
This is a repository copy of A Survey and Comparative Study of Hard and Soft Real-time
Dynamic Resource Allocation Strategies for Multi/Many-core Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/112430/

Version: Accepted Version

Article:

Singh, Amit Kumar, Dziurzanski, Piotr orcid.org/0000-0001-9542-652X, Mendis, Hashan
Roshantha et al. (1 more author) (2017) A Survey and Comparative Study of Hard and Soft
Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems. ACM
Comput. Surv.. 24. ISSN 0360-0300

https://doi.org/10.1145/3057267

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A

A Survey and Comparative Study of Hard and Soft Real-time Dynamic
Resource Allocation Strategies for Multi/Many-core Systems

AMIT KUMAR SINGH, University of York

PIOTR DZIURZANSKI, University of York

HASHAN ROSHANTHA MENDIS, University of York

LEANDRO SOARES INDRUSIAK, University of York

Multi/Many-core systems are envisioned to satisfy the ever increasing performance requirements of complex
applications in various domains such as embedded and high performance computing (HPC). Such systems
need to cater for increasingly dynamic workloads, requiring efficient dynamic resource allocation strate-
gies in order to satisfy hard or soft real-time constraints. This article provides an extensive survey of hard
and soft real-time dynamic resource allocation strategies proposed over the last two decades and highlights
the emerging trends for multi/many-core systems. The survey covers a taxonomy of the resource allocation
strategies and considers their various optimization objectives, which have been used to provide comprehen-
sive comparison. The strategies employ various principles such as market and biological concepts to perform
the optimizations. The trend followed by the resource allocation strategies, open research challenges, and
likely emerging research directions have also been provided.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems

General Terms: Algorithms, Design, Management, Performance

Additional Key Words and Phrases: Many-core systems, hard real-time, soft real-time, design-space explo-
ration, resource allocation, performance, energy consumption

ACM Reference Format:

Singh, A. K., Dziurzanski, P., Mendis, H. R., Indrusiak, L. S. 2016. A Survey of Hard and Soft Real-time
Resource Allocation Strategies for Multi/Many-core Systems. ACM Comput. Surv. V, N, Article A (January
YYYY), 38 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

A paradigm shift to the adoption of multi/many-core systems can be observed in var-
ious domains such as embedded and high performance computing (HPC). The reason
behind such adoption lies in the fact that the performance requirements of applications
cannot be satisfied by simply increasing the frequency of a single-core processor, which
leads to high power and heat dissipation. In multi/many-core systems, chip manufac-
tures are trying to overcome these bottlenecks by integrating multiple cores operat-
ing at low frequencies, where the cores can cohesively communicate with each other
[Jerraya et al. 2005] [Borkar 2007]. These systems provide increased parallelism that
motivates us to partition applications into many small tasks and allocate them onto
different cores in order to perform parallel executions towards satisfying the increased
performance requirements [Manimaran et al. 1998].

This work has been funded in part by the EU FP7 project DreamCloud (project number 611411).
Author’s addresses: A. K. Singh, H. R. Mendis, P. Dziurzanski, L. S. Indrusiak, Real-Time Systems Research
Group, Department of Computer Science, University of York, York, YO10 5DG, U.K.; email: {amit.singh,
piotr.dziurzanski, hrm506, leandro.indrusiak}@york.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0360-0300/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 A. K. Singh et al.

The many-core processors have been designed by several chip manufactures. Some
examples include Intel’s Teraflop 80-core processor [Vangal et al. 2007], Tilera’s TILE-
Gx family 100-core processor [TILE-Gx 2009], AMD’s Opteron 16-core processor [AMD
2011], and Kalray’s MPPA 256-core processor [De Dinechin et al. 2014]. Recently, a
joint effort between IBM and UCDavis has revealed KiloCore 1000-core chip [Bohnen-
stiehl et al. 2016]. The large number of cores are usually connected by an on-chip
interconnection network [Benini and De Micheli 2002; Worm et al. 2002; Bjerregaard
and Mahadevan 2006]. These many-core processors are designed to be exploited in var-
ious application domains towards realizing different systems, referred to as many-core
systems. Additionally, different types of cores have been integrated to exploit their dis-
tinct features towards meeting the functional and non-functional requirements [Smit
et al. 2004]. The integration of different types of cores leads to the development of het-
erogeneous multi/many-core systems that become a formidable computing alternative
where applications witness large improvement over their homogeneous (consisting of
identical cores) counterpart. Further, the technological advancements will enable in-
tegration of higher number of cores in the same chip.

1.1. Resource Allocation for Multi/Many-core Systems

Resource allocation (mapping) process defines assignment and ordering of the tasks
and their communications onto resources of multi/many-core system1 in view of some
optimization criteria such as compute performance and energy consumption. The
many-core systems (contain relatively large number of cores) usually extend multi-
core systems that contain small number of cores and thus resource allocation tech-
niques for these systems can be interchangeably employed if they have architectural
similarities [Woo and Lee 2008]. However, to better exploit the many-core resources,
the techniques tailored for multi-cores might need some modifications due to different
interconnects. For these systems, usually, the applications need to be partitioned (par-
allelized) into multiple tasks that can be executed concurrently on different cores. Such
partitioning is referred to as functional partitioning and can be furnished with the help
of state-of-the-art application parallelization tools, e.g., MPSoC Application Program-
ming Studio (MAPS) [Ceng et al. 2008] and MNEMEE project tool-chain [Mallik et al.
2011], and/or manual analysis. This procedure requires detailed application knowledge
and involves finding the tasks, adding synchronization and inter-task communication
in the tasks, management of the memory hierarchy communication and checking of
the parallelized code (tasks) to ensure for correct functionality [Martin 2006]. In case
the multi/many-core system is heterogeneous, i.e. contains different types of cores, a
task binding process that specifies the core types on them the task can be allocated
along with the cost of allocation is required [Smit et al. 2004]. To compute the allo-
cation cost, the binding process analyses the implementation costs (e.g., performance,
power and resource utilization) of each task on different supported core types such
as general purpose processor (GPP), digital signal processor (DSP) and coarse grain
re-configurable hardware.

An example resource allocation along with the application parallelization is shown in
Fig. 1. The parallelization procedure partitions a sequential application described in a
high level programming language (e.g., C/C++) into various connected tasks. The con-
nections between the tasks reflect the dependencies in the corresponding sequential
application. The example partitioned application is shown as Application Task Graph
that consists of ten tasks (t0,t1,...,t9). For the Application Task Graph, the binding pro-
cess has specified different core types for various tasks based on the implementation

1 By multi/many-core system, we mean a system on a multi/many-core chip or several multi/many-core chips
connected with each other, where each chip contains a set of connected cores.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:3

Many-core Architecture

GPPGPP

GPP

DSPDSP

ASIC1

ASIC2

ASIC2 DSP

Main()

…

…

do

…

…

while()

Sequential

Application

Paralle-

lization
Resource

Allocation

t0

t1 t2

t3 t5

t6 t7 t8

t4

t9

Application Task Graph

& Binding Process

GPP
DSP

ASIC1

ASIC2

t0,t1,t3

t2,t4,t7 t5,t8

t6,t9

Application mapping problem has been identified as one of the most urgent problem to

MAPS tool

MNEMEE framework

Manual Analysis

…

Fig. 1: Resource allocation on many-core system.

costs, e.g. GPP for tasks t0, t1 and t3. The resource allocation process assigns tasks and
their communications on part of a heterogeneous many-core system. The communicat-
ing tasks are mapped (allocated) on the same core or close to each other in order to
optimize for the communication delay and energy. Differently from functional parti-
tioning, data partitioning can also be employed to perform parallel processing of the
data by the same function, e.g., applying a filter function on partitioned segments of
an image.

The resource allocation process is carried out either at design-time (statically) or
run-time (dynamically). Most of the existing literature for resource allocation fall un-
der static resource allocation (e.g., [Murali et al. 2006; Hu and Marculescu 2003; Javaid
and Parameswaran 2009; Marcon et al. 2008; Thiele et al. 2011; Meyer et al. 2010; Choi
et al. 2012; Castrillon et al. 2012]). However, they cannot handle dynamic workloads
and changing environments, e.g. adding a new application into the system at run-time.

Dynamic resource allocation approaches can handle aforementioned issues as the as-
signment of tasks and their communications on the multi/many-core system resources
is done at run-time. In addition, they offer several other advantages such as adaptabil-
ity to the available resources over time (in case performance requirements of a running
application is changed or current allocation is not sufficiently close to optimal) and
ability to avoid defective parts of multi/many-core systems and enable foreseeable up-
grades [Singh et al. 2013]. The allocation has been handled either by performing all the
processing at the run-time, i.e. on-the-fly processing, or by using previously analyzed
results [Singh et al. 2013; Indrusiak et al. 2016]. The results have been analyzed by
employing efficient design-time design space exploration (DSE) strategies to encounter
for different run-time scenarios [Xue et al. 2006; Zamora et al. 2007; Stuijk et al. 2010;
Schranzhofer et al. 2010; Mariani et al. 2010; Ykman-Couvreur et al. 2011; Piscitelli
and Pimentel 2012; Singh et al. 2013]. For on-the-fly processing, efficient heuristics
have been devised to assign new arriving tasks on the system resources [Moreira et al.
2007; Nollet et al. 2008; Schranzhofer et al. 2009; Carvalho et al. 2010; Wang et al.
2011; Chen et al. 2012]. These heuristics do not use any prior analysis results and
thus provide rather low quality of resource allocations. However, since they do not use
precomputed platform specific analysis results, they cope well to allocate unknown
applications on any platform. In contrast, a better quality of resource allocations are
achieved by using previously analyzed results, but the applications to be supported on
a platform should be known in advance to perform analysis.

Real-time dynamic resource allocation is desired in systems where performance (tim-
ing) constraints need to be satisfied to fulfil safe system operations (e.g., in automotive
engine management, operating medical equipments and flight control software) and

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 A. K. Singh et al.

end user demands (frame rate in video processing). This necessitates the development
of efficient resource allocation strategies that take an application model, multi/many-
core platform model, constraints (e.g., timing and power), performance model of inter-
process communication (e.g., execution time and energy consumption) and estimate
of the worst case execution time (WCET) of the process implementations on different
cores (e.g., GPP, DSP, ASIC) as input and provide real-time performance guaranteeing
resource allocations or optimized resource allocations. A significant amount of research
for real-time dynamic resource allocation on single-core system was done in 1980s and
1990s [Audsley et al. 1995]. For multi/many-core systems, it started at the same time,
but huge attention was paid after the release of multi/many-core processors by the sil-
icon vendors such as dual-core POWER4 processor by IBM in 2001. Despite the fact
that several articles have been published and significant progress has been made for
real-time allocation on multi/many-core systems, there still remains many open ques-
tions and research challenges.

1.2. Dynamic Resource Allocation Problem and Challenges

It has been well proven that resource allocation is one of the most complex problems
in large many-core and distributed systems, and in general it is considered NP-hard
[Garey and Johnson 1979]. It has also been identified as one of the most urgent prob-
lems to be solved for implementing multi/many-core based embedded systems [Mar-
culescu et al. 2009] [Marwedel et al. 2011]. A well-tuned search algorithm may need
to evaluate hundreds of thousands of distinct allocations before it finds one solution
that meets the systems performance requirements [Mariani et al. 2010; Piscitelli and
Pimentel 2012]. Since such evaluation is expected to take a long time, maybe hours to
days, it cannot be applied to find the solution quickly, which is desired in the contexts
of dynamic resource allocation. Further, it is difficult and challenging to identify the
ways that can help to achieve accurate status of resources during run-time. This status
may be utilization or memory usage of different cores into the system. An inaccurate
status of resources may result in an allocation that might not be efficient at run-time.

It is also challenging to satisfy performance requirements of each application when
various combinations of simultaneously active applications referred to as use-cases
need to be supported into the system at run-time. For each use-case, since optimal so-
lution cannot be explored at run-time due to limited computation power and evaluation
time, it needs to be explored by advanced design-time DSE approaches and then to be
used at run-time. However, an explosion in the number of use-cases is witnessed with
increasing number of applications, e.g., 2n use-cases for n applications. This makes
analysis of all the possible use-cases infeasible for a large number of applications. In
order to handle these situations, dynamic resource allocation employing on-the-fly pro-
cessing needs to be applied even though optimal solutions are not guaranteed.

The resource allocation problem is being addressed by several research groups
across the globe, which is evident from the massive available literature in this di-
rection. Applications from various domains (e.g., automotive and video processing) are
being targeted to allocate them on multi/many-core based systems in order to exploit
their parallel processing capability. For a given domain, the knowledge of applications
is used to devise an efficient resource allocation strategy. However, getting application
domain knowledge might be time consuming and challenging. The research progress
in the direction of dynamic resource allocation is being published in several top ranked
conferences/journals to move beyond state-of-the-art.

