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Abstract

Impulse-based computing, currently at its peak in spiking neural networks (SNNs), is emerging
as the best candidate for the way information is interpreted and analysed by neural networks.
Currently, there are some current real-world applications of SNNs in real-time image and audio
processing, for example in computer vision, even though the literature on practical applications
remains sparse. The massive dimension and complexity that these new spiking neural networks
can assume, raises important challenges in hardware design, as it must be able to deal with the
number of interconnections that grow exponentially with the network complexity, as well as the
amount of memory required. The concept of a division of a neuromorphic processor into cores that
facilitates the realization of these systems seeks to resolve this computing issue. The complexity
of the network can then grow by including multiple cores on a single integrated circuit. This
segmented design is best supported by the implementation of a network-on-chip (NoC) protocol
based on Address-Event Representation (AER) for inter-core and inter-chip communication. This
work exclusively focuses on the thorough examination and enhancement of the AER process to
achieve efficient and scalable communication, without delving into its integration or connection
with the NoC. The results obtained from this work demonstrate the feasibility of designing a chip
capable of accommodating the growing complexity of spiking neural networks. Furthermore, this
research has showcased that multiple approaches, including those with and without serialization,
are not only achievable but also offer promising avenues for the realization of scalable and complex
SNNs. The results of this work show that multiple fully-digital approaches can be used as possible
solutions to this intercore communication problem.
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Resumo

A computação baseada em impulsos, atualmente no seu auge nas Spiking Neural Networks (SNN),
está a emergir como a melhor candidata para a forma como a informação é interpretada e analisada
por redes neuronais. Atualmente, existem algumas aplicações reais de SNNs no processamento de
imagem e áudio em tempo real, por exemplo, na visão computacional, porém a literatura sobre es-
tas aplicações práticas continua a ser escassa. A enorme dimensão e complexidade que estas novas
redes neuronais spiking podem assumir levanta importantes desafios ao nível da conceção do hard-
ware, uma vez que este deve ser capaz de lidar com o número de interligações de neurónios que
cresce exponencialmente com a complexidade da rede, bem como com a quantidade de memória
necessária. O conceito de dividir um processador neuromórfico em núcleos visa solucionar os
desafios computacionais inerentes a esses sistemas. A complexidade da rede pode então aumen-
tar com a inclusão de vários núcleos num único circuito integrado. Este design segmentado é
melhor suportado pela implementação de um protocolo de Network-on-Chip (NoC) baseado na
Address-Event Representation (AER) para comunicação entre núcleos e entre chips. Este trabalho
foca-se no estudo e otimização do processo AER para uma comunicação eficiente, abrindo cam-
inho para SNNs escaláveis e complexas. Os resultados obtidos com este trabalho demonstram
a viabilidade de conceber um chip capaz de acomodar a crescente complexidade das redes neu-
ronais. Além disso, esta pesquisa mostrou que várias abordagens, incluindo aquelas com e sem
serialização, não só são viáveis, mas também oferecem caminhos promissores para a realização
de SNNs escaláveis e complexas. Os resultados deste trabalho mostram que várias abordagens
totalmente digitais podem ser usadas como possíveis soluções para este problema de comunicação
entre núcleos.
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Chapter 1

Introduction

1.1 Context

Over the last two decades, the field of Machine Learning (ML) has evolved so much to meet

the ever-increasing demands of complex applications. To execute these applications, hardware

developments were also done in order to meet these objectives, be it the need for more memory

and quicker processing. The Von Neumann architecture, which is the foundational architecture

for most conventional computers and computing systems today, possesses some limitations that

prevent it from being an ideal solution to run these ML applications. These limitations include

memory bottlenecking due to the shared bus for the memory and computer processing unit (CPU),

and very limited parallelism, due to its sequential nature, with instructions executed one after

another.

Graphics Processing Units (GPUs) are not built using this architecture and do not possess these

limitations and issues. GPUs are designed with a different architecture known as the SIMD (Sin-

gle Instruction, Multiple Data) architecture or parallel processing architecture. This architecture

is optimized for handling massive parallel computations, which is especially useful for parallel

computing tasks like ML applications, making them the most well-suited solution for this field.

And this is the reason why GPUs have witnessed their own advancements in recent years, as to

cater specifically to the demands of machine learning. And although they offer a high degree of

parallelization that allows for quicker processing, they fall very short when it comes to power

efficiency when compared to specialized hardware solutions.

These specialized hardware solutions are designed from the ground up to optimize power effi-

ciency and performance for machine learning tasks. They often incorporate custom architectures

and dedicated hardware components for specific machine-learning operations. By tailoring the

hardware to the specific requirements of machine learning, these solutions can achieve significant

improvements in power efficiency while still providing high-performance capabilities.

This is the reason why, in recent years, neuromorphic computing has been a fast-growing

research field that has gained a lot of focus. In this field, the main goal is the design of hardware

systems that mimic neural architectures. It is known that advancements in this field are sure to
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2 Introduction

improve how computers interpret and analyse information. Recently, impulse-based computing,

such as Spiking Neural Networks (SNNs), has emerged as the best candidate for higher-level

processing [7].

This is because neuromorphic systems running this type of computing have the potential to be

much more energy efficient than traditional computers. Proof of this efficiency is our very own

brain, which is able to perform complex computations using very little energy, and these developed

neuromorphic systems are designed to mimic this efficiency. Furthermore, neuromorphic comput-

ing systems may be better at handling certain types of tasks and data than traditional computers.

For example, they may be better at tasks that involve learning from experience, pattern recogni-

tion, or real-time processing, making them ideal for the greater objective of achieving Automated

Perception, this work is inserted in.

1.2 Problem and Motivation

Spiking Neural Nets (SNNs) exhibit a remarkably high degree of parallelism and asynchronous

nature, like the biological cognitive and sensory systems. These systems are much more efficient

and have the potential to be much more computationally powerful than current computer archi-

tectures. But a problem arises when trying to develop such systems, in comparison to natural

biological systems, where neuron cells are very densely interconnected, and where each cell may

have thousands or even tens of thousands of connections in the 3-D space, cutting-edge semi-

conductor technologies have limited physical interconnection resources that do not allow for this.

This limits the physical interconnection of neurons in 2-D silicon systems to practically only a few

neighbours.

However, since the available bandwidth in the interconnect paths of these systems is signifi-

cantly higher than in the biological ones, bus sharing, such as the one supported by Address Event

Representation encoding (AER), can be used to overcome this limitation. The main observation

that works supports this AER protocol is that neurons fire ‘events’ or spikes at a low frequency

(biological neurons might have average firing rates of 100 Hz) when compared to the available

bandwidth of the shared bus. Algorithms based both on continuous-valued “intracellular” signals

and discrete spiking events have already been created in this way, and while analogue computa-

tions may be performed better at the cellular level, we argue that it is advantageous to implement

spike-based learning rules in the address domain for large scale systems.

Many research groups are currently investigating communication protocols for the electronic

implementation of neural processing. One approach, the address-event representation (AER) pro-

tocol, has attracted the interest of several research groups, and has presented itself as the best

architecture suitable for large asynchronous circuits such as the ones running the SNNs.

Previous research has extensively demonstrated the potential of Address Event Representation

(AER) in constructing large-scale networks with versatile synaptic connectivity. These networks

exhibit comparable performance to those constructed using conventional pair connectivity. The

key reason behind this success lies in the inherent scalability of AER-based systems.
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A notable advantage of AER is its ability to accommodate diverse types of signals represented

as spikes. Unlike other approaches that make assumptions about the nature of the encoded signals,

AER can effectively handle any measure of cellular activity. This remarkable flexibility enables

the development of learning mechanisms that closely mimic the biological processes observed in

living organisms, thereby achieving a high degree of biological realism.

By leveraging AER, researchers can design networks with configurable synaptic connections,

allowing for precise control over the connectivity patterns. This reconfigurability grants the free-

dom to experiment with various network architectures, enabling investigations into the impact of

specific connectivity motifs on network dynamics and functionality. Additionally, AER facilitates

the implementation of learning algorithms that can adapt to a wide range of signal representations,

making it an attractive framework for exploring the computational capabilities of neural systems.

The scalability and flexibility offered by AER-based systems have far-reaching implications

for neural network research. These systems provide a pathway to constructing large-scale net-

works that can emulate the intricate connectivity and learning mechanisms observed in biologi-

cal systems. By facilitating the integration of complex learning algorithms, AER empowers re-

searchers to delve deeper into the mechanisms underlying cognitive processes and develop bio-

logically inspired artificial intelligence models. Ultimately, the use of AER holds great promise in

advancing our understanding of neural systems and paving the way for the development of highly

efficient and adaptable computational architectures.

1.3 Goals

The goal of this dissertation was to design, develop and evaluate hardware capable of implement-

ing the AER protocol in a neuromorphic system with learning founded on this notion of spike-

timing-dependent plasticity (STDP). Taking that into consideration, the objective can be broken

up into smaller goals and points:

• Data Transmission: Efficient and low-latency transmission and reception of address events

are critical in scenarios where preserving timing information is crucial, such as in the con-

text of Spike-Timing-Dependent Plasticity (STDP) neurons. To achieve this objective, it is

essential to minimize processing overhead to avoid introducing additional latency. By doing

so, the timing information carried by the address events can be accurately maintained for

subsequent utilization by STDP neurons.

• Data processing: Although requiring little processing, the solution will need to address

events quickly and accurately, in order to extract the relevant information from them. This

might involve using specialized circuits to perform tasks such as address decoding, and

event buffering.

• Power Considerations: Addressing power consumption management challenges associ-

ated with the hardware implementation. Implementing energy-efficient circuit designs, and

power management techniques.



4 Introduction

• Evaluation and Performance Analysis: Conducting thorough evaluations and performance

analysis of the developed hardware solution. This includes benchmarking the system’s per-

formance in terms of spike rate compatibility and efficiency in data transmission.

In summary, the design of hardware for AER-based neuromorphic systems necessitates a care-

ful balance between high-speed digital signalling, efficient data processing, and effective power

and thermal management. By addressing these considerations, we can create robust and scal-

able hardware architectures that effectively harness the power of AER for advanced neuromorphic

computing applications.

1.4 Structure of Dissertation

Besides the introduction, this dissertation contains 5 more chapters.

Chapter 2 of the work provides an overview of the theoretical aspects and fundamental knowl-

edge that are crucial for understanding the scientific or engineering area within which the research

is contextualized. This chapter aims to establish a solid foundation of knowledge that readers can

refer to throughout the rest of the work.

Chapter 3 serves as a platform to discuss the state-of-the-art and existing solutions within

the scientific community. It is within this chapter that the researcher sets objectives for the pre-

liminary work, building upon the knowledge and insights gained from the previous chapter. The

primary goal of Chapter 3 is to provide readers with an in-depth understanding of the current state

of research in the field. By reviewing the existing body of work, the chapter highlights the gaps,

limitations, and opportunities for further exploration and improvement.

Chapter 4 focuses on the development and results of the solution. It outlines the objectives

and requirements that guided the development process and explains the step-by-step creation of

the solution. The chapter also highlights any challenges encountered during development and

discusses the outcomes achieved through implementation. It emphasizes the relationship between

the solution and the observed results, including any unexpected findings or areas for improvement.

