires of CdTe
nanocrystals using amphiphilic molecules as templates, Small 1 (5)
(2005) 524–527.

[133] D.H. Wang, H.M. Luo, R. Kou, et al., A general route to
macroscopic hierarchical 3D nanowire networks, Angewandte
Chemie International Edition 43 (45) (2004) 6169–6173.

[134] D.H. Wang, H.P. Jakobson, R. Kou, et al., Metal and semiconductor
nanowire network thin films with hierarchical pore structures,
Chemical Materials 18 (18) (2006) 4231–4237.
[135] M. Rauber, I. Alber, S. Muller, et al., Highly-ordered supportless
three-dimensional nanowire networks with tunable complexity and
interwire connectivity for device integration, Nano Letters 11 (6)
(2011) 2304–2310.

[136] P.D Yang, J.M. Tarascon, Towards systems materials engineering,
Nature Materials 11 (2012) 560–563.

Z. Ryan Tian received his PhD in Chemistry in
1997 from University of Connecticut, and then
conducted postdoctoral research at the University
of California, Davis and then the Sandia National
Laboratories. Since 2004, he has been working at
the University of Arkansas, and currently is an
Associate Professor in Chemistry/Biochemistry,
Institute of Nanoscience/Engineering, Cell/Mole-
cular Biology, and Microelectronics/Photonics,
and an adjunct faculty in the College of Engi-

neering. One of his lab's thrust areas in research

is to construct simple nanoscale building-blocks into complex crystallites,
each possessing highly hierarchical and ordered spatial regularities with a
confined three-dimensional space, typically in an oriented array on a large
substrate. Thus-made nanocomplex materials can show collective and even
spatially concerted function(s) of these building-blocks, precisely by design,
for tackling longstanding problems in heterogeneous catalysis, energy
storage and conversion, sensing, etc.

http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref125
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref125
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref125
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref125
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref126
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref126
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref127
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref127
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref127
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref128
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref128
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref129
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref129
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref129
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref130
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref130
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref130
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref131
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref131
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref131
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref131
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref132
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref132
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref132
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref133
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref133
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref133
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref134
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref134
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref134
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref135
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref135
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref135
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref135
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref136
http://refhub.elsevier.com/S1002-0071(13)00087-7/sbref136

	Recent advances in multistep solution nanosynthesis of nanostructured three-dimensional complexes of semiconductive...
	Introduction
	Nanostructured 3D complexes grown on 0D nanocores: from multipods to flower-like structures and spheres
	Nanostructured 3D complexes grown on 1D-, 2D- and 3D-nanostructures
	Multistep syntheses of nanostructured 3D complexes with higher orders of topological complexity
	Nanostructured 3D complexes from templateless self-assemblies
	Nanostructured 3D complexes from template-assisted nanogrowths
	Summary and outlook
	Acknowledgment
	References