1.3. Classification of Dynamic Resource Allocation Strategies

The dynamic resource allocation (DRA) strategies can be classified with a number of
taxonomies, which could be based on optimization criteria (performance or energy), tar-
get architecture (homogeneous or heterogeneous), criticality (hard or soft real-time),

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:5

Dynamic Resource Allocation
(Centralized, Distributed or Hierarchical Resource Management)

Hard Real-time
 (e.g., safety critical systems)

Guaranteed

Admission Control

Soft Real-time & Best Effort
 (e.g., video streaming for television)

Hybrid

Market-inspired

Bio-inspired

Non-guaranteed

Admission Control

Congestion

Avoiding

Fig. 2: A taxonomy of dynamic resource allocation strategies.

etc. Broadly, the classification can be done based on criticality and other taxonomies
can be included at some hierarchy in the criticality based classification. For example,
hard real-time dynamic resource allocation can target homogeneous or heterogeneous
systems and carry out optimization for performance or energy. Fig. 2 shows a classifi-
cation of the DRA strategies based on the criticality of the systems. The systems that
need to guarantee the timing constraints (e.g., automotive engine management, oper-
ating medical equipments and flight control software, realized on a multi/many-core
architecture) require hard real-time resource allocation approaches, whereas soft real-
time & best effort resource allocation approaches are desired where deadline miss can
be tolerated (e.g, video streaming for television and HPC systems).

For hard real-time resource allocation, the existing works reported in the literature
can be classified into several categories. However, a careful observation of these works
has led them to categorize broadly into Guaranteed Admission Control and Hybrid ap-
proaches, as shown in Fig. 2. In guaranteed admission control, concepts from schedul-
ing theory are used to ensure that only requirement-satisfying applications are entered
into the system during the course of resource allocation. The hybrid approaches utilize
design-time computed allocations in order to identify a timing constraint satisfying
allocation at run-time.

The existing soft real-time and best effort resource allocation approaches can be
broadly categorized into Market-inspired, Bio-inspired, Non-guaranteed Admission
Control and Congestion Avoiding strategies after observing the basic employed prin-
ciples, as shown in Fig. 2. The strategies into different categories utilize some basic
principles to optimize for one or several performance metrics in order to fulfil the end
user demands.

The strategies under both the above categories perform computation either at both
design-time and run-time or only at run-time depending upon the known system status
at design-time. For example, if the applications to be executed in the platform are fixed
and known at design-time, e.g., workloads of an application specific HPC data center,
the allocations can be computed at design-time and used at run-time; otherwise, the
allocations needs to be computed at run-time by applying best effort heuristics.

The resource dynamic management process is carried out by employing a centralized
[Nollet et al. 2008; Carvalho et al. 2010; Ng et al. 2015], distributed [Peter et al. 2009;
Kobbe et al. 2011; Castilhos et al. 2013], or hierarchical [Götzinger et al. 2016; Quan
and Pimentel 2016] approach. In centralized management, one core of the platform is
used as the manager that handles the allocation process. For distributed management,
the platform is divided into regions (clusters) and one core in each cluster manages
the allocation process inside the cluster. The cluster managers communicate with each
other through a global manager to find the best cluster for allocating an application.
The hierarchical approach exploits the features of both the centralized and distributed
approaches.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. K. Singh et al.

There are some resource allocation surveys reported in the literature, but they have
several limitations, e.g., focus only on hard real-time resource allocation [Davis and
Burns 2011], cover strategies based on only one basic principle [Yeo and Buyya 2006],
focus on a specific domain [Hussain et al. 2013; Hameed et al. 2014] or optimization
criteria [Henkel et al. 2013], and not explicitly and extensively covering hard and soft
real-time aspects [Pop and Kumar 2004; Lombardi and Milano 2012; Zhuravlev et al.
2012; Sahu and Chattopadhyay 2013; Singh et al. 2013]. Based on the aforementioned
taxonomy, this article presents an in-depth survey and comparative study of dynamic
resource allocation strategies, which have been reported in the literature over the last
two decades. The strategies that try to specifically optimize compute performance, en-
ergy consumption, or both of them have been considered towards focusing on the most
important metrics of real-time multi/many-core based systems. They also might opti-
mize for some other performance metrics such as reliability and temperature, but they
are not considered to limit the scope of comparison. Optimizing for compute perfor-
mance is of paramount importance in order to meet the timing deadlines or to mini-
mize the time taken to finish some applications. The compute performance may refer
to total execution time, latency, delay, period, throughput, exploration time, worst-case
response time (WCRT), etc., which are related to timing information. Optimizing for
the energy consumption of modern computing systems, e.g, embedded and high perfor-
mance centers is important as they are usually operated by stand-alone power supply
like battery or a huge amount of energy is required to operate such systems. The en-
ergy optimization needs to be performed in order to increase the operational time of
the systems and reduce the energy costs.

To include aspects of other taxonomies, e.g., target architecture (homogeneous or
heterogeneous) and resource control mechanism (centralized, distributed, or hierar-
chical), the strategies classified based on criticality (hard or soft real-time, as shown in
Figure 2) are analyzed to highlight the considered optimization goal, target architec-
ture type, control mechanism, and their consideration for only computation or both com-
putation and communication optimization. The strategies have also been compared
and analyzed to highlight their strengths and weaknesses. The above investigations
have also enabled to observe the trend followed by the strategies and identify signifi-
cant open issues and promising future research directions.

Paper Organization: Section 2 and Section 3 cover analysis and elaboration of
hard real-time and soft real-time & best effort resource allocation strategies, respec-
tively. A comparative study of strategies falling into different categories has been per-
formed into Section 4. Section 5 provides the upcoming trends that could be followed
as the future research and open research challenges. Finally, Section 6 provides some
concluding remarks.

2. HARD REAL-TIME RESOURCE ALLOCATION

The majority of works reported in the literature for hard real-time resource allocation
assume the workloads to be known in advance, i.e., the allocation decisions by taking
the timing constraints are computed at design-time [Han and Lin 1989; Saifullah et al.
2011; Bonifaci et al. 2013; Jahr et al. 2014; de Matos Pedro et al. 2015]. However, the
main focus in this article has been on dynamic resource allocation that needs to com-
pute allocations at run-time for dynamically arriving workloads. Based on the earlier
classification as in Figure 2, hard real-time dynamic resource allocation approaches
are described next along with the advantages and drawbacks of approaches in each
category. Further, a combined discussion of all the approaches is provided.

2.1. Guaranteed Admission Control based Resource Allocation

A guaranteed admission control ensures that all the admitted applications or tasks
in a system will meet their respective deadlines without forcing other running appli-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:7

t1Core 1

Time

Core 2

t2

t1

t4

t3

Application Platform Schedulability of Application (tastset)

t2

t3 t4

WCRT
Deadline

IfWCRT < Deadline

schedulable;

else

non-schedulable;

Admission

Controller

and Mapper
Admits only when

schedulable, otherwise rejects

Fig. 3: Guaranteed admission control based resource allocation.

Table I: Guaranteed admission control based resource allocation approaches that con-
sider computation (Comp.) and/or communication (Comm.) for optimization.

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Lauzac et al. 1998] Execution time Comp. Homogeneous Centralized
[Isovic and Fohler 2004] Execution time Comp. Homogeneous Centralized
[Moreira et al. 2005] Execution time Comp. & Comm. Homogeneous Centralized
[Moreira et al. 2007] Execution time Comp. & Comm. Heterogeneous Centralized
[Mendis et al. 2014] Execution time Comp. & Comm. Homogeneous Centralized
[Melani et al. 2015] Execution time Comp. & Comm. Homogeneous Centralized
[Dziurzanski et al. 2016] Execution time Comp. & Comm. Homogeneous Centralized

cations/tasks to miss theirs. To achieve such a control, an admission controller that
fully guarantees the schedulability of the admitted applications or tasks is desired.
To ensure the schedulability of the application, schedulability analysis has been ex-
tensively used in order to determine whether the application or taskset is schedulable
or not when to be allocated on platform core(s) [Leontyev and Anderson 2008]. Vari-
ous kinds of schedulability tests have been employed in the literature, e.g., response
time tests [Audsley et al. 1993; Davis and Burns 2011; Indrusiak 2014] and utiliza-
tion tests [Lopez et al. 2004; Baker and Baruah 2007]. An application is schedulable
if its end-to-end worst-case response time is less than or equal to its deadline [Der-
touzos and Mok 1989]. Similarly, a taskset is schedulable if all its tasks are schedula-
ble. The response time for each task can be estimated by employing widely available
standard techniques that takes the interference of the tasks with higher priority into
account. Fig. 3 provides an overview of the admission controller based resource allo-
cation and schedulability analysis that determines the end-to-end worst-case response
time (WCRT) by taking the interference with running tasks into account in order to
identify if the taskset meets the deadline. First tasks are mapped by following an al-
location policy. Then, schedulability analysis is performed to determine WCRT. If the
WCRT is less than the application deadline, then it is considered to be schedulable
and only then the admission controller admits it into the system. Once admitted, it
is mapped on the platform cores by following the allocation policy used during the
schedulability analysis.

The schedulability analysis is performed by taking the allocations of tasks and
scheduling algorithm into account, where the former determines tasks to platform
cores assignment and latter defines execution order of tasks assigned to a core. There-
fore, the schedulability of a task or application (taskset) depends upon the employed
allocation and scheduling algorithm. At run-time, the schedulability of a task considers
the entire knowledge on the working scenario at that time, e.g., slack and utilization of
cores [Dziurzanski et al. 2016]. The slack of a core is usually defined as the difference
between worst-case execution time and actual execution time of the task currently
running on the core. In case of a taskset, the scedulability analysis for each task is
done when it arrives into the system. One can also perform worst-case schedulability

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 A. K. Singh et al.

tests which may be conservative, but safe, as a form of online admission test. In these
instances, the real resource usage is unknown, but only the worst-case timing prop-
erties are used. For hard real-time systems, the schedulability tests ensuring timing
guarantees, e.g., worst-case response time test [Audsley et al. 1993; Mendis et al. 2014]
and exact schedulability test [Davis et al. 2008; Baruah et al. 2010; Dziurzanski et al.
2015] can be employed. Feedback-based admission controller originated from control
theory can also be used to facilitate hard real-time allocation as more accurate system
status is known by feedbacks [Lu et al. 2002; Zhu and Mueller 2005; Dziurzanski et al.
2016]. Feedback mechanisms monitor the capacity of computing resources and quality-
of-service levels in order to guarantee a bounded time response and stability even if
the exact knowledge of a system workload and service capacity is not available a priori
[Stankovic et al. 1999]. Thus, by careful fine-tuning of control parameters, they can be
successfully applied even to systems with real-time constraints.

2.1.1. Existing Works. Table I lists works employing guaranteed (hard real-time) ad-
mission control based resource allocation of applications on multi/many-core systems.
Such dynamic resource allocation works for multi/many-core systems are limited, un-
like for single core systems, e.g. [Zhu and Mueller 2005]. There has also been claims
that some costly schedulability tests can be used for small task sets in on-line admis-
sion control [Bertogna et al. 2005]. These approaches try to find a schedulable allo-
cation at run-time by taking limited available platform resources into account. They
use assorted allocation and scheduling algorithms, e.g. highest priority task first and
earliest deadline task first, and try to optimize only for the response time that has also
been referred to as execution time. While optimizing for the execution time, they also
try to optimize other real-time metrics, like schedulable applications, deadline misses,
utilization, etc. In these approaches, all the computations are performed at run-time.
A few works have been recently reported that utilize design-time computed results for
dynamic resource allocation while applying schedulability analysis, but these fall in
the category of hybrid resource allocations and are listed in the next subsection.

2.1.2. Advantages and Drawbacks. The schedulability analysis can be used to allocate
time critical applications (e.g., avionics and medical) on required systems. Since such
analysis can provide WCRT of an application in relatively short amount of time, it
can be known whether the application is schedulable or not. In case the application is
not schedulable (WCRT > deadline), a different allocation and scheduling algorithm
can be tried. Further, if an application is rejected by an admission controller, the re-
source working time is not wasted with the application that will probably violate its
deadline and a possibility of early signalling the lack of admittance can be employed
by an outer system to perform an appropriate action (e.g., perform computation on a
cloud) minimizing the negative impact of the task rejection. However, the drawback
is that users need to have some knowledge of the application domain such that they
can analyse the applications and well define the allocation and scheduling algorithms
to be applied in order to meet the deadline. The scheduling analysis can also incur
large computation (timing) overhead for a complex application/platform containing
large number of tasks/cores, and complex dependencies to manage lots of data flows.
Therefore, possibilities to reduce the analysis overhead for such complex scenarios can
be explored [Kuo et al. 2003; Davis et al. 2008]. Another drawback is that the platform
resources might be very little utilized as only deadline meeting applications are ad-
mitted and their number might be quite lower as hard real-time schedulability tests
are pessimistic that take only the worst-case conditions into account.