Additionally, it highlights the tools, technologies, and resources that have been employed.

Finally, in the concluding chapter, Chapter 5, the dissertation offers a comprehensive summary

of the problem understanding, an analysis of the results obtained, and the contributions made to the

scientific community. This chapter serves as the culmination of the research journey, providing a

concise and conclusive overview of the conducted work and potential avenues for future research.



Chapter 2

Background

This section aims to provide a more detailed explanation of the concepts mentioned in the previous

section. The objective is to enhance understanding of the forthcoming work and its development.

2.1 Neuromorphic Computing

Neuromorphic computing is a branch of computer science and engineering that aims to mimic

the structure and functionality of the human brain by developing hardware and software systems

inspired by biological neural networks. The key concept in neuromorphic computing is the use

of spikes, also known as action potentials, which are the electrical signals used by neurons in the

brain to communicate with each other. Spiking neural networks (SNNs) are computational models

that capture the timing and rate of these spikes to process information.

In neuromorphic computing, spikes are used as a fundamental unit of communication and

computation. Instead of representing information as binary values (0s and 1s) like in traditional

digital computers, spiking neural networks represent information as spikes that occur at specific

times. This event-driven processing allows for highly efficient and parallel computation, as spikes

are only generated when relevant information is present, reducing the computational load and

energy consumption.

2.2 Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNNs) are a type of artificial neural network (ANN) inspired by the

behaviour of biological neurons. Unlike traditional ANNs, which typically use continuous-valued

activation functions and propagate information through real-valued activations, SNNs operate on

discrete events called spikes, resembling the action potentials in biological neurons.

The fundamental unit of computation in an SNN is a spiking neuron, which accumulates input

signals over time and generates output spikes when a certain threshold is reached. The timing of

5
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spikes carries important information, allowing SNNs to represent and process temporal informa-

tion naturally. This aspect is particularly useful for modelling time-varying and event-driven data,

such as sensory inputs or sequential data.

SNNs are typically composed of interconnected layers of spiking neurons. Each neuron re-

ceives input spikes from its predecessors and propagates its output spikes to the neurons in the

subsequent layer. The connections between neurons, known as synapses, have associated weights

that regulate the strength of the connections between neurons. The output spike generation is de-

termined by the neuron’s activation function, which can be based on factors such as the current

input, the neuron’s membrane potential, or a combination of these factors. All of this described

behaviour is depicted in Figure 2.1.

Figure 2.1: Schematic of SNN spike transmission flow [1]

The learning capabilities in SNNs are often achieved through a mechanism called Spike-

Timing-Dependent Plasticity (STDP), which adjusts the synaptic weights based on the precise

timing of pre- and post-synaptic spikes. STDP allows SNNs to adapt their connections based on

the temporal relationships between spikes, facilitating the learning of temporal patterns and en-

abling unsupervised learning. SNNs have gained significant attention in neuromorphic computing

due to their ability to process information in an event-driven and asynchronous manner, which

is closer to how biological systems operate. They are particularly well-suited for tasks involving

temporal data processing, such as sensory processing, time-series analysis, pattern recognition,

and event-based control.

In recent years, there have been advancements in hardware implementations specifically de-

signed for SNNs, such as neuromorphic chips, which aim to exploit the efficiency and paral-

lelism offered by spiking computations. These developments have opened up new opportunities

for energy-efficient and real-time neuromorphic computing systems based on SNNs.

2.3 Crossbar

The crossbar architecture plays a vital role in neuromorphic computing systems running SNNs,

providing a versatile and densely interconnected network. Comprised of rows and columns of

processing elements (see Figure 2.2), the crossbar acts as a programmable grid-like structure,
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emulating synaptic connections found in biological neural networks. In the crossbar architec-

ture, inputs and outputs are sent through rows and columns, respectively. These pulses, upon

leaving the crossbar, are encoded into addresses using the Address Event Representation (AER)

protocol. Inputs (presynaptic events) are encoded with their corresponding addresses and sent

through rows, while outputs (postsynaptic events) generate event signals indicating spike occur-

rences and are sent through columns. This integration enables efficient and parallel communication

of spike events within the crossbar architecture, closely resembling the synaptic connections and

spike-based activity found in biological neural networks. The conductance of the memristors, the

building block of these crossbars, can be dynamically adjusted to strengthen or weaken synaptic

connections based on the timing of spike events, mimicking the spike-timing-dependent plasticity

observed in biological systems.

Figure 2.2: Multi-layer Memristors Crossbar schematic [2]

One significant advantage of the crossbar architecture is its compatibility with the Address

Event Representation (AER) protocol. This integration of the crossbar architecture with the AER

protocol offers several benefits. Firstly, the parallel nature of the crossbar enables the simultaneous

processing of multiple spike events, effectively harnessing the massive parallelism observed in

neural networks. The direct mapping of synaptic connections onto the crossbar eliminates the

need for complex routing, enabling efficient spike communication and reducing latency in AER-

based systems.

In essence, the AER protocol simplifies the communication process by using address and

event signals, while the crossbar architecture enables parallel processing and efficient connectivity.

Together, they enable spike-based communication within the neuromorphic system, facilitating

real-time information exchange and efficient computation.
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2.4 Time Domain Multiplexing (TDM)

Neuromorphic engineers have successfully adopted time-division multiplexing (TDM) as a tech-

nique to achieve massive connectivity in neuromorphic systems. TDM, which has been widely

used in telecommunications [8] and computer networks [9], provides an efficient and scalable

solution for connecting large numbers of neurons or neuromorphic components.

The inspiration for using TDM in neuromorphic systems comes from its proven success in

areas where communication is key. TDM allows multiple signals to share a single transmission

medium in these domains by allocating specific time slots to each signal (Seen in Figure 2.3). This

enables efficient use of available resources and facilitates high-speed data transmission.

Similarly, in neuromorphic systems, TDM allows for the connection of numerous neurons or

neuromorphic components by allocating specific time slots for their communication. Instead of

using separate dedicated channels or connections for each neuron, TDM enables the sharing of

limited resources among a large population of neurons, thereby achieving massive connectivity.

By using TDM, neuromorphic engineers can efficiently utilize the available resources, reduce

wiring complexity, and enable high-density connectivity in neuromorphic systems. This approach

not only enhances the scalability of neuromorphic architectures, but also facilitates the implemen-

tation of large-scale neural networks that can simulate complex brain-like functionalities.

Figure 2.3: Time-Domain Multiplexing

2.5 Address-Event Representation protocol

The mentioned address-event representation (AER) is a protocol that uses TDM to overcome the

extensive normal pair connectivity. In an AER system, activity is coded in the form of spikes and

is transmitted from one array into the next. In AER, spikes are transmitted as fast as possible once

they occur, and the time of the spike is not explicitly encoded, hence the saying that "time repre-

sents itself". If we were to make use of the normal approach to send these spike signals, we would

use one wire for each pair of neurons, requiring N wire connections for N cell pairs connected.

This is not a viable approach in a large complex system with a great number of neuron connections

due to the limitations of interconnections of the current semiconductor technologies. The AER

system overcomes this by encoding the location of the spiking neuron and transmitting it over a

shared data bus, making it more scalable and ideal for larger systems. The inherent scalability of
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AER arises from its event-driven nature. In traditional digital systems, information is processed

sequentially and synchronized through a clock signal, limiting the system’s scalability due to the

need for global synchronization. In contrast, most AER systems operate asynchronously, with

information encoded as events that are communicated between nodes only when relevant.

Like many asynchronous communication protocols, the handshaking signals REQ and ACK

are used to ensure that only one cell pair is using the data bus at a time.

The REQ (Request) signal is used by a cell or entity that intends to transmit data or request

a specific operation. When a cell wants to transmit data, it asserts the REQ signal to indicate its

intention to use the data bus. The assertion of the REQ signal serves as a request for access to the

data bus, informing other cells that the requesting cell wants to transmit data.

On the other hand, the ACK (Acknowledgement) signal is used to acknowledge the request

made by a cell and grant access to the data bus. When a cell receives a REQ signal from another

cell, it evaluates its own state to determine if it can grant access to the data bus. If the cell is not

using the data bus and is ready to receive data, it asserts the ACK signal in response to the REQ

signal. The asserting of the ACK signal acknowledges the request and grants permission for the

requesting cell to use the data bus.

The handshaking process between cells typically involves a combination of the REQ and ACK

signals. When a cell wants to transmit data, it asserts the REQ signal, indicating its desire to use

the data bus. The receiving cell(s) monitor the REQ signal and respond with an ACK signal if they

are available to receive the data. If multiple cells assert the REQ signal simultaneously, a priority

scheme may be used to determine which cell gets access to the data bus. Once the requesting

cell receives the ACK signal, it can proceed to transmit the desired data or perform the requested

operation on the data bus. This ensures that only one cell pair has control of the bus at any given

time, preventing conflicts and maintaining proper data integrity. After the data transmission is

complete, the cells may release the bus, and the process repeats for subsequent data transmissions.

This handshaking process ensures proper synchronization and arbitration of the data bus, pre-

venting conflicts and enabling reliable communication between cells in the system. This described

behaviour is shown in figure 2.4.

Figure 2.4: AER Behaviour [3]



10 Background

This approach reduces the required number of interconnection wires from N to approximately

log2(N). The spike is uniquely composed by the location of its sender, which is explicitly encoded

as an address, and the time that it occurred, which might not be explicitly encoded since events

are communicated in real-time. This encoded spike is called an address event.

This address event carries information about the target address, which identifies the destina-

tion. The target address specifies the location or identifier of the neuron or processing element that

should receive the event.

The source address, although not explicitly included in the address-event itself, is implicitly

determined by the originating neuron. This is the reason why an address-event in the AER protocol

primarily only includes the target address, which indicates where the event should be routed within

the neuromorphic system.

So, in summary, the Address Event Representation (AER) protocol is considered a very ef-

ficient communication scheme used in the context of neuromorphic computing. It encodes the

timing and location of spikes into digital signals. By transmitting spikes asynchronously and in

parallel, if multiple channels are being used, AER enables low-latency communication between

different components, closely resembling the communication patterns of biological neural net-

works.

2.6 Network-on-Chip (NoC)

Network-on-Chip (NoC) is a communication infrastructure used in integrated circuits (ICs) to fa-

cilitate efficient data transfer between different modules or processing resources within the chip.

It replaces traditional bus-based architectures with a packet-switched network. It achieves this by

incorporating multiple routing modules strategically placed throughout the circuit. These routing

modules efficiently route information signals within the chip using packets and time-division mul-

tiplexing (TDM). In essence, NoCs function similarly to internet routing protocols. An example

of a mesh topology is depicted in Figure 2.5, where each resource module is connected to an

Interconnect IP (IIP).

Figure 2.5: 2-D mesh topology of NoC [4]
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Their usability is currently being studied in the context of neuromorphic computing. These

NoCs provide connectivity by offering a scalable and flexible means of connecting the numerous

processing elements, such as neurons and synapses, that comprise neuromorphic chips. Further-

more, NoCs offer low latency and high bandwidth communication channels, which are vital for

real-time processing and rapid data transfer. This characteristic is particularly beneficial for neu-

romorphic chip designs, where quick and efficient communication between different elements is

critical for achieving accurate neural network computations. This when paired with the AER

protocol, due to its properties, allows for a great number of advantages such as the reduction of

bandwidth requirements in interconnects, asynchronous communication of the system, and overall

provides flexibility and scalability.

