5,411 research outputs found

    FPGA-Based CNN Inference Accelerator Synthesized from Multi-Threaded C Software

    Full text link
    A deep-learning inference accelerator is synthesized from a C-language software program parallelized with Pthreads. The software implementation uses the well-known producer/consumer model with parallel threads interconnected by FIFO queues. The LegUp high-level synthesis (HLS) tool synthesizes threads into parallel FPGA hardware, translating software parallelism into spatial parallelism. A complete system is generated where convolution, pooling and padding are realized in the synthesized accelerator, with remaining tasks executing on an embedded ARM processor. The accelerator incorporates reduced precision, and a novel approach for zero-weight-skipping in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak performance on VGG-16 is 138 effective GOPS

    NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps

    Get PDF
    Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though Graphical Processing Units (GPUs) are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1x1 to 7x7. NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq FPGA platform and present results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Post-synthesis simulations using Mentor Modelsim in a 28nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the MAC units, and achieves a power efficiency of over 3TOp/s/W in a core area of 6.3mm2^2. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real time interactive demonstrations

    Interconnect architectures for dynamically partially reconfigurable systems

    Get PDF
    Dynamically partially reconfigurable FPGAs (Field-Programmable Gate Arrays) allow hardware modules to be placed and removed at runtime while other parts of the system keep working. With their potential benefits, they have been the topic of a great deal of research over the last decade. To exploit the partial reconfiguration capability of FPGAs, there is a need for efficient, dynamically adaptive communication infrastructure that automatically adapts as modules are added to and removed from the system. Many bus and network-on-chip (NoC) architectures have been proposed to exploit this capability on FPGA technology. However, few realizations have been reported in the public literature to demonstrate or compare their performance in real world applications. While partial reconfiguration can offer many benefits, it is still rarely exploited in practical applications. Few full realizations of partially reconfigurable systems in current FPGA technologies have been published. More application experiments are required to understand the benefits and limitations of implementing partially reconfigurable systems and to guide their further development. The motivation of this thesis is to fill this research gap by providing empirical evidence of the cost and benefits of different interconnect architectures. The results will provide a baseline for future research and will be directly useful for circuit designers who must make a well-reasoned choice between the alternatives. This thesis contains the results of experiments to compare different NoC and bus interconnect architectures for FPGA-based designs in general and dynamically partially reconfigurable systems. These two interconnect schemes are implemented and evaluated in terms of performance, area and power consumption using FFT (Fast Fourier Transform) andANN(Artificial Neural Network) systems as benchmarks. Conclusions drawn from these results include recommendations concerning the interconnect approach for different kinds of applications. It is found that a NoC provides much better performance than a single channel bus and similar performance to a multi-channel bus in both parallel and parallel-pipelined FFT systems. This suggests that a NoC is a better choice for systems with multiple simultaneous communications like the FFT. Bus-based interconnect achieves better performance and consume less area and power than NoCbased scheme for the fully-connected feed-forward NN system. This suggests buses are a better choice for systems that do not require many simultaneous communications or systems with broadcast communications like a fully-connected feed-forward NN. Results from the experiments with dynamic partial reconfiguration demonstrate that buses have the advantages of better resource utilization and smaller reconfiguration time and memory than NoCs. However, NoCs are more flexible and expansible. They have the advantage of placing almost all of the communication infrastructure in the dynamic reconfiguration region. This means that different applications running on the FPGA can use different interconnection strategies without the overhead of fixed bus resources in the static region. Another objective of the research is to examine the partial reconfiguration process and reconfiguration overhead with current FPGA technologies. Partial reconfiguration allows users to efficiently change the number of running PEs to choose an optimal powerperformance operating point at the minimum cost of reconfiguration. However, this brings drawbacks including resource utilization inefficiency, power consumption overhead and decrease in system operating frequency. The experimental results report a 50% of resource utilization inefficiency with a power consumption overhead of less than 5% and a decrease in frequency of up to 32% compared to a static implementation. The results also show that most of the drawbacks of partial reconfiguration implementation come from the restrictions and limitations of partial reconfiguration design flow. If these limitations can be addressed, partial reconfiguration should still be considered with its potential benefits.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    High Level Synthesis of Neural Network Chips