2.2. Hybrid Resource Allocation

Depending upon the amount of computation involved at design-time and run-time,
the existing literature for hybrid approaches can be classified into two categories:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:9

1) Design-time Allocations Computation and Run-time Selection and 2) Design-time
Deadline Distribution and Run-time Allocation. The details of these class of ap-
proaches are provided subsequently.

2.2.1. Design-time Allocations Computation and Run-time Selection. This kind of hybrid ap-
proaches utilize design-time computed allocations in order to identify a timing con-
straint satisfying allocation at run-time. In this approach, the applications to be sup-
ported on a platform should be known at design-time in order to perform advance
design space exploration (DSE). Fig. 4 provides an overview of this hybrid resource al-
location approach, which takes the advantages of both design-time and run-time com-
putations. The heavy computations pertaining to mappings exploration are performed
at design-time so that only light ones are left for run-time. At design-time, for each ap-
plication, DSE is performed by taking the application and architecture specifications
as input in order to explore allocations with some design objectives. The explored al-
locations are stored and used as guidelines to efficiently allocate the applications at
run-time [Kwok et al. 2006; Singh et al. 2013]. The same DSE strategy can be ap-
plied to all the applications (Application 1 to Application n) one after another. For the
applications to be allocated at run-time, light-weight heuristics are required to select
the most efficient allocation for each of them from the storage (precomputed set) of
allocations. The selection of an allocation is based on the user demands representing
real-time performance constraints of the application and current status (availability)
of the platform resources. The selected allocation is used to configure the platform in
order to execute the application.

Existing Works. Within the focus of this paper, the performance and energy optimizing
existing resource allocation approaches have been considered. Table II lists the rele-
vant approaches under this category that optimize performance, energy and both of
them. For an application, all the approaches employ DSE to generate multiple allo-
cations (operating points), which are used at run-time based on the platform status
and user requirements. There has also been efforts just to develop DSE approaches
optimizing for various metrics, such as execution time [Angiolini et al. 2006; Jia et al.
2010; Wildermann et al. 2011; Piscitelli and Pimentel 2012], execution time and en-
ergy consumption [Zamora et al. 2007; Giovanni et al. 2010], and resource utilization
[Xue et al. 2006; Stuijk et al. 2010]. These efforts do not explore the ways to use the
DSE results at run-time. However, they can be used to generate allocations to be used
at run-time.

The DSE takes very long time if the application/platform size is large and hence
the exploration may not finish within a limited time. Further, the exploration time in-
creases with the heterogeneity in the platform (different types of cores) and number
of optimization goals in order to find efficient allocations. To overcome the exploration
time bottleneck, there have been efforts to accelerate the DSE process by incorporat-
ing estimations along with time consuming simulations to evaluate the allocations
[Piscitelli and Pimentel 2012; Herrera and Sander 2013; Singh et al. 2013b]. The ac-
curacy of the results by these approaches depends upon the number of employed simu-
lations. The exploration time could be further reduced by employing pure estimations
[Mohanty et al. 2002; Kim and Orshansky 2006], but the evaluation results will not be
accurate.

Along with efficient resource allocation, dynamic voltage and frequency scaling
(DVFS) potential of cores has also been exploited to optimize energy consumption
[Choudhury et al. 2007; Cong and Gururaj 2009; Singh et al. 2013a] . DVFS can be
applied both at design-time and run-time based on the available time slack. At design-
time, the slack is defined as the difference between applications timing constraint and
achieved execution time. At run-time, the slack is dynamically created due to tasks
finishing earlier than their worst-case execution times (WCETs).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. K. Singh et al.

Application 1

Application 2

Application n

.

.

.

Design-time

DSE Allocations
Run-time

Mapping
Allocation

Platform with Current

Resources’ Status

Performance

ConstraintsPlatform Specification Applications

Fig. 4: Hybrid resource allocation: Design-time allocations computation and run-time
selection.
Table II: Comparison of hybrid resource allocation approaches that consider computa-
tion (Comp.) and/or communication (Comm.) for optimizing execution time (ET) and/or
energy consumption (EC).

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Huang and Xu 2010] ET Comp. & Comm. Heterogeneous Centralized
[Stuijk et al. 2010] ET Comp. & Comm. Homogeneous Centralized
[Weichslgartner et al. 2014] ET Comp. & Comm. Heterogeneous Centralized
[Dziurzanski et al. 2015] ET Comp. & Comm. Homogeneous Centralized
[Choudhury et al. 2007] EC Comp. & Comm. Homogeneous Centralized
[Cong and Gururaj 2009] EC Comp. & Comm. Homogeneous Centralized
[Schranzhofer et al. 2010] EC Comp. Heterogeneous Centralized
[Huang et al. 2011] EC Comp. & Comm. Heterogeneous Centralized
[Singh et al. 2013a] EC Comp. & Comm. Homogeneous Centralized
[Javaid et al. 2014] EC Comp. & Comm. Homogeneous Centralized
[Yang et al. 2002] ET & EC Comp. & Comm. Heterogeneous Centralized
[Ykman-Couvreur et al. 2011] ET & EC Comp. & Comm. Heterogeneous Centralized
[Singh et al. 2013] ET & EC Comp. & Comm. Heterogeneous Centralized
[Jung et al. 2014] ET & EC Comp. & Comm. Homogeneous Centralized
[Quan and Pimentel 2015] ET & EC Comp. & Comm. Heterogeneous Centralized
[Singh et al. 2016b] ET & EC Comp. & Comm. Homogeneous Centralized

Advantages and Drawbacks. At run-time, since only selection of the allocation from the
storage is required, a light-weight run-time platform manager can be employed to con-
figure the applications efficiently. The hybrid approach allocates applications more effi-
ciently than on-the-fly heuristics that perform all the computations at run-time. How-
ever, flexibility in these approaches is limited, since all potential applications must
be known in entirety at design-time and analysis results will be applicable only to
the analyzed platform. Therefore, design-time analysis needs to be repeated when the
application set or platform changes. Further, storing analysis results introduces addi-
tional memory overhead.

2.2.2. Design-time Deadline Distribution and Run-time Allocation. In order to meet a hard
real-time (HRT) deadline, some researchers have tried to distribute deadlines to each
task of the application at design-time and the resource management approach aims to
meet these deadlines at run-time during the resource allocation and application exe-
cution process. There has also been efforts to distribute task’s deadline further to its
functional blocks [Ahmed et al. 2011]. Fig. 5 provides an overview of the design-time
deadlines assignment to different tasks of an application and run-time resource alloca-
tion to meet the deadlines. Based on the application deadline (DApp), the computation
complexity of its tasks are evaluated and then deadline is assigned to each task based
on its computation complexity. At run-time, the tasks are allocated to platform cores
to perform execution. If individual tasks meet their deadlines, i.e. WCRT of each task
is less than their respective deadline (D), the application meets its deadline.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:11

t1

Core 1

(t1,t2)

Time

Core 2

(t3,t4)

t2

t1

t4

t3

Application (App)

Platform

Map

t2

t3 t4

WCRTApp

DApp

Design-time deadline distribution Run-time allocation and execution to meet deadlines

SApp

EApp
D

A
p
p

D
t 1

D
t 2

D
t 3

D
t 4

Deadline distribution Allocation Execution to meet deadlines

WCRTt1 WCRTt2

WCRTt3
WCRTt4

Application

meets

deadline if

WCRTt1 < Dt1
WCRTt2 < Dt2
WCRTt3 < Dt3
WCRTt4 < Dt4

Fig. 5: Design-time deadline distribution and run-time resource management.

Table III: Deadline distribution based resource allocation approaches that consider
computation (Comp.) and/or communication (Comm.) for optimization.

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Saksena and Hong 1996] Execution time Comp. Homogeneous Centralized
[Jonsson and Shin 2002] Execution time Comp. Homogeneous Centralized
[Jayachandran and Abdelzaher 2008] Execution time Comp. Homogeneous Centralized
[Serreli et al. 2009] Execution time Comp. Homogeneous Centralized
[Buttazzo et al. 2011] Execution time Comp. Homogeneous Centralized
[Lee et al. 2012] Execution time Comp. Homogeneous Centralized
[Hong et al. 2015] Execution time Comp. Homogeneous Centralized

Existing Works. Table III lists deadline distribution based resource allocation ap-
proaches reported in the literature. We would like to highlight that even though some
of the reviewed techniques were not originally developed targeting multi/many-core
systems, they are based on similar assumptions and can or have been applied to the
multi/many-core allocation problem. Similar to guaranteed-admission control based
resource allocation approaches, these approaches also target to optimize only the ex-
ecution time (response time) as their main focus is to meet deadlines. The deadline
distribution considers mainly two types of deadlines, global and local, which define
deadline for a taskset and individual tasks, respectively. With deadlines available for
each task, the listed approaches apply various kinds of allocation and scheduling algo-
rithms, e.g., earliest deadline first.

Advantages and Drawbacks. Deadline distribution enables to consider the allocation of
individual application tasks independently by considering their deadlines and schedul-
ing order. This facilitates optimization for each individual task in order to meet its local
deadline towards meeting the global deadline of the application or taskset. Thus, only
local deadlines need to be taken into account. However, this might lead to a situation
where all the local deadlines are not met, but the end-to-end deadline might be met. A
few drawbacks might be observed when the exact task properties are known, e.g., sub-
task deadline calculation might be wrong if exact execution time of task is not known
and the calculation might be too pessimistic if only WCET is known. Further, in case
of a complex application containing a large number of tasks, the deadline distribution
to individual tasks considering dependencies amongst the tasks might be quite cum-
bersome. Additionally, the complexity of the run-time resource management to meet
the deadlines also increases.
2.3. Discussions and Summary

These hard real-time approaches have been extensively studied in the literature and
applied to meet the deadlines for time-critical applications. The concepts from one cat-
egory of approaches can be used in another one as well in order to accomplish the aim
in a particular category. For example, deadline distribution and schedulability analysis

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. K. Singh et al.

have been jointly exploited in [Rivas et al. 2010], deadline distribution and admission
control in [Marinca et al. 2004], and hybrid and schedulability analysis is employed in
[Dziurzanski et al. 2015]. For all the categories, it can also be deduced that complexity
of the resource allocation increases with the complexity of the considered application.
Out of the above categories, since hybrid resource allocation needs to perform compu-
tations at design-time, the taskset needs to be known in advance. However, most of the
guaranteed admission control based approaches perform allocation and schedulability
analysis directly at run-time as the analysis can be performed in a short amount of
time [Buttazzo 2011].

3. SOFT REAL-TIME AND BEST EFFORT RESOURCE ALLOCATION

Based on the classification as shown in Figure 2, soft real-time and best effort re-
source allocation approaches are described subsequently. Advantages and drawbacks
of approaches in each category are also described. Further, a combined discussion of
all the approaches is also provided.

3.1. Market-inspired Resource Allocation

Market-inspired resource allocation mechanisms use market concepts to perform the
allocation. These mechanisms use available platform capacity measured by low-level
heuristics as bids within an auction-like allocation process in order to find the alloca-
tion that can provide guarantees to satisfy the required level of quality of service (QoS)
and can maximize the overall system utility (profit). Fig. 6 demonstrates the process of
market-inspired dynamic resource allocation where different applications need to be
allocated into a many-core system representing a typical HPC data center. The shown
system executes a set of applications submitted by various users at different moments
of time. The applications are submitted to the platform resource manager that allo-
cates resources to them. To incorporate market and value concepts in the allocation
process, applications are assigned values and bids from resources are placed to the
allocation engine (Manager Processor) in order to maximize the value/profit returned
by a many-core system. The values of applications represent their importance level.

3.1.1. Existing Works. Table IV lists some market-inspired resource allocation ap-
proaches that optimize for execution time, energy consumption, or both of them. The
main goal of the execution time optimizing approaches is to maximize value (profit)
by early completion of applications. Some researchers assume a fixed value of an ap-
plication [Theocharides et al. 2010], whereas others consider values that can change
with time, described with so-called value curve of the application [Burns et al. 2000;
Khemka et al. 2015; Irwin et al. 2004; Chen and Muhlethaler 1996]. The changing
value over time reflects the impact of the computation over the business processes and
adds complexity to the allocation process. With changing value over time, an early
completion leads to high value, whereas late completion results in a low value. An
enormous literature exists for optimizing value as the main focus of cloud data centers
have been to maximize the profit. However, since energy consumption of data centers
is quite huge (around 1.5% of the worldwide electricity consumption [Koomey 2011])
and rapidly increasing, optimizing for energy consumption along with the value is of
paramount importance and recently has been a focus point of various researchers.
Along with allocation, DVFS potential has been exploited to achieve energy savings
[Calheiros and Buyya 2014; Singh et al. 2016].