In this work, the primary focus will be on utilizing the AER (Address Event Representation)

protocol to establish communication between chips running SNNs and interchip applications. The

emphasis will be on exploring how AER can facilitate interchip communication, rather than delv-

ing deeply into the specific usage of AER within the NoC interconnects themselves. However, it is

important to note that the AER protocol inherently offers a range of advantages to this connectivity

realm, as previously mentioned.

2.7 Spike Timing-Dependent Plasticity (STDP)

Spike-timing-dependent plasticity is the biological process that adjusts the strength of connections

between neurons in the brain. This process is based on the Hebbian learning theory. The change in

strength of a connection bases itself on the relative timing of a particular neuron output and input

spikes, these are also called presynaptic and postsynaptic events. Simply put, under an STDP

process, if an input spike to a neuron tends to occur immediately before that neuron’s output spike,

then that particular input is made stronger, and if an input spike tends to occur immediately after an

output spike, then that particular input is made weaker, hence the name: “spike-timing-dependent

plasticity”. This plasticity makes it so that inputs that might be the cause of the post-synaptic

neuron’s excitation are made even more likely to contribute to it in the future, whereas inputs that

are not the cause of the post-synaptic spike are made less likely to contribute to it in the future.

The amount of strengthening or weakening the synaptic connection goes through is dependent on

the time interval between the two events, with the following formula being used to calculate the

change in the weight of the connection:

Figure 2.6: Weight update formula [3]

where tpre and tpost denote the time stamps of presynaptic and postsynaptic events.
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This synaptic connection updating rule is achieved by further enhancing the AER architecture

with two synaptic event queues. One for the presynaptic events and one for the postsynaptic ones.

When an event occurs, its address is entered into the appropriate queue along with an associated

value initialised to τ+ or τ-. This value is decremented over time [5]. Then for each type of event,

we go through each queue backwards to find the correspondent spikes and increment/decrement

the appropriate weights, strengthening or weakening the corresponding neuron connections.

2.8 Digital Design Methodology

The digital design flow plays a crucial role in the creation and implementation of digital systems,

such as integrated circuits (ICs). It encompasses a series of steps and methodologies that are

followed to transform an initial concept or idea into a fully functional digital product. Fundamen-

tally understanding the digital design flow is essential because it serves as the foundation for the

subsequent processes and methodologies discussed in this dissertation.

The digital design flow, excluding the processes related to manufacturing part, typically in-

volves the following stages, represented in Figure 2.7:

• Specification: In this initial stage, the requirements and specifications of the digital sys-

tem are defined. This includes determining the functionality, performance goals, power

constraints, and other design specifications.

• Architectural Design: Based on the specifications, the system architecture is designed at

a high level. This involves identifying the key components, their interconnections, and

defining the overall structure of the system.

• Logic Design: The logical behaviour of the system is defined in this stage. It involves the

creation of a digital circuit representation using hardware description languages (HDLs) like

VHDL or Verilog. The design is divided into smaller modules or blocks, and the intercon-

nections between these blocks are established.

• Verification: Once the logic design is complete, verification techniques are employed to

ensure the correctness of the design. This involves performing various tests, simulations,

and formal verification methods to detect and fix any design issues or bugs.

• Synthesis: In the synthesis stage, the RTL (Register Transfer Level) description of the de-

sign is transformed into a gate-level representation. Synthesis tools map the logical de-

scription into a network of standard cells from a chosen library, optimizing for factors like

performance, area, and power consumption.

• Physical Design: Physical design deals with the layout and placement of the synthesized

design onto a silicon die. It involves floor planning, placement of cells, routing of intercon-

nects, and other physical optimization techniques. The output is a Physical Design File that

represents the final layout of the design.



2.9 Standard Cells 13

Figure 2.7: Digital Design Flow Schematic

These brief mentions of each stage of the process serve to provide an understanding of the

entire design process and enable readers to follow the subsequent chapters that delve into specific

aspects or methodologies within this flow. It sets the context for discussing topics related to digital

system design throughout the dissertation. More specific details regarding the CAD (Computer-

Aided Design) tools used in the digital design flow will be explained in Chapter 3 and 4.2. These

chapters will delve into the software tools and methodologies employed to facilitate various stages

of the design process.

2.9 Standard Cells

Standard cells play a pivotal role in modern digital design methodology, serving as pre-designed,

reusable, and well-characterized digital logic building blocks. These cells consist of fundamental

logic gates like NAND, NOR, AND, OR, flip-flops, and other combinational and sequential ele-

ments. Meticulously crafted to adhere to specific design rules and compatibility guidelines set by

semiconductor foundries, their standardized nature allows seamless assembly and interconnection

to form complex circuits and systems with remarkable efficiency.

Designed to optimize performance, area, and power consumption, standard cells strike a bal-

ance between these trade-offs. They offer predictable and consistent performance, simplifying the
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design process and enabling foundries to achieve reliable production. The reusability of standard

cells promotes design reuse, significantly reducing design time, verification efforts, and overall

time-to-market for integrated circuits.

In the digital design methodology flow, standard cells come into play during the RTL (Reg-

ister Transfer Level) synthesis stage, where Electronic Design Automation (EDA) tools convert

high-level architectural specifications into RTL representations. At this point, the RTL code is

mapped to specific standard cell instances from a technology library, each representing a prede-

fined logic function. These cells are characterized and optimized for performance, area, and power

consumption.

Subsequently, during RTL-to-Gate-Level synthesis, the design undergoes further optimization

using various EDA tools, taking into account power, timing, and area considerations. The final step

in the process involves the physical design phase, where the placement and routing of standard cell

instances are meticulously determined to create the chip’s layout.

Throughout the entire digital design methodology, standard cells ensure a streamlined and ef-

ficient process, facilitating design reuse, enabling quick iterations, and empowering designers to

create advanced integrated circuits that meet the demands of modern technology. Their indispens-

able role in the semiconductor industry continues to drive innovation and progress, paving the way

for increasingly sophisticated electronic devices.



Chapter 3

State-of-the-Art

In this chapter, a discussion of the various approaches by researchers and the scientific community

are taken into consideration when developing their AER solutions is presented.

3.1 Introduction

In the last few years, there has been a great interest in the field of neuromorphic computing and

exploring its potential for implementation. Studies have been conducted to investigate the AER

protocol and its suitability for large-scale neuromorphic systems with a high number of neurons.

These studies have led to significant advancements in neuromorphic hardware, paving the way

for the development of more efficient, scalable, and capable AER-based systems. However, it is

worth noting that detailed information regarding the specific implementations of these advance-

ments is relatively scarce within the scientific community. While there has been progress in the

design of AER hardware, the specific technical details and methodologies employed in these im-

plementations are not extensively documented or readily available. This limited accessibility to

implementation specifics may be due to various factors, including proprietary considerations, on-

going research and development efforts, or simply the fast-paced nature of the field.

Nonetheless, the research community continues to explore and propose new designs, learning

rules, and network architectures that harness the unique capabilities of AER-based systems. While

the exact implementation details may not be widely disseminated, the general trend suggests a

focus on improving data transmission and processing speed, enhancing the accuracy, reliability,

and robustness of the system, and exploring innovative learning mechanisms.

The objective of this project is to devise a solution that leverages the most effective elements

from currently established architectures while ensuring feasibility within the desired timeline.

3.2 Solution Aspects

In this section, the main aspects surrounding the solutions researched will be discussed. Many

solutions have been developed, and although somewhat similar in their approaches to solving the

15
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problem, they possess some differences in extra techniques and designs. The main differences

between these approaches are based on the following:

• Hardware platform: Different articles may describe AER implementations that use different

hardware designs, depending on the specific requirements of the system. For example,

some implementations may use specialized circuits such as ASICs to improve the speed and

accuracy of data processing, while others may rely on more adaptive hardware like FPGAs

and FPAAs.

• Data transmission: The way in which data is transmitted in an AER-based system can also

vary between articles. Some implementations of articles seen, use high-speed digital sig-

nalling techniques, such as LVDS or M-LVDS [6] [10] paired with SerDes, while others

use more simple or low-power approaches like using log2(N) wires to send the addresses

between cores.

• Learning algorithms: The specific learning algorithm used in an AER-based system can also

vary between articles. Some implementations may use STDP or other types of plasticity-

based learning, while others may use reinforcement learning, unsupervised learning, or

other types of algorithms.

• Network architecture: The specific network architecture used in an AER-based system can

also vary between articles. Some implementations may use fully connected architectures,

while others may have used more sparsely connected architectures. This makes a difference

in the number of addresses used, and how they are encoded.

Both the learning algorithms and the network architecture are out of the main scope of this

work, but will be considered when developing a solution. Having said that, the following aspects

are important techniques that stand out in the research articles pertaining to this topic.

3.2.1 Hardware

From the conducted research, it has been found that there are more generalized solutions that do

not require specific hardware and can be implemented on both low-cost FPGAs and, potentially,

ASICs. However, among the implemented approaches, there are those that utilize FPGAs for

adaptive hardware design [11] [12], others that make use of FPAAs [13], and additional approaches

that leverage other adaptive hardware platforms [14][15][16].

FPGAs are digital circuits that can be programmed to perform a wide range of tasks, includ-

ing implementing digital logic circuits, digital signal processing, and microcontrollers. FPGAs

are widely used in a variety of applications, including in the field of neuromorphic computing.

FPAAs are similar to FPGAs, but they are designed to perform analogue functions such as filter-

ing, amplifying, and converting signals. FPAAs are often used in applications where it is necessary

to process analogue signals, such as in sensors and instrumentation. FPGAs are often preferred
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when flexibility, digital processing, and complex control logic are important factors in these neuro-

morphic computing applications. On the other hand, FPAAs are more suitable for applications that

require analogue signal processing, energy efficiency, and mixed-signal integration. The choice

between the two depends on the specific needs and constraints of the application at hand.

While FPGAs and FPAAs have their advantages, the use of ASICs (Application-Specific Inte-

grated Circuits) deserves strong consideration for neuromorphic computing applications. ASICs

are custom-designed chips optimized for specific tasks, resulting in unparalleled performance and

computational efficiency. In applications where emulating brain-like functionality can be compu-

tationally demanding, ASICs’ power efficiency is crucial for handling large-scale neural networks

effectively. Moreover, ASICs offer low-latency performance, making them well-suited for real-

time processing, which is essential in various fields such as robotics and autonomous vehicles.

Their scalability, combined with the ability to tailor the design to meet the specific requirements of

a neuromorphic computing system, allows for the implementation of large-scale neural networks

in a single chip. While ASIC design and fabrication may involve higher initial costs, they become

cost-effective when mass-produced, making ASICs a viable option for large-scale deployments.

3.2.2 Data transmission

When it comes to data transmission, as mentioned before, some approaches in articles simply

transmit the addresses to the receiver using log2(N) wires, where N represents the number of neu-

rons fully connected to another N neurons, and others use more complex approaches such as using

a SerDes (Serializer-Deserializer chip) paired with LVDS (Low Voltage Differential Signalling) to

achieve using much fewer wires and keeping higher speeds.