    Get PDF
    This thesis investigates the development of a silicon compiler dedicated to generate Application-Specific Neural Network Chips (ASNNCs) from a high level C-based behavioural specification language. The aim is to fully integrate the silicon compiler with the ESPRIT II Pygmalion neural programming environment. The integration of these two tools permits the translation of a neural network application specified in nC, the Pygmalion's C-based neural programming language, into either binary (for simulation) or silicon (for execution in hardware). Several applications benefit from this approach, in particular the ones that require real-time execution, for which a true neural computer is required. This research comprises two major parts: extension of the Pygmalion neural programming environment, to support automatic generation of neural network chips from the nC specification language; and implementation of the high level synthesis part of the neural silicon compiler. The extension of the neural programming environment has been developed to adapt the nC language to hardware constraints, and to provide the environment with a simulation tool to test in advance the performance of the neural chips. Firstly, new hardware-specific requisites have been incorporated to nC. However, special attention has been taken to avoid transforming nC into a hardware-oriented language, since the system assumes minimum (or even no) knowledge of VLSI design from the application developer. Secondly, a simulator for neural network hardware has been developed, which assesses how well the generated circuit will perform the neural computation. Lastly, a hardware library of neural network models associated with a target VLSI architecture has been built. The development of the neural silicon compiler focuses on the high level synthesis part of the process. The goal of the silicon compiler is to take nC as the input language and automatically translate it into one or more identical integrated circuits, which are specified in VHDL (the IEEE standard hardware description language) at the register transfer level. The development of the high level synthesis comprises four major parts: firstly, compilation and software-like optimisations of nC; secondly, transformation of the compiled code into a graph-based internal representation, which has been designed to be the basis for the hardware synthesis; thirdly, further transformations and hardware-like optimisations on the internal representation; and finally, creation of the neural chip's data path and control unit that implement the behaviour specified in nC. Special attention has been devoted to the creation of optimised hardware structures for the ASNNCs employing both phases of neural computing on-chip: recall and learning. This is achieved through the data path and control synthesis algorithms, which adopt a heuristic approach that targets the generated hardware structure of the neural chip in a specific VLSI architecture, namely the Generic Neuron. The viability, concerning the effective use of silicon area versus speed, has been evaluated through the automatic generation of a VHDL description for the neural chip employing the Back Propagation neural network model. This description is compared with the one created manually by a hardware designer

    Optimization of FPGA Based Neural Network Processor

    Get PDF
    Neural information processing is an emerging new field, providing an alternative form of computation for demanding tasks such as pattern recognition problems which are usually reserved for human attention. Neural network computation i s sought after where classification of input data is difficult to be worked out using equations or sets of rules. Technological advances in integrated circuits such as Field Programmable Gate Array (FPGA) systems have made it easier to develop and implement hardware devices based on these neural network architectures. The motivation in hardware implementation of neural networks is its fast processing speed and suitability in parallel and pipelined processing. The project revolves around the design of an optimized neural network processor. The processor design is based on the feedforward network architecture type with BackPropagation trained weights for the Exclusive-OR non-linear problem. Among the highlights of the project is the improvement in neural network architecture through reconfigurable and recursive computation of a single hidden layer for multiple layer applications. Improvements in processor organization were also made which enables the design to parallel process with similar processors. Other improvements include design considerations to reduce the amount of logic required for implementation without much sacrifice of processing speed

    Agile SoC Development with Open ESP

    Full text link
    ESP is an open-source research platform for heterogeneous SoC design. The platform combines a modular tile-based architecture with a variety of application-oriented flows for the design and optimization of accelerators. The ESP architecture is highly scalable and strikes a balance between regularity and specialization. The companion methodology raises the level of abstraction to system-level design and enables an automated flow from software and hardware development to full-system prototyping on FPGA. For application developers, ESP offers domain-specific automated solutions to synthesize new accelerators for their software and to map complex workloads onto the SoC architecture. For hardware engineers, ESP offers automated solutions to integrate their accelerator designs into the complete SoC. Conceived as a heterogeneous integration platform and tested through years of teaching at Columbia University, ESP supports the open-source hardware community by providing a flexible platform for agile SoC development.Comment: Invited Paper at the 2020 International Conference On Computer Aided Design (ICCAD) - Special Session on Opensource Tools and Platforms for Agile Development of Specialized Architecture
    corecore