3.1.2. Advantages and Drawbacks. These resource allocation approaches are proven to
provide promising results in the overload situation where demand for available re-
sources is higher than the supply. Such situation is normally encountered in HPC data
centers [Yeo and Buyya 2006]. The notion of values of applications and auction process
facilitate in deciding to hold the low value applications for late allocation and allocat-
ing limited resources to the high value applications. However, with value curve associ-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:13

N
o

d
e

 P
G
N

.
.

.

P
la

tf
o

rm
 R

e
s
o

u
rc

e
 M

a
n

a
g

e
r

(A
llo

c
a

te
 R

e
s
o

u
rc

e
s
 t
o

 A
rr

iv
e

d
 J

o
b

s
)

M
a

n
y

-c
o

re
 H

P
C

 P
la

tf
o

rm

P
E

P
E

P
E

P
E

I
n

te
r
c
o
n

n
e
c
t

.
.

.

.
.

.

. . .
.

.
.

N
o

d
e

 P
G
1

Users

A
A

A A. . .

Time

Time

Time

Submitted Applications

P
E

P
E

P
E

P
E

I
n

te
r
c
o
n

n
e
c
t

.
.

.

.
.

.

. . .

A A A. . .

A
A

A A. . .

Fig. 6: Market-inspired resource allocation in a cloud data center that contains dif-
ferent nodes (servers) with dedicated cores (or Processing Elements, PEs) to execute
applications submitted by multiple users.

Table IV: Market-inspired resource allocation approaches that consider computation
(Comp.) and/or communication (Comm.) for optimizing execution time (ET) and/or en-
ergy consumption (EC).

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Theocharides et al. 2010] ET (Value) Comp. Heterogeneous Centralized
[Bansal and Pruhs 2010] ET (Value) Comp. Homogeneous Centralized
[Burkimsher 2014] ET (Value) Comp. & Comm. Homogeneous Centralized
[Singh et al. 2015a] ET (Value) Comp. & Comm. Homogeneous Centralized
[Aksanli and Rosing 2014] EC Comp. Homogeneous Centralized
[Calheiros and Buyya 2014] EC Comp. Homogeneous Centralized
[Wang et al. 2015] EC Comp. Homogeneous Centralized
[Khemka et al. 2015] Value & EC Comp. Homogeneous Centralized
[Singh et al. 2015b] Value & EC Comp. & Comm. Homogeneous Centralized
[Singh et al. 2016] Value & EC Comp. & Comm. Homogeneous Centralized

ated with each application, the resource allocation becomes complex while considering
enormous number of applications arrived at the same time due to overload situation.
Depending upon the arrival rate and value curve pattern of applications, appropriate
resource allocation approach needs to be identified in order to perform optimization for
desired metrics.
3.2. Bio-inspired Resource Allocation

Biologically inspired resource allocation approaches draw inspiration from nature
and apply the observed characteristics when solving specific computational prob-
lems [Heiss and Schmitz 1995]. They are often based on the characteristics of self-
organizing biological systems where global patterns emerge from interactions at a
lower-level in the system [Camazine et al. 2001; Babaoglu et al. 2006]. This indi-
cates that the resource allocations are changed, i.e. reallocations are performed based
on observed biological phenomenon. They have been well explored to balance com-
munication loads in networks and distributed systems [Nishitha and Reddy 2012;
da Silva Rego et al. 2012], communication loads in many-core systems [Rowlings et al.
2015], and both computation and communication loads in embedded systems [Mendis
et al. 2015]. These approaches usually employ distributed resource management to
overcome the limitations of centralized and clustered (hierarchical distributed) man-
agements for dynamic applications and large scale many-core systems. Fig. 7 illus-
trates an example to reallocate some late tasks in a 3×3 many-core system by employ-
ing biological inspiration that is based on pheromone signalling mechanism as seen
in social insects (e.g honey bees) in order to improve the overall performance [Mendis
et al. 2015]. At each reallocation interval, late tasks identification is done on each node

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. K. Singh et al.

t1

t2

Late tasks identification

Q

Q

t1

t2

Q

Q

Identifying and querying

suitable queen (Q) nodes

Q

Q

t1

t2

Q

Q

Choosing suitable queen

node for each late task

t1

t2

Q

Q

Remap to chosen queen

node

Fig. 7: Bio-inspired resource allocation. An example showing remapping of late tasks
t1 and t2 on suitable queen nodes (cores) having higher resource availability.

Table V: Bio-inspired resource allocation approaches that consider computation
(Comp.) and/or communication (Comm.) for optimizing execution time (ET) and/or en-
ergy consumption (EC).

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Heiss and Schmitz 1995] ET Comp. Homogeneous Distributed
[Brinkschulte et al. 2007] ET Comp. Heterogeneous Distributed
[Mudry and Tempesti 2009] ET Comp. Homogeneous Distributed
[Nayak et al. 2012] ET Comp. Heterogeneous Distributed
[Betting and Brinkschulte 2014] ET Comp. Homogeneous Distributed
[Barbagallo et al. 2010] EC Comp. Homogeneous Distributed
[Jha et al. 2014] ET & EC Comp. & Comm. Homogeneous Distributed
[Mendis et al. 2015] ET & EC Comp. & Comm. Homogeneous Distributed

to find late tasks in their task queues. Then, for late tasks, e.g. t1 and t2, the process
of identifying and querying suitable queen (Q) nodes is carried out, where each Q node
represents its pheromone level in terms of processing capability that is obtained pe-
riodically by executing light-weight set of rules on each node. Only the nodes having
pheromone level greater than a threshold contribute to the Q nodes and suitable Q
nodes are the ones in close proximity. Thereafter, suitability of each Q node is deter-
mined to reallocate the late tasks in order to choose the most suitable queen node for
each late task. The neighbouring Q nodes are chosen to reallocate (remap) the late
tasks such that they are still allocated close to each other in order to maintain low
communication overhead in case the tasks communicate with each other.

3.2.1. Existing Works. Table V lists bio-inspired resource allocation approaches for
many-core systems. It has been observed that they have been lesser explored for
many-core systems than networks and distributed systems [Nishitha and Reddy 2012;
da Silva Rego et al. 2012]. These approaches have performed optimizations by con-
sidering several biological phenomenon, e.g., particle swarm optimization (PSO) [Jha
et al. 2014], pheromone signalling (PS) [Mendis et al. 2015], etc. In [Mendis et al. 2015],
energy consumption is not directly optimized, but communication overhead is reduced
that leads to optimized communication energy consumption. These approaches have
been studied to implement a fully distributed resource allocation in order to overcome
the limitations of centralized and clustered (hierarchical) resource managements and
have shown promising results in several scenarios.

3.2.2. Advantages and Drawbacks. The bio-inspired approaches perform allocation in a
completely distributed and self-organizing way. Thus, they alleviate the limitations
of centralized and hierarchical (mixture of centralized and distributed) resource al-
location approaches that suffer from the issues of scalability, huge monitoring traffic,
hot-spots, etc. The main drawbacks of these approaches lie in the fact that they are dif-
ficult to implement, study and calibrate in real systems due to several assumptions on

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:15

Core 1

Core 2

t2

t1

t4

t3

Application Platform

Admission

Controller

and Mapper
Admits based on platform

status and might not be

schedulable after mapping

Fig. 8: Non-guaranteed admission control based resource allocation.

Table VI: Non-guaranteed admission control based resource allocation approaches that
consider computation (Comp.) and/or communication (Comm.) for optimization.

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Lakshmanan et al. 2009] Execution time Comp. Homogeneous Centralized
[Kumar et al. 2010] Execution time Comp. & Comm. Homogeneous Centralized
[Mendis et al. 2014] Execution time Comp. & Comm. Homogeneous Centralized
[Lin et al. 2010] Energy consumption Comp. Homogeneous Centralized

the running system. Additionally, in static environments with a small number of cores,
they might lead to bad results as compared to other design-time (static) optimization
approaches. Further, for a system of small size, they might perform worse than the
centralized resource management approaches that have a better view of the system
resources. For various system sizes, in [Kobbe et al. 2011], it has been shown that
applications achieve better performance by centralized approach than the distributed
approach.

3.3. Non-guaranteed Admission Control based Resource Allocation

A non-guaranteed admission controller does not guarantee the schedulability of the
admitted applications or tasks. Therefore, some of the admitted applications might not
meet their deadlines. For guaranteed admission control, computation costly schedula-
bility analysis (e.g., exact schedulability test) is employed, which takes several mea-
sures into account, e.g., computation/communication requirements of tasks and inter-
ference amongst tasks, such that timing guarantees are always fulfilled for the admit-
ted and running tasks. The costly analysis might incur long delay between the appli-
cation release (arrival) and its allocation process. Further, there might be very low uti-
lization of system resources as the tasks are admitted only when the system can allo-
cate a necessary resource budget to meet timing requirements. To overcome the issues
of costly schedulability analysis and low utilization, low cost tests can be employed,
which would let a higher number of tasks to enter into the system to increase the re-
sources utilization, but some of them might miss their deadlines. Fig. 8 shows such
a process, representing non-guaranteed admission control based resource allocation,
where some of the admitted applications might miss their deadlines as light-weight
schedulability tests are employed that are usually based on status of the platform re-
sources and thus does not ensure schedulability. Feedback-based admission controller
can also be used to provide monitored system information in order to facilitate for
better admission control decisions.

3.3.1. Existing Works. Table VI lists non-guaranteed admission control based resource
allocation approaches and works applying light-weight schedulability tests for soft
real-time systems. Some of the approaches also employ feedback concepts originated
from control-theory. For overall execution time optimization, some approaches admit
and allocate the tasks such that a load balance is achieved in the multi/many-core sys-
tem in order to achieve high performance. The energy optimization is mainly based

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 A. K. Singh et al.

on the feedback utilized to perform dynamic voltage and frequency scaling (DVFS).
Monitoring (feedback) information has also been used to perform adaptive resource
allocation in order to improve performance [Huang et al. 2011; Lee et al. 2013]. It
has been observed that several works regarding feedback admission control exist for
single-core systems, but we focus on multi/many-core systems. Additionally, admission
control based approaches to jointly optimize both execution time and energy consump-
tion are lacking.

3.3.2. Advantages and Drawbacks. The non-guaranteed admission control enables high
system utilization by admitting a higher number of applications. Additionally, light-
weight schedulability analysis reduces the delay between the start of schedulability
test and time of admission into the system. This might lead to lower response time.
However, in case of using feedback that is some monitored activity in the system,
fast and accurate run-time monitoring is desired, which might not always be easily
achievable. Further, monitoring activities can flood the network and increase energy
consumption.

3.4. Congestion Avoiding Resource Allocation

The congestion avoiding heuristics assign new arriving tasks or application tasks on
many-core system resources such that the congestion in the cores and links is mini-
mized. This might lead to optimized overall execution time and energy consumption.
These heuristics does not guarantee for a QoS requirement, but can be used to meet
soft real-time requirements as they optimize congestion leading to optimized execu-
tion time. Fig. 9 shows an example mapping of the computations (tasks) and commu-
nications (edges) of an arrived application on a many-core system’s cores and links,
respectively, while trying to reduce congestion in the cores/links. Tasks t1 and t2 are
mapped on one core assuming that they are highly communicating tasks (huge data
needs to be transferred between them) and can fit on the core, i.e. the core has suffi-
cient memory to allocate them. This reduces the communication overhead between the
tasks as data transfer happens via shared local memory on the core. The other tasks
are mapped in the close proximity assuming that higher amount of data needs to be
transferred between t3 and t4 as compared to t2 and t4, i.e., t3 and t4 are mapped close
to each other while trying to reduce the communication distance between t2 and t4 as
well. The congestion on the cores is also reduced by homogeneously distributing loads
of tasks on the cores.

3.4.1. Existing Works. Table VII lists recent works applying congestion avoiding heuris-
tics to allocate tasks/edges on the resources at run-time. The heuristics employ vari-
ous fundamental principles based on the characteristics of the application and current
status of system resources, e.g., map highly communicating tasks on the same core or
neighbouring cores, edges on least utilized (highly available) links, and tasks on least
utilized cores. These works optimize for one or several performance metrics. Further,
these heuristics perform all the computations at run-time and thus can handle highly
dynamic workloads.