3.2.2.1 SerDes

SerDes stands for Serializer/Deserializer and refers to a technology used for transmitting and re-

ceiving high-speed serial data streams over longer distances, typically between integrated circuits

ICs or across communication interfaces.

The purpose of SerDes technology is to convert parallel data into a serial data stream at the

transmitting end, and then convert it back to parallel data at the receiving end, as shown in Figure

3.1. This enables the transmission of a large amount of data over a smaller number of physical

wires or channels, reducing the complexity and cost of the interconnects.

The serializer takes parallel data, typically in the form of multiple bits, and converts it into a

high-speed serial data stream. This serialized data is transmitted through a communication chan-

nel, such as LVDS in many cases. At the receiving end, the deserializer receives the serial data

stream and converts it back into parallel data, reconstructing the original data pattern.

SerDes technology can be utilized in conjunction with Address Event Representation (AER)

for communication within and between neuromorphic chips. Within a single neuromorphic chip

(intra-chip communication), SerDes technology can be employed to transmit AER-encoded events

between different neurons or synapse circuits. The parallel outputs of neurons or synapses can be
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Figure 3.1: Basic SerDes operation

serialized into a high-speed serial data stream using a SerDes circuit, enabling efficient transmis-

sion of events across the chip. This serialization allows for a reduction in the number of intercon-

nects required, leading to lower power consumption and improved overall chip performance.

3.2.2.2 LVDS

In LVDS (Low-Voltage Differential), the data is encoded as the voltage difference between two

signal lines: the positive (P) and the negative (N) lines. The voltage on the positive line is higher

than on the negative line for a logic high (1), while the voltage on the negative line is higher

for a logic low (0). The voltage difference between the P and N lines represents the data being

transmitted.

LVDS uses a low voltage swing, typically around 350 mV, which allows for low power con-

sumption and minimizes electromagnetic interference (EMI). The differential signalling scheme

also helps in reducing noise susceptibility, as noise affects both the P and N lines equally and the

receiver only looks at the voltage difference between them. An example of an LVDS schematic is

shown in Figure 3.2.

To ensure reliable data transmission, LVDS typically requires a balanced transmission line

with controlled impedance. It is particularly well-suited to applications where low power con-

sumption and high data rates are required, such as in portable and battery-powered devices. This

is why LVDS requires a driver to encode the data into the appropriate voltage levels for trans-

mission. The driver is responsible for converting the digital data signal into the complementary

voltage signals on the positive (P) and negative (N) lines.

M-LVDS is an extension of LVDS that allows multiple devices to communicate with each

other using a shared communication channel. This makes it suitable for use in multipoint commu-

nication systems.

In the context of neuromorphic computing, LVDS and M-LVDS are often used in the design

of the Address Event Representation (AER) protocol [6][10] [17]. This use of LVDS and M-

LVDS in the AER protocol allows neuromorphic devices to transmit and receive data at high
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Figure 3.2: Schematic depicting basic LVDS circuit operation

speeds and long distances than when designed without it. It also offers a great resistance to the

electromagnetic interference (EMI). All these advantages make it for interchip communication.

3.2.2.3 Manchester Coding

Manchester coding is a differential encoding scheme used for reliable data transmission in digital

communication systems. It is characterized by its ability to synchronize the receiver’s clock with

the sender’s clock, ensuring accurate decoding of the transmitted data. In Manchester coding, each

bit of the original binary data is represented by a transition between two voltage levels. The two

voltage levels, typically denoted as high and low, are assigned specific meanings. There are two

conventions, but the most common one is such that a high-to-low transition represents a binary 0,

while a low-to-high transition represents a binary 1, as a part of standard IEEE 802.3.

Figure 3.3: Manchester coding

The encoding process involves dividing each bit period into two equal time intervals. The first

half of the bit period represents the value of the bit being transmitted, while the second half repre-

sents its complement. To transmit a binary 0, a high-to-low transition occurs in the middle of the

bit period, while a low-to-high transition represents a binary 1, as seen in Figure 3.3. This differ-

ential encoding approach provides several advantages. Firstly, it ensures that there is at least one

transition during each bit period, facilitating clock recovery at the receiver’s end. This eliminates
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the need for a separate clock signal for synchronization purposes. Secondly, the transitions carry

the data, reducing the reliance on the absolute voltage levels, which makes Manchester coding

more resilient to noise and channel distortion.

At the receiver’s end, the Manchester-encoded signal is sampled at the midpoint of each bit

period. By comparing the voltage level at the midpoint with the previous sample, the receiver can

accurately decode the original binary data.

This is why Manchester coding often plays a crucial role in data transmission on AER (Address-

Event Representation) solutions with serializers [6] due to its ability to provide clock synchroniza-

tion and resistance to noise makes it an effective solution for ensuring reliable data transmission.

3.2.3 AER enhancements

In its original formulation, AER implements a one-to-one connection topology, which is appro-

priate for mimicking the optic and auditory neural systems [18] [11] [19]. However, there are

implementations that make use of other elements to achieve better results and allow for more

complex neural circuits.

Additional methods are required to create more complex neural circuits capable of convergent

and divergent connectivity between cells. To facilitate these methods, Address-Event Represen-

tation (AER) enhancements have been developed, incorporating memory-based projective field

mapping. These enhancements enable routing an address-event to multiple receiver locations by

utilizing a look-up table (LUT). Each row of the LUT contains information about the sender’s

location, destination(s), and connection polarity, which dictates if it contributes to the connection

and the connection strength. This enhanced architecture also makes use of an integrate-and-fire

address-event transceiver (IFAT) and some other support circuitry [20] [21]. An example of a

system with this support circuitry is shown in Figure 3.4.

Figure 3.4: Schematic of the enhanced AER architecture [5]

This can also be helpful when this system is being integrated through a NoC architecture. The

routing algorithms can be designed to leverage the information stored in the LUT of the enhanced
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AER system, as shown in Figure 3.5. These routing algorithms determine the optimal path for

address-events to traverse through the neural network cores, ensuring that the events reach the

desired multiple receiver locations efficiently.

Figure 3.5: Address-based routing for spikes [5]

This enhanced system possesses other advantages, such as the capability of emulating leak-

age like in real neurons by regularly sending inhibitory events, which, in turn, by changing the

frequency of these decay events, allows for the warp of the timescale.

3.2.4 Arbiters and Encoders

It is important to point out how encoders and arbiters play a vital role in AER systems by fa-

cilitating the placement of events on the shared data bus. To ensure effective competition with

biological systems, these arbiters must exhibit high efficiency and operate at optimal speeds. It is

crucial for these arbiters to be highly efficient and operate at high speeds without introducing any

delays to the overall process. The integration of encoders and arbiters into a single module called

"encoding-arbiters" can offer several advantages in AER systems. Combining these functionalities

can lead to improved efficiency, reduced latency, and enhanced scalability. By integrating encod-

ing and arbitration into a single module, the overall system complexity can be reduced, resulting

in streamlined operations.

In terms of spike queuing, it is true that short-duration events have a minimal chance of over-

lapping, and even if they do occur simultaneously in multiple nodes, their arrangement can be

flexibly adjusted to maintain the integrity of information. Similar to real neurons, where the firing

rate is limited, the occurrence of synchronous events can be rearranged in a way that they happen

in quick succession, ensuring minimal information loss. In these scenarios, arbiters play a crucial

role by coordinating the scheduling and sequencing of these events, ensuring fair access to the

shared resources and resolving any conflicts that may arise. Arbiters help manage the allocation

of time slots or resources among the nodes, ensuring efficient and coordinated communication

within the neuromorphic system [22].

Encoding arbiters often become performance bottlenecks, particularly in scaling up to handle

complex and large-scale systems with lots of bits and possible addresses. Extensive research has

been conducted to address these challenges, as evident in notable studies like [20], [23] and [24].
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The objective of this research is to overcome the bottlenecks associated with encoding arbiters,

enabling the development of more sophisticated and expansive AER systems.

3.3 Conclusion

Research has been conducted on state-of-the-art techniques, and the aim is to incorporate the

most effective and optimal elements discovered and, with that in mind, design and implement a

circuit capable of effectively implementing an Address-Event Representation (AER) protocol in a

neuromorphic system.

To ensure flexibility in meeting project requirements, a custom hardware ASIC chip will be

developed, providing greater freedom in design and adaptation. This aligns with the advantages

of using ASICs in neuromorphic computing, as they offer purpose-built performance and power

efficiency. Their scalability further allows for handling increasing computational demands without

external components. Moreover, exploring the capabilities that an ASIC can enable opens up new

possibilities for customization and innovation. With the ability to design specialized hardware

for specific tasks, the project can explore architectures and approaches, pushing the boundaries

of neuromorphic computing. As such, by using custom ASIC development, the project gains a

configurable and efficient approach to meet its specific goals.

For the address-encoding arbiters, a simple fixed-priority approach will be adopted. The pri-

mary objective is to ensure efficient handling of a great number of addresses, all while keeping

the delays of the operation to a minimum. In terms of data transmission, an initial approach based

on multiple wires with minimal delay will be implemented. This basic transmission method will

be iteratively improved with the ultimate goal of incorporating a SerDes that can be paired with

an LVDS interface to allow for communication across great distances while still maintaining great

speeds. This advanced setup will enable communication between the sender and receiver using

only a few wires, while maintaining a high-speed connection capable of handling the spike rate

effectively. Due to the complexity involved in enhancing the AER protocol and the challenges

associated with complex routing and NoC, it is unlikely that these enhancements can be fully im-

plemented within the desired timeframe of this project. Nevertheless, integrating and expanding

upon these enhancements would be a valuable addition to the overall project.



Chapter 4

Development and Results

In this chapter, the development of the system will be explained, presenting and explaining the

methodology and tools used and starting point before presenting each of the iterations and their

weak and strong points, as well as the results obtained.

4.1 Methodology

Inspecting the problem at hand, the steps to create a solution should be the following, drawing

upon the digital design methodology outlined in Subsection 2.8:

1. Define Requirements: Clearly define the requirements and functionalities of the AER pro-

tocol chip and the technology that will be used in the design. Determine what it should

do, including its input/output behaviour, timing constraints, and performance specifications.

This step is crucial to ensure a clear direction for the design process.

2. Create Verilog Models: Develop Verilog models that capture the behaviour and function-

ality of the AER protocol chip. Break down the design into modules and submodules as

needed. Implement the necessary logic and algorithms to handle address encoding, data

transmission, and any other required functionalities.

3. Verification and refinement: Create comprehensive testbenches to validate Verilog model

correctness and functionality. Employ appropriate test stimuli for model simulation to en-

sure their expected performance. Address and resolve any issues discovered during testing.

If the Verilog models pass the initial testing phase, proceed to an iterative refinement pro-

cess. Follow the plan detailed in the conclusion section (Section 3.3). Identify and imple-

ment improvements or optimizations to the design. Continuously test, iterate, and refine the

models until they meet the specified performance and functionality standards.

4. Synthesize the Design: Once the Verilog models have been refined and tested successfully,

proceed to synthesize the design. Use the synthesis tool provided (Cadence Genus) to con-

vert the behavioural description into a gate-level netlist. This step generates the digital logic

implementation of the AER protocol chip.

