1,177 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Automated Hardware Prototyping for 3D Network on Chips

    Get PDF
    Vor mehr als 50 Jahren stellte Intel® Mitbegründer Gordon Moore eine Prognose zum Entwicklungsprozess der Transistortechnologie auf. Er prognostizierte, dass sich die Zahl der Transistoren in integrierten Schaltungen alle zwei Jahre verdoppeln wird. Seine Aussage ist immer noch gültig, aber ein Ende von Moores Gesetz ist in Sicht. Mit dem Ende von Moore’s Gesetz müssen neue Aspekte untersucht werden, um weiterhin die Leistung von integrierten Schaltungen zu steigern. Zwei mögliche Ansätze für "More than Moore” sind 3D-Integrationsverfahren und heterogene Systeme. Gleichzeitig entwickelt sich ein Trend hin zu Multi-Core Prozessoren, basierend auf Networks on chips (NoCs). Neben dem Ende des Mooreschen Gesetzes ergeben sich bei immer kleiner werdenden Technologiegrößen, vor allem jenseits der 60 nm, neue Herausforderungen. Eine Schwierigkeit ist die Wärmeableitung in großskalierten integrierten Schaltkreisen und die daraus resultierende Überhitzung des Chips. Um diesem Problem in modernen Multi-Core Architekturen zu begegnen, muss auch die Verlustleistung der Netzwerkressourcen stark reduziert werden. Diese Arbeit umfasst eine durch Hardware gesteuerte Kombination aus Frequenzskalierung und Power Gating für 3D On-Chip Netzwerke, einschließlich eines FPGA Prototypen. Dafür wurde ein Takt-synchrones 2D Netzwerk auf ein dreidimensionales asynchrones Netzwerk mit mehreren Frequenzbereichen erweitert. Zusätzlich wurde ein skalierbares Online-Power-Management System mit geringem Ressourcenaufwand entwickelt. Die Verifikation neuer Hardwarekomponenten ist einer der zeitaufwendigsten Schritte im Entwicklungsprozess hochintegrierter digitaler Schaltkreise. Um diese Aufgabe zu beschleunigen und um eine parallele Softwareentwicklung zu ermöglichen, wurde im Rahmen dieser Arbeit ein automatisiertes und benutzerfreundliches Tool für den Entwurf neuer Hardware Projekte entwickelt. Eine grafische Benutzeroberfläche zum Erstellen des gesamten Designablaufs, vom Erstellen der Architektur, Parameter Deklaration, Simulation, Synthese und Test ist Teil dieses Werkzeugs. Zudem stellt die Größe der Architektur für die Erstellung eines Prototypen eine besondere Herausforderung dar. Frühere Arbeiten haben es versäumt, eine schnelles und unkompliziertes Prototyping, insbesondere von Architekturen mit mehr als 50 Prozessorkernen, zu realisieren. Diese Arbeit umfasst eine Design Space Exploration und FPGA-basierte Prototypen von verschiedenen 3D-NoC Implementierungen mit mehr als 80 Prozessoren

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    Agile SoC Development with Open ESP

    Full text link
    ESP is an open-source research platform for heterogeneous SoC design. The platform combines a modular tile-based architecture with a variety of application-oriented flows for the design and optimization of accelerators. The ESP architecture is highly scalable and strikes a balance between regularity and specialization. The companion methodology raises the level of abstraction to system-level design and enables an automated flow from software and hardware development to full-system prototyping on FPGA. For application developers, ESP offers domain-specific automated solutions to synthesize new accelerators for their software and to map complex workloads onto the SoC architecture. For hardware engineers, ESP offers automated solutions to integrate their accelerator designs into the complete SoC. Conceived as a heterogeneous integration platform and tested through years of teaching at Columbia University, ESP supports the open-source hardware community by providing a flexible platform for agile SoC development.Comment: Invited Paper at the 2020 International Conference On Computer Aided Design (ICCAD) - Special Session on Opensource Tools and Platforms for Agile Development of Specialized Architecture

    Multi-core Architectures and Streaming Applications

    Get PDF
    In this paper we focus on algorithms and reconfigurable multi-core architectures for streaming digital signal processing (DSP) applications. The multi-core concept has a number of advantages: (1) depending on the requirements more or fewer cores can be switched on/off, (2) the multi-core structure fits well to future process technologies, more cores will be available in advanced process technologies, but the complexity per core does not increase, (3) the multi-core concept is fault tolerant, faulty cores can be discarded and (4) multiple cores can be configured fast in parallel. Because in our approach processing and memory are combined in the cores, tasks can be executed efficiently on cores (locality of reference). There are a number of application domains that can be considered as streaming DSP applications: for example wireless baseband processing (for HiperLAN/2, WiMax, DAB, DRM, and DVB), multimedia processing (e.g. MPEG, MP3 coding/decoding), medical image processing, colour image processing, sensor processing (e.g. remote surveillance cameras) and phased array radar systems. In this paper the key characteristics of streaming DSP applications are highlighted, and the characteristics of the processing architectures to efficiently support these types of applications are addressed. We present the initial results of the Annabelle chip that we designed with our approach

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    A Survey and Comparative Study of Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems

    Get PDF
    Multi-/many-core systems are envisioned to satisfy the ever-increasing performance requirements of complex applications in various domains such as embedded and high-performance computing. Such systems need to cater to increasingly dynamic workloads, requiring efficient dynamic resource allocation strategies to satisfy hard or soft real-time constraints. This article provides an extensive survey of hard and soft real-time dynamic resource allocation strategies proposed since the mid-1990s and highlights the emerging trends for multi-/many-core systems. The survey covers a taxonomy of the resource allocation strategies and considers their various optimization objectives, which have been used to provide comprehensive comparison. The strategies employ various principles, such as market and biological concepts, to perform the optimizations. The trend followed by the resource allocation strategies, open research challenges, and likely emerging research directions have also been provided
    corecore