3.4.2. Advantages and Drawbacks. The congestion avoiding heuristics cope well to map
unknown applications (not available at design-time) on any platform as they do not use
any platform specific analysis results computed in advance. However, these heuristics
may not be able to guarantee for schedulability, i.e., for strict timing deadlines due to
lack of any prior analysis and limited computational power at run-time.

3.5. Discussions and Summary

The soft real-time and best effort resource allocation approaches can be applied to per-
form optimization for one or several performance metrics depending upon the need
of the application domain. For example, in battery operated embedded systems, the
timing constraints need to be fulfilled while optimizing for the energy consumption.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:17

t2

t1

t4

t3

Application Platform

Map
t3 t4

t1,t2

Apply best effort

To map computations (tasks)

and communications (edges)

Fig. 9: Congestion avoiding resource allocation in a many-core system for an arrived
application.

Table VII: Congestion avoiding resource allocation approaches that consider computa-
tion (Comp.) and/or communication (Comm.) for optimizing execution time (ET) and/or
energy consumption (EC).

Optimization Comp. & Comm.
References Goal Consideration Architecture Control
[Moreira et al. 2007] ET Comp. & Comm. Homogeneous Centralized
[Nollet et al. 2008] ET Comp. & Comm. Heterogeneous Centralized
[Al Faruque et al. 2008] ET Comp. & Comm. Heterogeneous Distributed
[Hong et al. 2009] ET Comp. Homogeneous Centralized
[Shojaei et al. 2009] ET Comp. Homogeneous Centralized
[Peter et al. 2009] ET Comp. & Comm. Homogeneous Distributed
[Theocharides et al. 2009] ET Comp. Heterogeneous Centralized
[Wang et al. 2011] ET Comp. & Comm. Heterogeneous Centralized
[Blanch et al. 2011] ET Comp. Heterogeneous Centralized
[Huang et al. 2011] ET Comp. & Comm. Heterogeneous Centralized
[Kobbe et al. 2011] ET Comp. & Comm. Heterogeneous Distributed
[Chen et al. 2012] ET Comp. Heterogeneous Centralized
[Chou and Marculescu 2008] EC Comp. & Comm. Homogeneous Centralized
[Mandelli et al. 2011] EC Comp. & Comm. Homogeneous Centralized
[Sun et al. 2010] EC Comp. & Comm. Homogeneous Centralized
[Ost et al. 2013] EC Comp. & Comm. Homogeneous Centralized
[Smit et al. 2004] ET & EC Comp. & Comm. Heterogeneous Centralized
[Mehran et al. 2008] ET & EC Comp. & Comm. Homogeneous Centralized
[Briáo et al. 2008] ET & EC Comp. & Comm. Homogeneous Centralized
[Chou et al. 2008] ET & EC Comp. & Comm. Homogeneous Centralized
[Schranzhofer et al. 2009] ET & EC Comp. & Comm. Heterogeneous Centralized
[Carvalho et al. 2010] ET & EC Comp. & Comm. Heterogeneous Centralized
[ter Braak et al. 2010] ET & EC Comp. & Comm. Heterogeneous Centralized
[Castilhos et al. 2013] ET & EC Comp. & Comm. Homogeneous Distributed
[Modarressi et al. 2013] ET & EC Comp. & Comm. Homogeneous Centralized
[Fattah et al. 2014] ET & EC Comp. & Comm. Homogeneous Centralized
[Ng et al. 2015] ET & EC Comp. & Comm. Homogeneous Centralized

These approaches employ different kinds of resource management, e.g., centralized,
distributed or mix of both (hierarchical) depending upon the size of the many-core
system and workload to be executed on it. It has been observed that distributed man-
agement leads to better results than centralized one when many-core systems of large
sizes are considered [Kobbe et al. 2011]. However, in a relatively smaller system, the
centralized management might perform better as the distributed approach incurs ad-
ditional communication overhead amongst the several agents without offering signifi-
cant advantages [Kadin et al. 2009; Kobbe et al. 2011]. In case the performance needs
to be improved at run-time by employing adaptive resource allocation, task migrations
are performed, where the tasks are migrated without completely stopping and restart-
ing on the destination core [Briáo et al. 2008; Peter et al. 2009]. These approaches can
also be modified to perform optimizations for other performance metrics, e.g., relia-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 A. K. Singh et al.

bility, fault-tolerance, temperature, security, etc. by taking appropriate measures into
account.

4. COMPARATIVE STUDY AND SUMMARY

This section shows comparative results of various resource allocation approaches
falling under hard real-time and soft real-time & best effort categories. We show some
example comparisons, where mainly considered approaches are those that employ the
same application and multi/many-core system model, or the application models that
can be easily converted to a unified model such that the same evaluation tool can be
used. It should be noted that a single tool chain is not used to evaluate approaches
from various categories, but the tool chain to evaluate a set of approaches within a cat-
egory is the same and taken from in-house/open-source tool chains. This enables a fair
comparison of approaches within a category. Further, approaches within each category
are compared separately, i.e., approaches across different categories are not compared
as they try to achieve objectives by following different principles. This enables com-
parison of approaches following similar principles. It should also be noted that some
approaches are not considered for comparison due to the reasons such as their well
proven inferiority, lack of availability of application models, architecture models and
tool chains. The used application model, architecture model and the tool chain are
listed while presenting respective results in next subsections.

4.1. Hard Real-time Approaches

4.1.1. Guaranteed Admission Control based Approaches. The recently reported admission
control based approaches that can be applied to applications represented as task
graphs are considered for comparison and listed in Table VIII. For the task graph,
these approaches can use outputs from controllers to choose the core for critical path
jobs or cores for the remaining jobs. The decision whether to use outputs from con-
trollers or not for critical path and other jobs leads to four possible alternatives
listed in Table VIII under column Approaches. We abbreviate them with four letter
acronyms, where the two first letters denote whether the core selection for critical
path jobs is done without (open loop - OL) or with (closed loop - CL) controllers and
similarly the two remaining letters inform if the core selection for jobs outside the crit-
ical path is performed without (OL) or with (CL) controllers. Specifically, proportion-
alintegralderivative (PID) controllers are used to perform the comparative study. A
Transaction-Level Modelling (TLM) simulation model developed in SystemC language
has been used to evaluate the efficiency of the approaches. The controller components
(proportional, integral, and derivative) are tuned by analysing the corresponding open-
loop system response to a bursty workload.

Number of Executed Jobs and Number of Schedulability Test Executions. Figure 10 (a) and
(b) show the number of jobs executed before their deadlines and number of schedu-
lability tests when multi-core systems with different number of cores are considered.
The shown results are for grid workload of an engineering design department of a
large aircraft manufacturer that contains 100 tasks of 827 to 962 jobs in total, where
job execution time varies from 1ms to 99ms, which has been scaled down for faster
execution and was originally in the orders of hours. In the open-loop (OL) configura-
tion, cores are scanned in a lexicographical order as long as the first one capable of
executing the job satisfying its timing constraints is not found, whereas in the closed-
loop (CL) configurations the tasks are checked with regards to the decreasing value
of the corresponding controller outputs. A couple of observations can be made from
Figure 10. 1) For the number of executed jobs, OLOL configuration approach seems to
be particularly beneficial in the systems with lower number of cores (heavier loaded
with jobs). However, in the systems with more than two cores, the OLCL configura-
tion leads to the best results. Its superiority in comparison with CLCL stems from the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:19

Table VIII: Admission control based approaches considered for comparison with vari-
ous open loop (OL) and closed loop (CL) combinations.

References Approaches Abbreviation
[Mendis et al. 2014] Open Loop for critical path jobs & Open Loop for other jobs OLOL

[Dziurzanski et al. 2016] Open Loop for critical path jobs & Closed Loop for other jobs OLCL
[Dziurzanski et al. 2016] Closed Loop for critical path jobs & Open Loop for other jobs CLOL
[Dziurzanski et al. 2016] Closed Loop for critical path jobs & Closed Loop for other jobs CLCL

(a) (b)

Fig. 10: Number of executed jobs and number of schedulability test executions.

fact that an over-pessimistic rejection of critical path jobs leads to fast rejection of the
whole task. Thus, the cost of a false negative estimation is rather high. The OLCL
configuration admits 11% more jobs than OLOL, whereas CLCL is only slightly (about
1.5%) better than the baseline OLOL. 2) For the number of schedulability tests, the
difference between OLOL and OLCL is almost unnoticeable, but the configurations
with control-theory-aided selection of a core for the critical path jobs, i.e. CLCL, leads
to significant, over 30% reduction. This indicates the benefits of using the controller
outputs. From the results, it follows that two configurations OLCL and CLCL domi-
nate each other, the former in terms of number of executed jobs, the latter in terms of
number of schedulability tests. Depending upon which goal is more important, one of
them is advised to be selected.

4.1.2. Hybrid Approaches: Design-time Allocations Computation and Run-time Selection. The
compared hybrid approaches that perform design-time allocations computation and
run-time selection are listed in Table IX. Some of these approaches optimize only ex-
ecution time or energy consumption, and some of them optimize both the metrics.
HETOpt tries to find a load balanced allocation to optimize execution time. The en-
ergy consumption optimization in HECOpt1 and HECOpt2 is performed by exploiting
expected future slack and current slack, respectively. Appropriate voltage/frequency
levels of used cores are identified to exploit the slack. In HETECOpt1, at design-time,
exhaustive exploration is performed to identify the best allocation in terms of execu-
tion time and energy consumption, whereas HETECOpt2 prunes the design space to
perform the exploration within a limited time. HETECOpt3 identifies the best alloca-
tion at run-time by exploiting the design-time extracted execution traces. To evaluate
these approaches, they are implemented using publicly available SDF3 tool set [Stuijk
et al. 2006] along with the required application and architecture models.

Execution Time and Energy Consumption Comparison. Figure 11 (a) and (b) show compar-
ison of worst-case execution time and energy consumption for various streaming mul-
timedia applications when different approaches tabulated in Table IX are employed to
map them on a 4×4 2D mesh multi-core chip. The multimedia applications are char-
acterized by throughput constraints [Bamakhrama and Stefanov 2012]. The results

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 A. K. Singh et al.

Table IX: Hybrid approaches (design-time allocations computation and run-time selec-
tion) considered for comparison

References Approaches Abbreviation
[Stuijk et al. 2010] Hybrid Execution Time Optimization HETOpt

[Choudhury et al. 2007] Hybrid Energy Consumption Optimization 1 HECOpt1
[Singh et al. 2013a] Hybrid Energy Consumption Optimization 2 HECOpt2
[Yang et al. 2002] Hybrid Execution Time & Energy Consumption Optimization 1 HETECOpt1
[Singh et al. 2013] Hybrid Execution Time & Energy Consumption Optimization 2 HETECOpt2

[Singh et al. 2016b] Hybrid Execution Time & Energy Consumption Optimization 3 HETECOpt3

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

H.263

decoder

H.263

encoder

JPEG

decoder

MPEG-4

decoder

sample

rate

converter

MP3

decoder

E
x
e
c
u
ti
o
n
T
im

e

(n
o
rm

a
li
ze
d
w
.r
.t
.
H
E
T
E
C
O
p
t1
)

HETECOpt1 HETECOpt2 HETECOpt3 HETOpt HECOpt1 HECOpt2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

H.263

decoder

H.263

encoder

JPEG

decoder

MPEG-4

decoder

sample

rate

converter

MP3

decoder

E
n
e
rg
y
C
o
n
su
m
p
ti
o
n

(n
o
rm

a
li
ze
d
w
.r
.t
.
H
E
T
E
C
O
p
t1
)

(a) (b)

Fig. 11: Execution time and energy consumption comparison.

obtained by different approaches are normalized with respect to (w.r.t.) the result ob-
tained by HETECOpt1. A couple of observations can be made from Figure 11 (a) and
(b). 1) HETOpt leads to the worst result in terms of both execution time and energy
consumption as it tries to perform load balanced resource allocation of tasks on cores
without taking parallelism of tasks and their communication overhead into account. 2)
Both execution time and energy consumption optimization approaches HETECOpt1,
HETECOpt2, and HETECOpt2 lead to similar results for most of the applications as
all of them compute efficient allocations at design-time. 3) Energy consumption by
HECOpt1 and HECOpt2 is lower than other approaches. The reason lies in the fact
that HECOpt1 and HECOpt2 employ DVFS on cores to reduce the energy consump-
tion while respecting the application deadlines, whereas, other approaches just try to
find the best allocation and do not employ DVFS. 4) HECOpt2 leads to minimum en-
ergy consumption as DVFS is applied both at design-time and run-time while taking
DVFS overhead and deadline into account.