23
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5. Layout and Physical Design: Take the synthesized netlist and perform the layout and

physical design of the chip using Cadence Innovus. This involves mapping the logic gates

onto the physical cells of the target technology, considering factors such as timing, power,

and area constraints. Create the necessary interconnections and routing structures.

6. Verify Again: After the layout is complete, perform testing to ensure that the physical

design meets the functional requirements.

7. Iterate and Make Changes: If any issues or shortcomings are identified during the testing

phase, make the necessary changes to the layout or design. Iterate as needed to address any

problems and improve the chip performance.

4.2 Tools used

The main tools that will be used to design and ultimately create the final chip will be the following:

• Xilinx Vivado [25]: Xilinx Vivado is a versatile software suite specifically crafted for FPGA

and PLD development. It provides engineers with an integrated development environment

(IDE) and robust behavioural simulation capabilities. This tool will be utilized to create

initial versions of Verilog models and conduct behavioural simulation tests on these models

throughout the iterative development process. The reason for utilizing this tool was due to

the experience with the IDE user interface.

• Cadence Xcelium [26]: Cadence Xcelium is a high-performance digital simulation tool

used for verifying and validating digital designs at the RTL, gate-level and physical level

stages of development. It offers fast simulation speeds, advanced debugging features, and

support for mixed-signal simulations. This tool will be used to simulate the obtained models

during the various stages and iterations of the development.

• Cadence Genus [27]: Cadence Genus is a synthesis tool offered by Cadence Design Sys-

tems, an industry-leading electronic design automation (EDA) company. Genus is used in

digital IC design to convert RTL (Register Transfer Level) descriptions written in hardware

description languages (such as Verilog or VHDL) into gate-level representations. It facil-

itates this logic synthesis by utilizing the technology standard cells provided, generating

gate-level netlists for simulation and testing (with tools like Cadence Xcellium), and pro-

ducing netlists that will later be used during the layout process. The tool reports will also

provide valuable information for analysis and refinement of the synthesis results.

• Cadence Innovus [28]: Cadence Innovus is a physical implementation tool used for trans-

forming gate-level netlists into optimized physical design layouts, considering timing, power,

and area constraints. It performs tasks such as physical synthesis, placement, and clock tree

synthesis. This will be used to handle the layout of the standard cells that will be used in
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creating the final chip and create the final netlists that will be used for simulations at the

physical level and ensure the final product has been developed correctly at the final stage.

4.3 Requirements

The requirements established for this project were intentionally designed to provide a certain de-

gree of flexibility, allowing for adaptability and optimization in various aspects. One critical re-

quirement was the minimum clock frequency of 100MHz, which was set to ensure that the system

could handle the input spike rate efficiently. By operating at this frequency, the circuit could ef-

fectively process and transmit spikes in a timely manner, accommodating the real-time demands

of the neuromorphic system and its learning algorithms.

In addition to the clock frequency, a critical requirement for the system was the ability to

receive spikes with a maximum width of 40 nanoseconds as input and accurately reconstruct them

as in the output lines.

Another of the established goals of this project was to design a system capable of effectively

handling 128 I/O spike lines while ensuring reliable spike processing and keeping delays to a

minimum.

It is important to emphasize that besides these requirements that were set, circuit optimization

was a key goal in this work. The primary focus was to minimize both the circuit footprint and the

delays encountered during spike arrival and transmission. By reducing the circuit size, valuable

resources could be conserved, enhancing cost-effectiveness and enabling the integration of addi-

tional components or modules within the system. Furthermore, minimizing the delays between

spike arrival and transmission was crucial to preserving the temporal accuracy of information flow

in the neuromorphic system.

4.4 Starting point

During the first stage of the development, an initial design was formulated. This initial design

primarily focused on implementing the fundamental functionalities of the AER protocol in a syn-

chronous manner by utilizing a clock signal for coordination between the components and without

focusing too much on timing and area optimizations. One of the goals of this initial approach was

to be able to handle conflicts that could arise when multiple spikes were generated by employing

a simple fixed priority arbiter to select a spike. The chosen spike would then be encoded into an

address and forwarded to a module responsible for transmitting the address to the receiver. The

module utilized REQ and ACK signals to ensure the correct transmission and reception of the ad-

dress. The receiver module would decode the address and generate an identical spike, transmitting

it through the corresponding line indicated by the received address. This behaviour is illustrated

through the following Figure 4.1. Based on the requirements, it was established that the spikes

would maintain a constant width of 40 nanoseconds, equivalent to 4 clock cycles when the clock

is operating at a frequency of 100 MHz, and consequently, to successfully reconstruct these spikes
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received, the decoder will have to send this to another module that would generate a spike based

on the spike line that would be set to one. This spike generator would make use of a clock signal

at the same frequency of 100MHz and generate the spikes based on that.

Figure 4.1: First sketch of the design of the AER system

From this analysis of the first sketch, a model can be created that seeks what was set from the

initial sketch and integrates the clock signal to better understand the relations between the modules

and how they will use this clock signal. Thus, a first design was developed as a behavioural Verilog

model, which implemented these features in a simple way, intending to serve as an initial stepping

stone, a starting point, intending to refine and expand upon it to develop an enhanced AER module.

The goal was to create a more advanced module that, through the use of more complex fea-

tures, could significantly reduce delays, minimize the area occupied, and optimize the utilization

of wires.

By analysing and studying this initial design, valuable insights could be gained regarding the

different components and their interactions within the AER RX and TX modules. This under-

standing allowed for a logical division of these components into distinct modules, each serving a

specific purpose and contributing to the overall functionality of the system. The modular approach

facilitated better organization and scalability for future improvements of each module. This first

design is represented in the following Figure 4.2.

This design was also done dynamically, allowing for the N number of input spike lines to be

introduced as a parameter on the top module, and its submodules would be adapted to that number.

This flexibility is an advantage since it easily allows studying the scalability of the system by

increasing the number of needed lines.

Relatively to the implementation of this model, this initial model consisted of a simple fixed

priority arbiter and an encoder to convert the selected signal from the arbiter to an address. This

address is then put on a simple latch element ("out") that could be reset and that would output the

addresses through log2(N) wires to the RX module. The behaviour of this latch is controlled by
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Figure 4.2: Schematic of a very preliminary design model of the AER system

another module that acts as flow control, using the handshaking signals REQ and ACK to ensure

the TX and RX do not have conflicts and respect their respective timing constraints. Both the

Encoder and Flow Control modules would use TX clock. On the RX side, the same latch and flow

control module principles would be used to ensure the address was received correctly. And then,

from the latch, the decoder would decode the address and generate the spike in the correct output

spike line. The clock signals in both the RX and TX do not need to be synchronized and can be

completely different, as the handshaking protocol ensures the data is received correctly between

the two independent modules.

This works as a "pseudo-asynchronous" system since it makes use of the asynchronous hand-

shaking protocol through the use of REQ and ACK, but is limited by the clock to iterate through

the flow in most elements. This approach might seem strange at first, but the reason for using

an asynchronous protocol in a synchronous system was to later remove the clock and create an

asynchronous system paired with a synchronous transmission system. Also, due to the fact that at

this time, the clock speed is to be much faster than the spike generation and synaptic decrement in

plasticity rate, the delay is introduced by inserting a clock in the system.

This initial model would later change through the iterative refinement process that is aimed to

enhance the AER module capabilities, but the principles and flow would remain the same.

After the first sketch of the design, some iterations were developed, each with a specific goal

and advantage in mind. These iterations were not very similar to the initial sketch, as they sought

to simplify and reduce the modules to their simplest possible, as to try and not be too heavy on area

and on delays. The most notable changes were merges into a system composed of fewer modules.
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4.5 First AER Iteration: Foundational Approach

4.5.1 Architecture

The initial iteration was aligned with the original draft since it maintained most of the transmis-

sion principles from the original sketch and was used for log2(N) lines transmission of addresses

between the TX and RX modules. This, in one way, constitutes a great advantage as it is the sim-

plest way to send the address and offers little to no delay due to the quick processing of the simple

control sender module.

However, it has many address lines used, which constitutes a disadvantage. The abundance

of wires in integrated circuits (ICs) poses several drawbacks that significantly affect overall chip

performance. The extensive wiring leads to signal delays, impeding the speed and efficiency

of data transmission within the IC, which can hinder the chip functionality and responsiveness.

Furthermore, an excess of wires results in a slight increase in power consumption attributed to

resistive losses. Additionally, the excessive wiring occupies valuable space on the chip, limiting

the room for integrating additional components and functionalities, thereby restricting the chip

overall capabilities.

The biggest differences from the initial model are how the flow control and transmission are

implemented. In this system, a single module called Control Sender is used to do both the flow

control, handshaking, and the addresses’ transmission.

In order to code 128 possible spike positions with 7 bits, the first line address is to be coded as

the binary code 0000000, this causes a problem since there is no way to distinguish it from when

no spike is being transmitted as the address lines are also set at 0000000 during inactivity. To

solve this problem, an enable signal is created by the priority encoder to signal the control sender

module that an address is being transmitted, as seen in Figure 4.3. This works the same way as the

REQ signal to signal an address is being sent to the RX module.

Figure 4.3: Schematic of the 1st iteration of the AER system
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In this iteration, the Priority Encoder waits until a spike is received, encodes it into the

corresponding address and generates the signal enable. If two or more spikes appear at the same

instant, it will decide which one is to be encoded through its fixed priority. It also has no buffer

for spikes that might occur in quick succession, which means that if two spikes come one after

another, it will lose the second as long as the first is still being sent by the sender. On the one hand,

this allows for the system to be quicker and smaller, but on the other hand, if the rate of neuron

activation is high enough compared to the clock and transmission speed between TX and RX, it

might lose a lot of information, and a buffer such as simple FIFO might be worth implementing.

This Control Sender module makes use of the ENABLE and ACK signals to evaluate when it

can enable the output latch and change the input. It also checks if the input has changed and does

not transmit the new address until the transmission of the previous address is over. This module

was done with a minimum number of registers in order to minimize the number of clock cycles

needed to transmit the address, due to the importance of timing preservation for STPD learning.

The Control Receiver receives the REQ signal to know that the address is currently being sent

through the address lines. It then stores it and responds with the ACK signal to the transmitter,

and the transmission is finished. It then sends the stored address to the decoder.

The Decoder was implemented as a simple state machine, seen in Figure 4.4, where the ACK

signal starts. When it receives it, the address is decoded to know which spike output should be

used. Subsequently, through the use of a counter, it sets the decoded spike line to HIGH for the

number of cycles decided by the parameter NUM_CYCLES_PER_SPIKE (in this case 4 cycles,

due to the 100 MHz clock frequency). After completing the designated task, the module initiates

a reset process and enters a waiting state, anticipating the reception of the ACK signal. Upon

receiving the ACK signal, the module proceeds to restart the FSM, resuming its operation or

transitioning to the next state in the process.

This AER iteration also has the advantage of being reliable and robust to clock jitter. This

is due to its pseudo-asynchronous properties, which come from the usage of REQ and ACK that

ensure that the signal is always received and makes the transmission independent of their clock

relation.

4.5.2 Behavioural Simulation Results

As previously stated, the environment used to develop the initial Verilog models and conduct the

behavioural simulations was the Xilinx Vivado. The following waveform captures are from it.