4.1.3. Hybrid Approaches: Design-time Deadline Distribution and Run-time Allocation. The com-
pared hybrid approaches that perform design-time deadline distribution and run-time
allocation are listed in Table X. These approaches distribute the end-to-end deadline
of an application/job to its sub-functions and then perform resource allocation in order
to meet the deadline. In PDC, end-to-end delay of a job in a multi-stage pipeline is
bounded as a function of job execution times on different stages. The AP approach par-
titions a parallel real-time application into a set of sequential flows. In LDA, a locally
optimal algorithm is employed to assign local deadlines to the jobs. The evaluation
results for these approaches are employed from [Hong et al. 2015], where they are im-
plemented in C++ and consider stream-type and general-type workloads to emulate
different kinds of application scenarios.

Number of Executed Task Sets. Figure 12 (a) and (b) show comparison of feasible task
sets at various utilization levels for balanced and imbalanced workloads when assorted
approaches are employed. Each workload contains a total of 100 task sets of 50 tasks
each, where individual instances of a task and sub-task are referred to as jobs and

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:21

Table X: Hybrid approaches (design-time deadline distribution and run-time alloca-
tion) considered for comparison

References Approaches Abbreviation
[Jayachandran and Abdelzaher 2008] Pipeline Delay Composition PDC

[Buttazzo et al. 2011] Automatic Partitioning AP
[Hong et al. 2015] Local-Deadline Assignment LDA

0

20

40

60

80

100

120

4

4
.2
5

4
.5

4
.7
5 5

5
.2
5

5
.5

5
.7
5 6

6
.2
5

F
e
a
si
b
le
Ta
sk

S
e
ts
(%

)

Utilization Level

PDC AP LDA

(a)

0

20

40

60

80

100

120

4

4
.2
5

4
.5

4
.7
5 5

5
.2
5

5
.5

5
.7
5 6

6
.2
5

F
e
a
si
b
le
Ta
sk

S
e
ts
(%

)

Utilization Level

PDC AP LDA

(b)

Fig. 12: Percentage of feasible task sets for (a) balanced and (b) imbalanced workloads.

sub-jobs, respectively. A total of 8 cores are considered. In a balanced workload, the
execution time of a job is randomly distributed along its execution path to balance the
core loads, whereas cores’ loads are imbalanced in an imbalanced workload. A couple of
observations can be made from the figure. 1) LDA finds far more feasible sets than the
other two methods for both the balanced and imbalanced workloads. 2) LDA performs
much better than PDC and AP at high utilization levels where there are more jobs
in the system. It should also be noted that sometimes LDA may not be able to find a
feasible solution even though such solutions indeed exist, since LDA finds local sub-job
deadlines for each core independently instead of using a global approach.
4.2. Soft Real-time Approaches

4.2.1. Market-inspired Approaches. We have considered mainly market-inspired and
value based approaches for comparison. Table XI lists the compared approaches that
have been applied to applications containing dependent tasks. The value optimization
approaches optimize only for value while applying various principles, e.g., ValOpt1
chooses the highest value application first, ValOpt2 first chooses the application hav-
ing maximum value density computed as value over the amount of required compu-
tational resources, and ValOpt3 chooses the application with the minimum remaining
value first. The approach in [Singh et al. 2013a] optimizes only for energy and has
been extended to optimize both value and energy consumption for a fair comparison,
where first a value optimizing allocation is found and then DVFS is applied to opti-
mize energy consumption. In ValEnJoinOpt, value and energy consumption are jointly
optimized by employing a genetic algorithm. In ValEnAdaptOpt, in addition to joint
optimization, adaptation (reallocation) is also performed based on the execution status
of running applications and available system resources in order to explore the scope
for further optimization. These approaches are implemented in a C++ prototype and
integrated with a SystemC functional simulator. They are evaluated by considering
job models from historical data of an industrial HPC data center at High Performance
Computing Center Stuttgart (HLRS).

Value and Energy Consumption Comparison. Figure 13 (a) and (b) show the influence of
the number of available nodes (servers) on the overall value and energy consumption
when various approaches are employed. Each node contains a total of 10 cores. To suf-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 A. K. Singh et al.

Table XI: Market-inspired and value based approaches considered for comparison

References Approaches Abbreviation
[Theocharides et al. 2010] Value Optimization 1 ValOpt1
[Bansal and Pruhs 2010] Value Optimization 2 ValOpt2

[Burkimsher 2014] Value Optimization 3 ValOpt3
[Singh et al. 2013a] Value and Energy Separate Optimization ValEnSepOpt
[Singh et al. 2015b] Value and Energy Joint Optimization ValEnJoinOpt
[Singh et al. 2016] Value and Energy Adaptive Optimization ValEnAdaptOpt

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6

V
a
lu
e

(n
o
rm

a
li
ze
d
w
.r
.t
.
V
a
lO
p
t1

a
t
2
n
o
d
e
s)

Nodes

ValOpt1 ValOpt2 ValOpt3 ValEnSepOpt ValEnJoinOpt ValEnAdaptOpt

0

0.5

1

1.5

2

2.5

2 3 4 5 6
E
n
e
rg
y
C
o
n
su
m
p
ti
o
n

(n
o
rm

a
li
ze
d
w
.r
.t
.
V
a
lO
p
t1

a
t
2
n
o
d
e
s)

Nodes

(a) (b)

Fig. 13: Value and energy consumption comparison.

ficiently stress the platform, we consider all the applications arriving over a month.
Further, to remain close to the reality, it is considered that higher number of applica-
tions arrives in peak times, i.e. weekdays and daytimes as compared to off-peak times,
i.e. weekends and night times. The value and energy consumption results are normal-
ized w.r.t. the value and energy by ValOpt1 approach at 2 nodes. A couple of observa-
tions can be made from Figure 13. 1) Overall value by all the approaches increases
with the number of nodes due to increased processing capability leading to completion
of a higher number of applications before their value becomes zero. 2) ValEnAdap-
tOpt approach achieves a higher overall value than other approaches. This is due to
the fact that adaptation leads to early completion of executing applications and thus
higher values for them. Further, earlier completion leaves resources for the queued
applications to be allocated and completed sooner, leading to higher values. 3) The
energy consumption is not the lowest by ValEnAdaptOpt as it completes execution of
higher number of applications and energy is consumed for executing them. Further,
if both the value and energy consumption metrics are to be jointly optimized as value
achieved per unit of energy consumption, i.e. value divided by energy, ValEnAdaptOpt
leads to the best results.

4.2.2. Bio-inspired Approaches. Table XII lists the bio-inspired approaches considered
for comparison. These approaches are applied to perform reallocation on top of an
initial allocation done based on least utilized heuristic in order to improve average
execution time and energy consumption. In RR, at every remapping interval, each
core selects the most late task from its task queue and randomly selects another core
to remap it. MCR partitions the whole many-core chip into virtual clusters and each
cluster is managed by a local manager that receives states of its cores every time a
task completes execution and performs mapping of tasks. In case the cluster has no
available cores, it sends request to neighboring clusters and loans the closest avail-
able core to map the task. To have a fair comparison, MCR approach of [Castilhos

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:23

Table XII: Bio-inspired approaches considered for comparison

References Approaches Abbreviation
Reference implementation Random Reallocation RR

[Castilhos et al. 2013] Multiple Cluster based Reallocation MCR
[Mendis et al. 2015] Single Cluster based Reallocation SCR
[Mendis et al. 2015] Pheromone Signalling based Reallocation PSR

Jo
b
La
te
n
e
ss

Im
p
ro
v
e
m
e
n
t
(%

)

RRSCRMCRPSR

(a)

C
o
m
m
u
n
ic
a
ti
o
n
O
v
e
rh
e
a
d
(s
)

RRSCRMCRPSR

(b)

Fig. 14: Job lateness and communication overhead comparison.

et al. 2013] has been modified to take the following aspects into account: relocation
to maximum two hop distance, remapping a late task is to a PE with positive slack,
and placing cluster manager in the center of the cluster [Mendis et al. 2015]. SCR is
essentially MCR with only one cluster. In PSR, the reallocation is performed based on
the pheromone level of the cores. These approaches are evaluated by a discrete-event
abstract simulator to map a video stream workload on a 10×10 mesh of cores [Mendis
et al. 2015], where cluster size of 2×5 (i.e. 10 clusters) is considered for MCR and the
video stream contains a set of jobs arriving at different moments of time.

Execution Time and Energy Consumption Comparison. To evaluate average execution time
and energy consumption, the relevant metrics job lateness and communication over-
head are considered. By optimizing the job lateness and communication overhead, av-
erage execution time and communication energy can be optimized, where job lateness
is computed as the difference between the job deadline and its response time. Figure 14
(a) and (b) compare distribution of cumulative job lateness and communication over-
head, respectively, when various approaches are employed. For job lateness, all the
approaches show positive and negative results. Therefore, the remapping techniques
have failed to improve lateness of jobs under certain workload situations. However,
majority of the distribution for PSR and MCR is in the positive region. In over 60%
of the workload scenarios, PSR produces positive improvement to the job lateness of
the video streams. Further, MCR shows a better job lateness improvement over SCR
as the monitoring traffic is shorter in route-length and hence is less disruptive to the
data communication. The random remapper shows the worst results. It is interesting
to note that there are a few scenarios where random remapping produced significant
job lateness improvements. For communication overhead, PSR shows a significant re-
duction when compared to some other approaches. The maximum overhead of PSR is
comparable to that of MCR. Both the MCR and SCR show a higher and narrower dis-
tribution of communication overhead than PSR. A higher upper whisker in PSR shows
that under certain workload scenarios the overhead can be costly and similar to the
MCR. The lower communication overhead distribution of the SCR when compared to
MCR is due to the lack of inter-cluster communication. In SCR, communicating tasks
mapped at the middle of the system will suffer due to the network congestion caused by

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 A. K. Singh et al.

Table XIII: Non-guaranteed admission control approaches considered for comparison

References Approaches Abbreviation
Reference implementation No Admission Control NAC

[Leontyev and Anderson 2008] Guaranteed Admission Control GAC
[Kao and Garcia-Molina 1997] Equal Flexibility EQF

[Mendis et al. 2014] Heuristic Admission Control HAC

0

20

40

60

80

100

AdmSchd AdmLate Rejtd AdmSchd AdmLate Rejtd

Low-Load High-Load

#
v
id
e
o
s
t
r
e
a
m
s

NAC GAC EQF HAC

(a)

0

10

20

30

40

50

60

70

80

90

Low-Load High-Load

C
o
re

b
u
sy

ti
m
e
(%

)

NAC GAC EQF HAC

(b)

Fig. 15: Video stream admission and utilization comparison.

the incoming monitoring traffic and thus communication overhead issues will become
severe for larger system sizes. The RR has lowest communication overhead as it only
incurs overhead when notifying the task dispatcher regarding remapping decisions.

4.2.3. Non-guaranteed Admission Control Approaches. Table XIII lists the relevant ap-
proaches considered for comparison. NAC is considered to analyse the effects of ad-
mission controls over no admission control. In GAC, it is ensured that all the admitted
tasks/jobs will meet their deadlines. The EQF approach divides the total remaining
slack among the subtasks in proportion to their estimated execution times in the hope
to reduce individual task deadline miss rate. In HAC, a heuristic based admission con-
trol is employed in order to achieve trade-off between predictability and utilization.
These approaches are evaluated by a discrete-event abstract simulator to map a num-
ber of video streams on a 3×3 mesh of cores [Mendis et al. 2014], where each video
stream contains a set of jobs arriving at different moments of time.

Admitted Video Streams (relates to Predictability) and Energy Consumption (relates to System

Utilization) Comparison. Figure 15 (a) shows the number of video streams that were ad-
mitted and successfully schedulable (AdmSchd), admitted but late (AdmLate) and re-
jected (Rejtd) when difference approaches are employed under light (Low) and heavy
(High) load conditions. The HAC is employed by setting fixed values of constants in
the adopted heuristic [Mendis et al. 2014]. A couple of observations can be made from
Figure 15 (a). 1) For both low and high load conditions, when GAC is employed, none
of the admitted video streams incur any lateness, i.e., AdmLate is zero. 2) In NAC,
all the incoming video streams are admitted unless the global input buffers do not
have available free space to hold the new tasks. Hence, a large number of admitted
video streams miss their deadlines, specially under the high-load situation, and only
few video streams are rejected. 3) The rejected jobs are higher in high-load situation
as the task-queues and input buffers become saturated earlier. 4) EQF and GAC have
similar service guarantees, where no admitted streams incur lateness (AdmLate = 0),
however, on average, the rejection rate of EQF is lower than GAC, giving a more tighter
guaranteed decision. Figure 15 (b) shows the percentage busy time of all the cores for
different approaches under low and high load conditions. The percentages is computed
by the ratio between the total core busy time and total simulation. A couple of obser-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:25

vations can be made by looking Figure 15 (a) and (b). 1) Admitting more streams into
the system (whether they are late or schedulable) improves system utilization. In the
high load condition, NAC has peak utilization of about 80% after which the buffers
begin to overflow and streams are rejected. Further, admitting a few high resolution
video streams may cause the system to be more busy than admitting relatively low
resolution ones. 2) GAC has the lowest system busy time which corresponds well with
the high number of stream rejections shown in Figure 15 (a). 3) The system busy time
is better by EQF over GAC because of extra admitted streams. Further, HAC shows
even higher busy time due to more admitted video streams.

4.2.4. Congestion Avoiding Approaches. Table XIV lists the promising congestion avoid-
ing resource allocation approaches considered for comparison. NonContNN tries to find
the allocation for a task on the nearest core close to the core containing its communicat-
ing task. NonContTM employs task migration to obtain a better allocation. NonCon-
tNNDefrag employs the defragmentation approach proposed in [Ng et al. 2015] on top
of NonContNN. In IncCont, for the tasks of an incoming application, an incremental
allocation is performed in a selected region that may be long and thin in shape, which
may incur a higher communication energy. In contrast, CirCont selects a region that
is nearly circular in shape, which leads to small average distance between any pair
of cores inside the selected region and thus save energy consumption. CirContDefrag
employs the defragmentation approach of [Ng et al. 2015] on top of CirCont. These ap-
proaches are implemented by extending Noxim [Fazzino et al. 2008], a SystemC-based
Network-on-Chip (NoC) simulator. Their evaluation is done by considering applica-
tions represented as task graphs that have varying arrival times [Ng et al. 2015].

Execution Time and Energy Consumption Comparison. Figure 16 (a) and (b) show overall
execution time and energy consumption when 100 random applications are allocated
on systems of various sizes by employing the congestion avoiding approaches reported
in Table XIV. The inter-application arrival period is set randomly and average number
of tasks in each application is 8. In the case of non-contiguous mapping, on average,
NonContNNDefrag reduces execution time by 35.6% and 34% when compared to Non-
ContNN and NonContTM, respectively. Further, NonContNNDefrag reduces energy
consumption by 40.6% and 39% over NonContNN and NonContTM, respectively. In
NonContNN and NonContTM, free cores might be scattered and thus tasks of the
incoming application are allocated to non-contiguous regions. This increases the inter-
task communication overhead and thus degrades the performance. On the other hand,
NonContNNDefrag leads to better performance as inter-task communication distance
is reduced by grouping the free cores into one contiguous region before allocating of
the incoming application. In the case of contiguous mapping, on average, CirContDe-
frag shows a 28% reduction in execution time when compared to CirCont. Moreover,
on an average, CirContDefrag reduced energy consumption by 28% when compared
to CirCont. CirContDefrag improves the CirCont approach by reshaping the irregular
free core region into a regular and contiguous one with low communication distance;
otherwise, CirCont has to wait until a regular free core region is not available even if
sufficient scattered cores are available after multiple allocations and deallocations.

4.3. Discussions and Summary

The compared approaches under various categories indicate their superiority for per-
forming different kinds of resource allocations. Therefore, based on the kind of appli-
cation domain and run-time scenario, one category of approaches are recommended to
be employed. The references to recommended previous studies for some common sce-
narios/applications are as follows. In case the platform is overloaded (i.e., demand for
available resources is higher than the supply) in a centralized control environment,
market-inspired approaches are suitable as more profitable jobs can be allocated to

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 A. K. Singh et al.

Table XIV: Congestion avoiding approaches considered for comparison

References Approaches Abbreviation
[Carvalho et al. 2010] Non-contiguous Nearest Neighbour NonContNN

[Modarressi et al. 2013] Non-contiguous with Task Migration NonContTM
[Ng et al. 2015] NonContNN with Defragmentation NonContNNDefrag

[Chou et al. 2008] Incremental Contiguous IncCont
[Sun et al. 2010] Circular Contiguous CirCont
[Ng et al. 2015] CirCont with Defragmentation CirContDefrag

0

0.2

0.4

0.6

0.8

1

1.2

10x10 12x12 14x14 16x16 32x32

E
x
e
c
u
ti
o
n
T
im

e

(n
o
rm

a
li
ze
d
w
.r
.t
.
N
o
n
C
o
n
tN
N
)

NoC Size

NonContNN NonContTM NonContNNDefrag IncCont CirCont CirContDefrag

0

0.2

0.4

0.6

0.8

1

1.2

10x10 12x12 14x14 16x16 32x32

E
n
e
rg
y
C
o
n
su
m
p
ti
o
n

(n
o
rm

a
li
ze
d
w
.r
.t
.
N
o
n
C
o
n
tN
N
)

NoC Size

(a) (b)

Fig. 16: Execution time and energy consumption comparison.

the limited resources while holding the low value jobs for late allocation [Theocharides
et al. 2010; Aksanli and Rosing 2014; Calheiros and Buyya 2014; Khemka et al. 2015;
Singh et al. 2016]. In a distributed control environment where reallocations need to be
performed based on observed biological phenomenon and related platform/application-
level metrics (e.g., throughput and lateness), bio-inspired approaches can be employed
to perform efficient resource allocation [Brinkschulte et al. 2007; Barbagallo et al.
2010; Nayak et al. 2012; Jha et al. 2014; Mendis et al. 2015] . For typical embedded
systems where the applications are known in advance, efficient allocations for each
application or use-case (combination of active applications) can be computed at design-
time with well-defined search heuristics. Such measures can be taken to achieve better
results as compared to on-the-fly processing approaches [Huang and Xu 2010; Ykman-
Couvreur et al. 2011; Singh et al. 2013; Weichslgartner et al. 2014; Quan and Pimentel
2015; Singh et al. 2016b]. However, on-the-fly approaches are recommended to be ap-
plied when the applications are not known in advance as they lend well in such sce-
narios [Moreira et al. 2007; Shojaei et al. 2009; Carvalho et al. 2010; Castilhos et al.
2013; Fattah et al. 2014; Ng et al. 2015].

Further, depending upon the size of the system, a decision to choose between cen-
tralized and distributed control can be made by performing experiments with various
system sizes. Usually, distributed control leads to better results for large scale systems
as it alleviates the monitoring traffic problem around the centralized manager [Kadin
et al. 2009; Kobbe et al. 2011; Castilhos et al. 2013].

5. UPCOMING TRENDS FOR FUTURE RESEARCH AND OPEN CHALLENGES

This section addresses some of the upcoming trends and challenges to be faced to take
the mapping methodologies into the next era.

5.1. Hybrid Resource Allocation

The analysis of dynamic resource allocation approaches indicate that hybrid strate-
gies, that combine design space exploration of design-time techniques with the run-
time management in order to select mapping configurations that are best suited to

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:27

newly arriving applications, lead to better results than on-the-fly strategies. The al-
ready known mapping configurations also improve predictability. Further, since they
involve minimum computation at run-time, they facilitate for light-weight run-time
platform manager. This speeds up the mapping process, i.e., mapping time, signifi-
cantly over on-the-fly strategies.

The trend for the hybrid resource allocation was introduced earlier [Singh et al.
2013]. Since then, due to its potential, significant advances have taken place for em-
bedded systems [Weichslgartner et al. 2014; Javaid et al. 2014; Jung et al. 2014; Quan
and Pimentel 2015; Dziurzanski et al. 2015; Singh et al. 2016b]. It has also shown its
potential for managing data center resources [Singh et al. 2015b; 2016]. With advance-
ment, these approaches have tried to address the involved challenges such as reducing
exploration time for large scale applications/platforms and storage overheads for ex-
plored designs. However, since the problem size is continuously increasing because of
the additional complexity of applications and the way they share increasingly sophis-
ticated platforms, further studies are required.

Although the advantages of hybrid strategy seem promising, it comes with its own
trade-offs due to inherent pseudo-dynamic nature and inability to handle new appli-
cations without available design-time exploration. With no doubt, hybrid strategies
seem to be followed in the field of mapping methodologies but due to their nascent de-
velopment and lack of in-depth examination, further development of design-time and
on-the-fly mapping methodologies will continue hand-in-hand with hybrid strategies.

5.2. Large Scale Many-core Architectures

It is evident that technological enhancement will enable integration of hundreds and
even thousands of cores in a single chip [Borkar 2007]. Recently, some large scale archi-
tectures have been introduced, e.g., Angstrom [Hoffmann et al. 2012], Kalray’s MPPA
[De Dinechin et al. 2014], and KiloCore chip [Bohnenstiehl et al. 2016]. These archi-
tectures impose a big challenge to manage their resources at run-time in a scalable
manner. Some researchers have tried to address the scalability concern by develop-
ing distributed resource management strategies [Kadin et al. 2009; Al Faruque et al.
2008; Kobbe et al. 2011; Ebi et al. 2011]. These distributed strategies need to be fur-
ther investigated such that the systems can be made more predictable and real-time
challenges of foreseeable future can be addressed.

The resource allocation for large scale many-core architectures has already been a
trend [Singh et al. 2013]. However, due to the integration of higher number of cores
in recent years [De Dinechin et al. 2014; Bohnenstiehl et al. 2016] and its expected
increase in upcoming years, resource allocation approaches need to advance in order
to address the challenge of efficient exploitation of the abundant amount of cores.

In order to overcome the issues of large scale 2-dimensional (2D) many-core chips
such as large area, power and signal transmission delay, integration of multiple lay-
ers of cores into a single device is taking place in order to realize 3-dimensional (3D)
many-core architectures [Coskun et al. 2009; Zhou et al. 2010]. Despite having several
advantages of 3D integration, the 3D high integration density brings major concern
in the temperature increase that causes thermal hot spots and high temperature gra-
dients. This might lead to an unreliable system and degraded performance. Efficient
thermal management of 3D architectures is challenging and requires investigation
of efficient resource allocation strategies to cater the reliability and performance con-
cerns. The performance concern is specially important for real-time applications where
predictable execution is desired.

The resource allocation studies for 3D architectures have also advanced. These ad-
vanced studies have tried to exploit the 3D architecture through various heuristics. For
example, in [Cheng et al. 2013], interconnect energy optimization is achieved by allo-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 A. K. Singh et al.

cating heavily communicating edges to fast vertical links, and in [Singh et al. 2016a],
potential of 3D-neighborhood correlation available in spatial and temporal domains
for 3D videos is exploited.

Further, these large scale architectures are expected to contain several types of
cores, e.g., general purpose processor (GPP) cores, digital signal processing (DSP)
cores, graphic processing unit (GPU) cores and field programmable gate array (FPGA),
in order to meet functional and non-functional demands by exploiting their distinct fea-
tures. Such heterogeneous integration will further increase the resource management
challenges. Recently, small scale heterogeneous architectures have been released by
industries, e.g., Samsung Exynos 5422 System-on-Chip [Samsung 2014] that powers
the popular Samsung Galaxy S5 smartphone and the chip contains 4 ARM Cortex-A15
cores, 4 ARM Cortex-A7 cores and a six-core ARM Mali T628 MP6 GPU. Additionally,
some development chips have been released, e.g., MediaTek’s Helio X20 chip [Medi-
aTek 2016] containing Cortex-A72 cores, Cortex-A53 cores and Mali-T880 MP4 GPU
cores, Xilinx’s Zynq UltraScale+ EG MPSoC devices [Xilinx 2016] containing ARM
Cortex-A53 cores, Cortex-R5 cores and a Mali-400 MP2 GPU, and Intel’s Xeon-FPGA
hybrid chip [Intel 2016] containing 12-core Intel microprocessor with an Altera Arria10
FPGA. The number of heterogeneous cores in future architectures are going to increase
towards realization of large scale heterogeneous architectures. Further, academia is
also investigating large scale heterogeneous architectures, e.g. Invasive architecture
containing thousands of cores [Henkel et al. 2012]. In order to exploit these archi-
tectures, new framework such as OpenCL [OpenCL] has been developed for writing
programs that can execute across heterogeneous processing cores CPU, GPU, DSP, and
FPGAs. Existing works have explored the possibility of executing OpenCL programs
across CPUs and GPUs [Luk et al. 2009; Grewe et al. 2013; Prakash et al. 2015].
In future, efficient resource allocation strategies will need to be developed by taking
abundant amount of cores and heterogeneity into account [Ding et al. 2014]. This will
address the need to satisfy the ever increasing performance requirements of modern
and future applications that can efficiently utilize large number of processor cores.