Some extensive testing was done on the system. A testbench was developed for each module

to ensure they were operating correctly on a local level within the system. But to ensure the system

worked correctly, a bigger top module testbench was developed, presented in the following results

and waveforms.

In this simulation, the system was tested for several random input spikes and checked to see if

it would be able to output the correct one according to the fixed priority of the encoder. It was also

tested with two different clock signals at the TX and RX modules, with different phase differences,
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Figure 4.4: FSM of Decoder

to understand better if the system is robust enough to handle this difference through the use of the

REQ and ACK signals.

Figure 4.5: Waveform of AER iteration 1 - Delay from spike input and output

Based on the simulation results, shown in Figure 4.5, it is evident that this system exhibits

the worst approximate delay of 4 clock cycles or 40ns, starting from the moment the spike arrives

until the transmission initiates it as an output.

The testing also covered the possibility of multiple equal spikes being sent in quick succession,

and also the possibility of having spikes arriving at a time that was not exactly at the positive edge

of a clock signal. Both these possibilities do not constitute a problem due to the robustness of the

system. As long as the spike received is longer than a clock cycle, which it should be (spikes are

expected to have a constant width of 40ns and the cycles 10ns at 100MHz), the system only needs

a clock transition to detect and store a spike and later transmit it, as seen in Figure 4.6, where the

circle 1 highlights the input spike being one cycle long, and the circle 2 highlights the behaviour
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of REQ and ACK and enable signals.

Figure 4.6: Waveform of AER iteration 1 - Management of small spikes

If two spikes arrive, one right after the other, the system is robust enough to handle and transmit

both, without losing information, but will create a clock period of inactivity between them on the

output, as shown in Figure 4.7 by the coloured input and their corresponding output spikes.

Figure 4.7: Waveform of AER iteration 1 - Demonstration of how the system handles two consec-
utive spikes

The clock period of inactivity is created due to the execution of a reset on the counter that

generates the spikes after a spike has been generated. The described scenario is depicted in Figure

4.8 within the "Decoder" module, particularly in its counter register. In the initial transmission

highlighted by the first white circle, only one address is received, evident from the number of

ACKs and REQs received also. In the second white circle, two addresses arrive consecutively, and

it becomes apparent that the counter signal needs to reset to zero before generating another spike,

highlighted by the red circle. The figure also provides insights into the different states and their

corresponding actions.

4.5.3 Synthesis and Report Analysis

The synthesis process was efficiently executed using the Genus tool, which transformed the Ver-

ilog RTL code into a gate-level netlist. This netlist was based on the 130 nm technology standard

cells provided for the design. Throughout this process, various constraints were carefully taken

into account, including the specific technology requirements and user-defined constraints.

To ensure the robustness and accurate performance of the design, essential constraints were

specified, such as clock jitter and skew, input and output delays, and input and output load capac-

itance. By incorporating these constraints, the Genus tool was able to optimize the design to meet
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Figure 4.8: Waveform of AER iteration 1 - RX modules signals

the desired timing characteristics, enabling better synchronization and helping to achieve timing

closure. High-level schematics of the products of this synthesis for both the TX and RX modules

are depicted in the following Figure 4.9

Figure 4.9: Schematic of the TX module post-synthesis with the cells and their connections

It also served as a comprehensive design analysis tool, inspecting the design for potential

structure issues or challenges, which allowed for the integrity and reliability of the resulting netlists

to be ensured. Another asset offered by the Genus tool was its ability to generate detailed reports of

various aspects of the design. These reports were helpful during the optimization phase, offering

information related to timing, area utilization, and other key design metrics.

After going through the cyclic process of optimization and redesigning the initial model, the

reports for both the TX and RX modules indicated that there were no structural issues. The result-

ing netlists complied with timing rules and area requirements, validating the final system design.

From the report analysis, it is also important to note that the reports also confirmed that the

system would operate without any problems at the intended clock speed of 100MHz. Also, there

was no negative slack, suggesting that the design could potentially handle even higher clock speeds
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without performance issues. However, it is essential to recognize that the critical path in the

developed systems was identified as the clock fanout, which might benefit from improvement

through Clock Tree Synthesis (CTS) techniques, but since for this purpose, the designed chip is

relatively simple and does not need to operate at higher speeds, no CTS was conducted.

Another noteworthy application of the Genus tool was to determine the maximum achievable

frequency before encountering a negative timing slack in any of the TX or RX modules. The results

revealed that both the RX and TX modules could operate at frequencies up to 340 MHz without

causing any malfunctioning due to negative timing slack, with the TX module being the limiting

one. This remarkable finding exceeded the desired frequency by more than threefold. Lever-

aging this higher frequency could prove advantageous as it enables higher transmission speeds,

addressing the challenge of potential spike loss during data transmission. The increased frequency

allows for faster data transmission, which, in turn, enhances the efficiency and reliability of spike

transmission in the system. Additionally, operating at a higher frequency can provide enhanced

temporal resolution, which is important in the context of STDP learning algorithms. STDP re-

lies on precise timing relationships between neural spikes, and the improved temporal resolution

enabled by the higher frequency can facilitate more accurate and effective STDP-based learning

processes.

Additionally, during the synthesis process, a comprehensive Multi-Mode Multi-Corner (MMMC)

analysis was employed to ensure the chip design robustness and reliability under a wide range of

operating conditions and process variations. These corner variations arise from variations in Pro-

cess, Voltage, and Temperature (PVT). In the MMMC analysis, three distinct corners were con-

sidered: Slow, Nominal, and Fast. In the Nominal corner, the voltage used was set to 1.2V, and the

temperature was maintained at 25ºC, representing typical operating conditions. The Nominal Cor-

ner provides an essential benchmark to assess the chip performance under standard scenarios. In

contrast, the Slow Corner introduced more challenging conditions. The voltage used was reduced

to 0.9V, and the temperature was elevated to 125ºC, simulating conditions that push the chip to its

limits. Evaluating the chip functionality under the Slow corner allowed us to understand how it

would perform in less favourable scenarios.

Despite the corner conditions in PVT, this meticulous design and synthesis process ensured

that the fundamental chip layout and architecture remained consistent throughout all the corners.

This stability across process variables is a testament to the robustness of the design approach and

its ability to withstand variations in manufacturing conditions.

After completing the synthesis iterations and refining the netlists, the subsequent step involved

creating a physical-level model of the final system through layout design. The netlists obtained

from the synthesis steps served as the blueprint for placing and routing the system components on

the chip.

4.5.4 Layout and Simulation Results

When it comes to the layout process, all design layouts created were done in a consistent and

systematic manner. Each layout followed a standardized set of steps, and as a result, scripts were
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developed and used to streamline the overall process of creating and optimizing the final designs.

These scripts are available in the annex.

The approach used for floorplanning involved creating an initial floorplan with a square site

core positioned at the centre of the layout and leaving 10 µm spacing around all sides, reserved

for power planning. This initial floorplan not only defined the specific type of site core but also

determined the percentage of core utilization. Subsequently, power rings were constructed around

the design, maintaining the specified spacing around the core, to ease the distribution of VCC

and GND signals. This technique is commonly used in integrated circuit layout design, where a

ring-shaped structure is created around the perimeter of the layout.

The ring surrounding the design includes both VCC (power supply) and GND (ground) rings.

The ring around design with VCC and GND proves to be an effective technique for providing a

stable and uniform power distribution, reducing noise, and enhancing signal integrity within an

integrated circuit. It helps create a more robust and reliable design by providing a well-defined

power and ground structure. This design can also be complemented through vias or metal traces

created throughout the circuitry, called stripes. These connections ensure the power supply and

ground are distributed uniformly throughout the IC. A layout schematic of this approach on the

Innovus program can be seen in the following Figure 4.10.

Figure 4.10: Layout schematic of the power planning

After establishing the power delivery framework for the chip, the next step involved distribut-

ing the pins for all signals. To accommodate the substantial size of 128 Lines of the IN array in

the TX module and the OUT array in the RX module, these pins were spread along the chip Top,

Right, and Bottom edges. By distributing them across these edges, the aim was to optimize the

routing process and prevent congestion along any single edge.
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In addition to the IN and OUT arrays, the remaining signals, including REQ, ACK, OUT

(TX), and IN (RX), were distributed along the remaining Right edge. This deliberate distribution

approach can be observed in Figures 4.11 and 4.12. Such a distribution scheme avoided cluster-

ing connections exclusively on one edge, consequently enhancing the overall routing feasibility of

the layout process. Spreading the pins along multiple edges also achieved a balanced and stream-

lined layout, promoting smoother signal flow and reducing potential routing challenges. This pin

distribution strategy significantly contributed to the overall optimization and performance of the

chip design and allowed for a quicker layout routing time. This distribution can be seen in Figure

4.11.

Figure 4.11: Innovus snippet of layout with distributed pins and standard cells placed in lines

Some pins were added to the chip in the bottom right corner to enable the VCC and GND

power framework. A close-up snippet of this can be seen in Figure 4.12.

After defining the pin locations on the chip, the subsequent step involved placing the standard

cells using the automated ’placeDesign’ command in Innovus. This command leverages Innovus’

advanced placement algorithms and optimization techniques to position the cells within the chip

floorplan effectively. The placement process takes into account various factors, including signal

timing, power consumption, area utilization, and design constraints, ensuring a well-balanced and

optimized solution.

The ’placeDesign’ command analyses the design requirements and objectives, thereby mini-

mizing the need for manual intervention in the placement process. While users have some flex-

ibility to influence the placement of a module cells on the core, it was unnecessary to intervene

manually in this particular case. The automated placement algorithms successfully determined

the optimal positions for the technology cells. This step also creates some preliminary routing



36 Development and Results

Figure 4.12: Innovus snippet of layout with pins as pads for VCC and GND input

between cells in order to have an idea of how the placement will affect routing. The standard cells

placement on the chip core is represented in the following Figure 4.11.

Following the placement of the technology cells, the subsequent step involved routing connec-

tions between them, ensuring their proper connectivity to the power infrastructure. This process in-

volved establishing the necessary interconnections while adhering to design rules and constraints.

By carefully routing the connections, the design achieves efficient signal propagation and reliable

power distribution throughout the chip. There are some options that dictate how this routing is

done, but in this case, a timing-focused approach was selected, in order to preserve the timings as

much as possible. A snippet of the layout post routing is represented in Figure 4.13.

Figure 4.13: Innovus snippet of layout displaying all metal layers post routing
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The next crucial step in the chip design process is to add filler cells to fill the empty spaces

present in the core. These filler cells serve an essential purpose in improving chip density and

manufacturability. They are strategically placed between the technology cells to optimize the

layout. It also improves manufacturability by providing uniform spacing between technology

cells, resulting in smoother fabrication processes, reduced lithographic distortions, higher chip

yield, and overall better quality. An example of a chip after the filler cell placement has been done

is in Figure 4.14. An important thing to note is the dimensions of the final chips, which for the

TX was 96∗90µm, and RX was around 108∗104µm.

Figure 4.14: Innovus snippet of layout post filler cells placement

As mentioned before, Xcelium allows for physical-aware simulations, allowing you to con-

sider the physical characteristics and effects of the design during simulation. It does this through

the use of Standard Delay Format (SDF) files, which describe the delays that exist within the mod-

ules and their interconnects. This tool and setup were used to validate the final design of each

iteration. These final simulations were done using the previously used testbenches to compare if

the behaviour of the system was not heavily affected by the physical limitations. Since the layout

of both the TX and the RX modules were done separately, the delay and noise on the transmission

between the modules were not considered in the merged SDF files generated by the layout. As

such, this delay limitation had to be added by creating delays between the OUT and IN cells of the

TX and RX modules in the testbench. The delay chosen between these cells was 10 ns, equivalent

to a clock of travel time between the two.

The results of these post-layout simulations showed that both the TX and RX modules were

correctly synthesized, and were capable of encoding the spikes received and sending the addresses
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while using the REQ and ACK signals. It was also possible to conclude that the delays of the phys-

ical constraints, do not have a great impact on the transmission process when compared to the ideal

case presented in Section 4.5.2, which makes sense when considering the pseudo-asynchronous

taken.

4.6 Second AER Iteration - Leveraging SerDes-Assisted Communi-
cation with CLK Line

This iteration was built upon the first, with the intention of solving its greatest issue, the number

of wires used to connect both the TX and RX. It seeks to do this by using a SerDes, which would

serialize the addresses and later deserialize them, effectively decreasing the number of wires used

from log2(N) to only one to send the data.

In the first part of the SerDes, the serializer is placed on the end of the TX as a PISO module

and the deserializer at the beginning of the RX module as a SIPO module.

4.6.1 Architecture

Relatively to the last iteration, not much was changed in the Priority Encoder and Decoder, as

they are not directly connected to the serialization, deserialization and flow control processes. The

new module is shown in the following Figure 4.15:

Figure 4.15: Schematic of the 2nd iteration of the AER system

As seen, the SerDes makes use of two signals CLK and the serialized DATA. The CLK is

sent to simplify and ease the deserialization process, as then, no complex CDR techniques are

needed, such as clock recovery and Locked-loops such as DLLs and PLLs, this can be described

as "source-synchronous communication". In this approach, the TX sends the CLK that it used to

serialize the addresses and transmits it in a separate line along the serialized data. The deserializer

then uses this clock received to store the individual bits in a shift register to have the complete
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address after the number of clocks corresponding to the width of the address. Both these modules

are depicted in the following Figures 4.16 and 4.17.

Figure 4.16: Address serializer circuit with compatibility for flow control

It is possible to see that this implementation of the serializer also makes use of the REQ

and ACK signals for flow control and compatibility with the Control Sender module. This flow

control is made possible through the use of a basic C-element and a counter-done flag, which were

both obtained through a behavioural design through Verilog, instead of a custom approach. The

basic idea behind using a C-element is to create a feedback path where the output of a gate or logic

circuit is fed back into its own input. However, it is important to note that this behaviour design

approach can be more prone to issues such as race conditions, glitches, and timing violations.

Relatively to the counter-done flag, it serves to inform the rest of the system if already gone

through the width of the address.

In this implementation, the ACK signal is initially set to 1 throughout the transmission of the

address and remains in that state until the completion of the transmission. It effectively serves as

an indicator of ongoing activity during the transmission process. The ACK signal is then set to 0

after the transmission has finished, marking the end of the activity.

Relatively to the deserializer, it consists of a shift register and a counter that ensures the output

is only kept and sent after a certain number of clock cycles. This is to ensure all registers contain

the correct value. This shift register consists of an array of FFs with a width the same as the

address. This described system is depicted in Figure 4.17. After this value has been sent to

another memory element for the posterior decoding, all the registers are cleared in order to ensure

synchronization and to initialize this shift register array for the address transmission.

It is important to note, that this simple receiving system is not very robust to clock jitter, as

it has no countermeasures to ensure clock synchronicity with the data. This was studied in the

following subsection through the creation of a difference between the phases of the clock and

serialized data. But to ensure that both CLK and DATA signals would be sent at the same time,
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Figure 4.17: Deserializer circuit

a register would be used just before sending the clock. By passing the clock through a register,

the clock edge is delayed by one cycle. In this "register-based clock synchronization", the register

acts as a buffer, providing synchronization and reducing the possibility of metastability or timing

violations for the receiving part.

4.6.2 Behavioural Simulation Results

The Behavioural testing was done similarly to the ones for the previous iteration, with the objective

of understanding if the system worked correctly in ideal conditions and testing the robustness of

the system in possible signal delays.

Figure 4.18: Waveform of AER iteration 2 - Total transmission delay

Based on the simulation results, it is evident that this system exhibits an approximate delay

of 10 clock cycles (as seen in Figure 4.18), starting from the moment the spike arrives until its

transmission initiates as an output. This is almost double the total transmission delay of the first

iteration. Still, it is worth noting that this one needs at least 7 (the width of the address) clock

cycles to serialize and transmit it, which leaves the same processing delay as the previous one.

From the behaviour simulation, it is also possible to see that all the signals are being generated

correctly from the serializer, as depicted in Figure 4.19

In the obtained waveform snippet from the testing, it is apparent that there were two transmis-

sions originating from two different addresses. It is worth noting that the transmission follows a

specific bit order, moving from the Least Significant Bit (LSb) to the Most Significant Bit (MSb).
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Figure 4.19: Waveform of AER iteration 2 - Serializer signal behaviour

This characteristic is also evident in how the second address is represented in the data_in signal

as 0001010, which is subsequently encoded in the data_out signal as a sequence of bits: 0, 1, 0, 1,

0, 0, 0.

Relatively to the Deserializer module, the tests also showed that its behaviour is according to

the design.

Figure 4.20: Waveform of AER iteration 2 - Deserializer signal behaviour

The serial data of the two signals is the same one sent by the TX in the last Figure. This

deserialization is done through the counter register that keeps track of how many bits it reads, and

when it is supposed to output the address stored in the bit shift_register to the Decoder module.

This outputting moment can be identified in the waveform as when data_out changes for a cycle

before being set to zero again, as dictated by the counter module.

4.6.3 Synthesis and Report Analysis

In the second iteration of the synthesis process using the Genus tool, gate-level netlists were gener-

ated for the TX and RX modules based on the same 130 nm technology standard cells. The various

constraints given to design the system, including clock jitter, skew, input and output delays, and

load capacitance, stayed the same as the previous iteration.

Repeating the same process as before, after the iterative optimization and redesigning, the

reports for both the TX and RX modules indicated no structural issues, and the resulting netlists
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complied with timing rules and area requirements, successfully validating the final system gate-

level design. Notably, the reports confirmed that the system could operate without issues at the

intended clock speed of 100 MHz, and there was no negative slack, suggesting potential for even

higher clock speeds without performance problems, which was also researched. The results of

this research were highly promising, revealing that both the RX and TX modules could operate at

frequencies up to 410 MHz until negative timing slack was found.

The resulting netlists from these steps were then used in the posterior step of doing the layout

and creating a physical-level model of the final system.

4.6.4 Layout and Simulation Results

For the layout, the same steps as the first iteration were followed. These processes resulted in the

layouts presented in Figure 4.21. The TX chip has dimensions of approximately 92∗93µm, while

the RX is slightly bigger with 108∗106µm. It is important to note that this area could be improved

by using better technology.

(a) Layout of tx_iter2 (b) Layout of rx_iter2

Figure 4.21: Layouts of tx_iter2 and rx_iter2

The post-layout simulations for both the TX and RX chips confirmed that both physical chips

operated as anticipated when subjected to simulations accounting for actual physical delays, align-

ing with the behaviour simulated in the ideal scenario that did not consider delays as described by

the Verilog model.

4.7 Third AER Iteration - Integration of Complex SerDes System

Building upon the previous iteration, this new system seeks to rectify its limitations. The primary

shortcoming lies in the utilization of source-synchronous communication, which creates the need

for utilizing an additional interconnect and also makes it more susceptible to the effects of clock

jitter. To overcome these challenges, the improved system embraces a more complex SerDes
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architecture, which ultimately seeks to mitigate these concerns by employing Manchester Coding

(see Subsection 3.3) and Clock-Data Recovery techniques.

4.7.1 Architecture

Similarly to the last iteration, this development maintained most of the encoding modules and data

control aspects, as seen in Figure 4.22.

Figure 4.22: Schematic of the 3rd iteration of the AER system

Regarding serialization, the previous module had to be expanded to generate a preamble before

sending each address. This preamble initiates and facilitates the clock recovery process before the

data arrives. A module that encodes the serialized data into Manchester code was also developed.

This module uses the serialized data, the ACK activity signal, and, evidently, the CLK signal.

The improved serializer is depicted in Figure 4.23.

Figure 4.23: Improved serializer circuit with preamble generation
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Within this module, key enhancements were introduced, namely the inclusion of a counter and

a 2-to-1 multiplexer to allow for the generation of a 4-bit preamble. This preamble, comprised

of consecutive 1s, needed adjustments to various reset flags and related elements. The number of

bits used in the counter that creates this preamble can be configured through the module parameter

PREAMBLE_NBITS. Once subjected to Manchester coding, this preamble assumes a clock-like

form, which will later aid the deserializer in accurately recovering the original clock frequency.

The Manchester coding was done through the circuit shown in Figure 4.24.

Figure 4.24: Manchester coder module schematic

Significant changes and advancements were made in the realm of the Deserializer. To facil-

itate an efficient Clock and Data Recovery (CDR) process, an analogue-based module was de-

veloped using Verilog-A. This module plays a pivotal role in restoring the clock signal by imple-

menting a Delay-Locked Loop (DLL). The module generates a delayed version of the originally

received clock by employing a delay line. The module determines the appropriate delay needed

by comparing the original clock and the delayed copy. To achieve this, a charge pump is utilized,

which actively adjusts the voltage applied to the delay line until the delay aligns with a period of

the original clock. These efforts collectively contribute to the successful recovery and synchro-

nization of the clock signal in the Deserializer module. This module was the same as the one used

in the article [6], depicted in Figure 4.25.

4.7.2 Behavioural Simulation Results

4.7.2.1 Digital Part - TX

The TX module, designed in a fully digital manner, underwent thorough testing following the

same process as the previous iterations. The primary objective of this testing was to validate the

correct behaviour of the preamble and the Manchester coding functions, while also assessing their

resilience to clock jitter.

The simulation results are presented in the following Figure 4.26
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Figure 4.25: Delay-Locked Loop [6]

In the obtained waveform snippet from the testing, it is apparent from the signals highlighted

in red that the spike signal in is converted to a serialized output, delayed by 3 clock signals.

Relatively to the serialization process, initially, the data begins as an address resulting from

the previous encoding and is visually represented in purple, indicating its presence in the latch

of the serializer. Subsequently, this address is serialized and combined with the 4-bit preamble,

highlighted in blue.

Finally, the serialized data, comprising the address and the preamble, is passed through the

Manchester encoder module. Utilizing the clock signal, the encoder transforms the blue signal

into the red signal out, completing the serialization process. It is also possible to verify that if any

spikes appear during the transmission of a previous spike, they will be discarded. These discarded

spikes are highlighted and crossed in red.

4.7.2.2 Analogue Part - DLL

To create the analogue module that would interface with the rest of the circuit, a Verilog-A be-

havioural model was created. This module sought to mimic the behaviour of the DLL depicted in

Figure 4.25. To develop this module, the Cadence Virtuoso was used.

The model is constituted by a delay element that mimics the delay line of multiple delay

inverters. This delay element module takes as input a delay value, and an input clock signal, and

has as output a delayed version of this same input clock signal.

The rest of the DLL consisted of an analogue loop that calculates the difference between the

phase of the delayed clock and the input clock, and based on the error between them, it calculates

the new delay as the error times as parameter DELAY_STEP. It is also important to note that this

process is simplified since the clock input frequency the DLL tries to achieve is known (in this

case, 100 MHz).
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Figure 4.26: Waveform of AER Iteration 3 - Serializer signal behaviour

4.7.2.3 Mixed Signal Simulation

The execution of mixed-signal simulations was not feasible during the project current phase, pri-

marily due to the intricate and time-consuming nature of the testing process. The complexities

involved in setting up such simulations required substantial resources and time, which were lim-

ited in the current scope of the project. However, it is essential to acknowledge that this aspect

remains a valuable avenue for future exploration and development. However, it is important to

emphasize that this limitation is not a critical hindrance to the overall project objectives.

The current design of the DLL (Delay-Locked Loop) has been limited to the behavioural level,

which means that the full chip design could not be achieved without a physical implementation of

the DLL. Despite this constraint, it is crucial to recognize that the focus of the project has been on

developing and validating the behaviour of the DLL, establishing its functionality and performance

through behavioural simulation.

While mixed-signal simulations are undoubtedly valuable for assessing the interaction be-

tween analogue and digital components in chip design, the primary goal of the project was to

explore potential transmission approaches. The DLL does not play an important role in this re-

search, as this research is to understand better if the approaches are viable in a more general sense.

The goal of this initial stage was to validate the functionality and performance of the DLL at a high

level rather than diving into mixed-signal intricacies. This allowed the research to focus on broader

aspects of transmission approaches without being constrained by the complexities associated with

mixed-signal simulations.

With this said, looking ahead, the inclusion of mixed-signal simulations in future work would

enhance the design overall validation and verification. This would allow a more comprehensive

assessment of the entire chip behaviour, including analogue and digital interactions, ensuring a

robust and accurate system performance representation.

4.7.3 Synthesis and Report Analysis

In the third iteration using the Genus tool, the same steps were taken for the TX module. After the

same analysis was done, the system demonstrated stability at a maximum frequency of 300 MHz,

which is a bit slower than the previous iteration. This decrease in frequency is due to the additional
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circuitry used to support the preamble generation. It is important to note that although this is slower

than the previous iteration, it is still threefold the value of the initial proposed required frequency.

For the RX module, the synthesis step was skipped, as its RTL-level module primarily con-

sisted of a decoder module. This decoder module effectively generated spikes after the addresses

following CDR on the DLL were decoded.

As per the rest of the report analysis, limited additional insights are available beyond the

successful stability achieved by the system, even at higher frequencies. However, it is essential to

recognize the significance of these findings, as they underscore the efficiency and reliability of the

neuromorphic computing solution.

The resulting netlists from these steps were then used in the posterior step of doing the layout

and creating a physical-level model of TX module.

4.7.4 Layout and Simulation Results

Since the RX part of the system is mainly composed of the analogue behaviour model, only the

layout for the TX part was done. This layout process followed the same set of steps as previous

iterations. This final design has a dimension of 103∗101 µm.

Regarding the simulation, this TX design was also tested using the physical level delays. The

simulations were done in the same manner as the previous iterations and the results showed that

the module was capable of encoding, serializing and outputting the data with the correct preamble

preceding it.

4.8 Comparison of results obtained

After all design and final optimizations have been done, the final chips designed have the following

characteristics.

Table 4.1: Performance values for each chip

Iter Lines used Total Delay Maximum Frequency of System
1 log2(N) = 7 31,009 ns 340 MHz
2 2 102,261 ns 410 MHz
3 1 140 ns1 300 MHz

1Ideal case, since it was not possible to test the physical delay.
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Table 4.2: Area, Number of Cells used and Power results

Area (µm) Number of
Cells Used

Power
Consumption

(W)

Iter1
TX 96∗90 984 2.11169e-04
RX 108∗104 728 7.77260e-04

Iter2
TX 92∗93 974 2.12669e-04
RX 108∗106 711 9.68466e-05

Iter3 TX 103∗101 1421 4.72530e-04

Based on the results obtained, a comparison between the iterations provides valuable insights

into the strengths and weaknesses of each approach. It allows us to understand the trade-offs and

determine the ideal use case for each iteration.

Specifically, concerning the values obtained for the Total Delay and Maximum Frequency

metrics, it is evident that the chips developed perform as desired and align well with the intended

behaviour. Furthermore, these results demonstrate that there is still potential for achieving higher

frequency speeds of at least threefold the initially desired frequency. This increase in frequency

might be especially beneficial for the second and third iterations, which rely more on the frequency

than the first due to the time spent during the serialization process.

When comparing the chip area of both Iteration 1 and 2 TX circuits, they are quite similar in

size. The RX versions of both iterations also share this similarity in size. However, it is worth men-

tioning that Iteration 3’s TX circuit is slightly larger. The increase in size can likely be attributed to

the need to allocate space for the preamble generation circuitry. To address the timing dependency

of this area, it may be beneficial to explore and adopt a less timing-dependent approach.

Another critical point of data is the maximum frequency of each TX-RX system. It is evident

that the iteration with the greatest speed is iteration 2, but all iterations are capable of speeds

threefold of the one initially defined.

It is possible to summarize the ideal use cases and scenarios for each AER iteration as follows:

• First AER iteration (Foundational Approach) Ideal Use Case: The first AER iteration,

with a foundational approach, is suitable for applications where simplicity and low com-

plexity are prioritized.

Small-scale neuromorphic systems: When the number of neurons and size of address word

used is relatively small, and the system complexity is limited. In scenarios where data trans-

mission rates are not of utmost importance, the focus shifts to prioritizing the preservation

of timing and speed between cores. Instead of heavily emphasizing demanding communica-

tion requirements, the primary concern becomes maintaining synchronization and efficient

processing among the cores. This approach acknowledges that the seamless coordination of

actions between cores holds greater significance than rapid data transfer in specific applica-

tions. By adopting this strategy, the system can strike a balance between effective intercore
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communication and optimized performance, ensuring smooth and reliable operations for the

specific application at hand.

• Second AER iteration (SerDes-Assisted Communication with CLK Line) Ideal Use
Case: The second AER iteration, leveraging SerDes-assisted communication with a CLK

line, is more suitable for applications that require higher data transmission rates and more

efficient communication.

Medium-scale distance neuromorphic systems: When the number of neurons increases be-

yond what the first iteration can efficiently handle. Moderate communication demands: For

scenarios where data transmission rates need to be improved compared to the first iteration,

but do not require the most advanced communication capabilities.

• Third AER iteration (Complex SerDes System) Ideal Use Case: The third AER iteration,

integrating a complex SerDes system, is designed for applications that require even higher

data transmission rates and more advanced communication capabilities.

Large-scale neuromorphic systems: When dealing with a significant number of neurons and

complex neural networks, demanding a more sophisticated communication infrastructure.

High communication demands: For applications where data transmission rates must be at

their highest, the communication system needs to handle complex data streams efficiently,

and where the number of lines used makes a significant difference in routing and total area

used.

By comparing the strengths and weaknesses of each iteration, it is easier to make informed deci-

sions about which AER iteration best suits the specific requirements of a neuromorphic system,

whether it is a small, simple system with low demands or a large-scale, complex one with high

communication requirements, the most appropriate iteration can be chosen to achieve optimal

performance and scalability.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In conclusion, this dissertation has explored the field of neuromorphic computing and specifically

focused on designing and implementing hardware architectures for Address-Event Representation

(AER) based systems, with a special focus on the transmission aspects. This research aimed to

develop a solution that leverages the unique capabilities of AER to create efficient, scalable, and

high-performance neuromorphic systems.

This dissertation discusses the theoretical background of neuromorphic computing, includ-

ing the concepts of SNNs and the use of spikes as the fundamental unit of communication and

computation. The AER protocol’s suitability for large-scale neuromorphic systems has also been

explored, highlighting its advantages in terms of event-driven processing, parallel computation,

and reduced energy consumption.

The research conducted in this dissertation has contributed to the existing body of knowledge

by proposing a novel hardware architecture for AER-based transmission systems. Several key

considerations, including high-speed digital signalling and efficient processing, guided the design

of this architecture. Addressing these considerations resulted in multiple robust and scalable hard-

ware solutions that effectively harness the power of AER in intercore and interchip transmission

for advanced neuromorphic computing applications.

The development and implementation of the proposed hardware architecture involved several

stages, including system design, physical design, and verification. Each stage required careful

planning, iteration, and the use of specialized tools and methodologies. The results obtained

through the implementation of the solution have demonstrated its effectiveness in terms of spike

rate compatibility, efficiency in data transmission, and overall system performance.

As mentioned before, in this research, various hardware architectures were proposed, each tai-

lored to specific scenarios and strengths. The approaches ranged from prioritizing simplicity and

synchronization in small-scale systems to enhancing data transmission rates and communication

efficiency in medium-scale applications. For large-scale neuromorphic systems with high com-

munication demands, the proposed hardware architecture integrated a complex communication

51



52 Conclusion and Future Work

system to handle data streams.

The outcomes of this research have demonstrated the effectiveness of these hardware architec-

tures in their respective domains. However, it is to note that the results achieved could be further

enhanced when coupled with newer and smaller technology.

5.2 Future Work

As a future work note, one promising avenue for further exploration is the implementation of

mixed-signal simulation in the third iteration. Integrating mixed-signal simulation would enable

the seamless combination of analogue and digital elements within the design environment, pre-

senting exciting opportunities to achieve even better results in the realm of neuromorphic comput-

ing. By incorporating analogue elements alongside digital components, researchers can harness

the benefits of both domains, leveraging the efficiency and speed of digital processing and the

continuous and energy-efficient nature of analogue signals. This hybrid approach could lead to

novel and highly efficient neuromorphic systems, unlocking new possibilities for understanding

brain-inspired computation and pushing the boundaries of artificial intelligence. The integration of

mixed-signal simulation in the third iteration would undoubtedly contribute to advancing the field

of neuromorphic computing, opening new avenues for groundbreaking research and applications.

Another potential direction for future research, integrating AER with NoC architectures, holds

significant promise in advancing the field of neuromorphic computing. Combining AER’s effi-

ciency and event-driven nature with the scalable and low-power communication capabilities of

NoCs can lead to the creation of powerful and flexible neuromorphic systems. The seamless inte-

gration of AER and NoC would enhance inter-core connectivity, enabling rapid and dynamic data

transmission among processing elements while maintaining synchronization and timing critical

for neuromorphic networks.

Finally, in this dissertation, the process of digital design post-Verilog creation could have been

significantly streamlined by incorporating more scripts and adopting better file organization and

manipulation practices. By doing so, future researchers working on similar topics could benefit

from a well-defined guide, optimizing their workflow and expediting their design process. Also,

creating a guide based on this improved workflow would serve as a valuable resource for future

researchers working in the same environment with the same tools, enabling them to build upon this

work efficiently and foster innovation in the field of neuromorphic computing and digital hardware

design.
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