5.3. Joint Consideration of Computation and Communication Loads

Several earlier researches on multi/many-core systems indicate that only computation
loads were considered and optimizations used to be performed only for such loads.
Some of these works can be seen in Tables I to XIV, where computation (comp.) is
entered in the column computation and communication (comp. and comm.) considera-
tion. These works consider loads as a set of independent tasks, which used to be true
for single core systems where each task is executed sequentially. However, to efficiently
exploit multi/many-core systems, the applications are partitioned into multiple tasks
that usually have execution order and data dependencies, and such partitioned ap-
plication are represented as task graphs, dataflow graphs, etc. Due to the dependency,
once computation of a task is finished, it sends data (representing communication load)
to other task that starts execution after receiving the data. This necessitates joint con-
sideration of computation and communication loads during the process of resource
allocation.

5.4. Multi-objective Resource Allocation

The resource allocation problem for multi/many-core systems has focused a lot to op-
timize execution time in order to meet the timing constraints, which is one of the
important objective to achieve safe operation in time-critical systems or better user
experience in embedded systems. However, modern multi/many-core systems need to
be optimized for several other metrics along with the execution time due to various
reasons such as increasing demand of energy, shrinking transistor sizes leading to un-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:29

reliable systems due to leakage power and thermal issues, and security threats due to
interaction with untrusted devices.

5.4.1. Jointly Optimizing Execution Time and Energy Consumption. The joint optimization of
execution time and energy consumption is of paramount importance due to battery
operated systems [Jha et al. 2014; Fattah et al. 2014; Quan and Pimentel 2015; Singh
et al. 2016b], and limited availability of power for remote devices and HPC data centers
[Singh et al. 2015b; Khemka et al. 2015]. This helps to enhance the operational time
while still meeting the timing requirements. As mentioned in Tables I to XIV, recently,
there has been extensive focus for such joint optimization. However, with the increase
of application/platform complexity and power requirement of many-core systems, the
developments of efficient resource allocation approaches to jointly optimize these two
important metrics is expected to continue in foreseeable future.

5.4.2. Consideration for Multiple Objectives. As mentioned earlier, the requirements to
jointly optimize for several performance metrics will grow in future. Along with the
execution time and energy consumption, other important metrics are supposed to be
temperature, reliability, fault-tolerance, and security. For example, three metrics exe-
cution time, energy consumption and temperature are optimized in [Sheikh and Ah-
mad 2014]. The temperature is to be optimized to surmount its effect on other metrics
such as execution time [Murali et al. 2008] and reliability [Wang and Chen 2010], and
to reduce the cooling cost of many-core based HPC data centers [Chaudhry et al. 2015].
Reliability aware resource allocation is desired to increase the mean time to failure of
a system [Singh et al. 2013]. However, in case a fault has happened, resource realloca-
tion is desired during the system operation in order to make the system fault-tolerant
[Lee et al. 2010; Derin et al. 2011; Huang et al. 2011; Schor et al. 2012; Singh et al.
2013; Das et al. 2013; Fattah et al. 2014; Sahoo et al. 2016; Tzilis et al. 2016; Zeng
et al. 2016]. The demand to support increasing number of applications within a de-
vice and then their communication with the applications in other devices has created
security threats due to possible attack in the communication channels and interac-
tion with untrusted devices. This indicates that resource allocation approaches need
to optimize for security as well, which can be achieved by developing security-aware
resource allocation approaches that should take into account other metrics as well.

The optimization for multiple objectives also increases the design space and thus
the exploration time. Therefore, in case the design space exploration can be performed
at design-time, e.g. for known application set, the design space need to be efficiently
pruned so that Pareto-fronts for several conflicting objectives can be derived within a
limited time. The design space increases even further with the heterogeneity of sys-
tems and thus exploration strategies might need to establish an upper limit on the
heterogeneity in order to maintain low complexity.

5.5. Additional Challenges

Some additional challenges also need to be addressed to take the mapping methodolo-
gies into the next era. For example, development of efficient programming models for
large scale and 3D architectures, efficient synchronization and control of concurrently
executing tasks on such architectures and debugging of several concurrent executions
if results are not as expected.

6. CONCLUSION

This paper provides a survey and comparative study of dynamic resource allocation
strategies for multi/many-core systems. Specially, hard and soft real-time strategies
optimizing for execution time and energy consumption are surveyed and compared.
The kind of target architecture, e.g., homogeneous or heterogeneous, and resource con-
trol mechanism, e.g., centralized or distributed, have also been identified. The compar-
ative study of these strategies has shown the superiority of some of them. Based on the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 A. K. Singh et al.

analysis of the surveyed and compared resource allocation strategies, upcoming trends
and open challenges are identified.

The research directions highlighted in this survey are expected to advance in future
in order to tackle the identified open challenges. These advances will require to develop
efficient resource allocation mechanisms to cater the need of future hard and soft real-
time multi/many-core systems.

REFERENCES

AHMED, W., SHAFIQUE, M., BAUER, L., AND HENKEL, J. 2011. Adaptive resource management for si-
multaneous multitasking in mixed-grained reconfigurable multi-core processors. In Proceedings of
IEEE/ACM/IFIP Conference on Hardware/Software Codesign and System Synthesis (ISSS+CODES).
ACM, 365–374.

AKSANLI, B. AND ROSING, T. 2014. Providing regulation services and managing data center peak power
budgets. In Proceedings of IEEE Conference on Design, Automation and Test in Europe (DATE). 1–4.

AL FARUQUE, M. A., KRIST, R., AND HENKEL, J. 2008. ADAM: run-time agent-based distributed applica-
tion mapping for on-chip communication. In Proceedings of ACM Design Automation Conference (DAC).
760–765.

AMD. 2011. AMD Opteron 6000 series processors. http://www.amd.com/en-us/products/server/opteron/6000
(Last visited: 12 February, 2016).

ANGIOLINI, F., CENG, J., LEUPERS, R., FERRARI, F., FERRI, C., AND BENINI, L. 2006. An Integrated Open
Framework for Heterogeneous MPSoC Design Space Exploration. In Proceedings of IEEE Conference
on Design, Automation and Test in Europe (DATE). 1 –6.

AUDSLEY, N., BURNS, A., RICHARDSON, M., TINDELL, K., AND WELLINGS, A. 1993. Applying new schedul-
ing theory to static priority pre-emptive scheduling. Software Engineering Journal 8, 5, 284–292.

AUDSLEY, N. C., BURNS, A., DAVIS, R. I., TINDELL, K. W., AND WELLINGS, A. J. 1995. Fixed priority
pre-emptive scheduling: An historical perspective. Real-Time Syst. 8, 2-3, 173–198.

BABAOGLU, O., CANRIGHT, G., DEUTSCH, A., CARO, G. A. D., DUCATELLE, F., GAMBARDELLA, L. M.,
GANGULY, N., JELASITY, M., MONTEMANNI, R., MONTRESOR, A., ET AL. 2006. Design patterns from
biology for distributed computing. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1, 1,
26–66.

BAKER, T. P. AND BARUAH, S. K. 2007. Schedulability analysis of multiprocessor sporadic task systems.
Handbook of Real-Time and Embedded Systems.

BAMAKHRAMA, M. A. AND STEFANOV, T. 2012. Managing latency in embedded streaming applications un-
der hard-real-time scheduling. In Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software
Codesign and System Synthesis (ISSS+CODES). 83–92.

BANSAL, N. AND PRUHS, K. R. 2010. Server Scheduling to Balance Priorities, Fairness, and Average Quality
of Service. SIAM J. Comput. 39, 7, 3311–3335.

BARBAGALLO, D., DI NITTO, E., DUBOIS, D. J., AND MIRANDOLA, R. 2010. A bio-inspired algorithm for
energy optimization in a self-organizing data center. In Self-Organizing Architectures. Springer, 127–
151.

BARUAH, S., BONIFACI, V., MARCHETTI-SPACCAMELA, A., AND STILLER, S. 2010. Improved multiproces-
sor global schedulability analysis. Real-Time Systems 46, 1, 3–24.

BENINI, L. AND DE MICHELI, G. 2002. Networks on chips: a new SoC paradigm. Computer 1, 70–78.

BERTOGNA, M., CIRINEI, M., AND LIPARI, G. 2005. Improved schedulability analysis of EDF on multi-
processor platforms. In Proceedings of IEEE Euromicro Conference on Real-Time Systems (ECTRS).
209–218.

BETTING, B. AND BRINKSCHULTE, U. 2014. Analyzing the overhead of self-optimization through task mi-
gration within a decentralized task control mechanism for dependable system-on-chip architectures. In
IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-
puting (ISORC). IEEE, 84–91.

BJERREGAARD, T. AND MAHADEVAN, S. 2006. A survey of research and practices of Network-on-chip. ACM
Comput. Surv. 1.

BLANCH, C., BAERT, R., COENE, P., D’HONDT, M., MA, Z., AND WUYTS, R. 2011. Runtime Scheduling for
Video Decoding on Heterogeneous Architectures. In Proceedings of the International Conference on Real
Time and Networks Systems (RTNS). Citeseer, 195–204.

BOHNENSTIEHL, B., STILLMAKER, A., PIMENTEL, J., ANDREAS, T., LIU, B., TRAN, A., ADEAGBO, E., AND

BAA, B. 2016. A 5.8 pJ/Op 115 Billion Ops/sec, to 1.78 Trillion Ops/sec 32nm 1000 Processor Array. In
IEEE Symposia on VLSI Technology and Circuits.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:31

BONIFACI, V., MARCHETTI-SPACCAMELA, A., STILLER, S., AND WIESE, A. 2013. Feasibility analysis in the
sporadic dag task model. In Proceedings of IEEE Euromicro Conference on Real-Time Systems (ECRTS).
IEEE, 225–233.

BORKAR, S. 2007. Thousand core chips: a technology perspective. In Proceedings of ACM Design Automation
Conference (DAC). 746–749.

BRIÁO, E. W., BARCELOS, D., AND WAGNER, F. R. 2008. Dynamic task allocation strategies in MPSoC
for soft real-time applications. In Proceedings of IEEE Conference on Design, Automation and Test in
Europe (DATE). 1386–1389.

BRINKSCHULTE, U., PACHER, M., AND VON RENTELN, A. 2007. Towards an artificial hormone system
for self-organizing real-time task allocation. In Software Technologies for Embedded and Ubiquitous
Systems. Springer, 339–347.

BURKIMSHER, A. M. 2014. Fair, responsive scheduling of engineering workflows on computing grids. Ph.D.
thesis, UK.

BURNS, A., PRASAD, D., BONDAVALLI, A., DI GIANDOMENICO, F., RAMAMRITHAM, K., STANKOVIC, J.,
AND STRIGINI, L. 2000. The Meaning and Role of Value in Scheduling Flexible Real-time Systems. J.
Syst. Archit. 46, 4, 305–325.

BUTTAZZO, G., BINI, E., AND WU, Y. 2011. Partitioning real-time applications over multicore reservations.
IEEE Transactions on Industrial Informatics 7, 2, 302–315.

BUTTAZZO, G. C. 2011. Hard Real-Time Computing Systems. Real-Time Systems Series Series, vol. 24.
Springer US.

CALHEIROS, R. N. AND BUYYA, R. 2014. Energy-Efficient Scheduling of Urgent Bag-of-Tasks Applications
in Clouds Through DVFS. In Proceedings of IEEE International Conference on Cloud Computing Tech-
nology and Science (CLOUDCOM). 342–349.

CAMAZINE, S., FRANKS, N. R., SNEYD, J., BONABEAU, E., DENEUBOURG, J.-L., AND THERAULA, G. 2001.
Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ, USA.

CARVALHO, E. L. D. S., CALAZANS, N. L. V., AND MORAES, F. G. 2010. Dynamic task mapping for mpsocs.
IEEE Des. Test, 26–35.

CASTILHOS, G., MANDELLI, M., MADALOZZO, G., AND MORAES, F. 2013. Distributed resource management
in NoC-based MPSoCs with dynamic cluster sizes. In Proceedings of IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 153–158.

CASTRILLON, J., TRETTER, A., LEUPERS, R., AND ASCHEID, G. 2012. Communication-aware mapping of
KPN applications onto heterogeneous MPSoCs. In Proceedings of ACM Design Automation Conference
(DAC). 1266–1271.

CENG, J., CASTRILLON, J., SHENG, W., SCHARWÄCHTER, H., LEUPERS, R., ASCHEID, G., MEYR, H., IS-
SHIKI, T., AND KUNIEDA, H. 2008. MAPS: an integrated framework for MPSoC application paralleliza-
tion. In Proceedings of ACM Design Automation Conference (DAC). 754–759.

CHAUDHRY, M. T., LING, T. C., MANZOOR, A., HUSSAIN, S. A., AND KIM, J. 2015. Thermal-aware schedul-
ing in green data centers. ACM Computing Surveys (CSUR) 47, 3, 39.

CHEN, K. AND MUHLETHALER, P. 1996. A Scheduling Algorithm for Tasks Described by Time Value Func-
tion. Real-Time Syst. 10, 3, 293–312.

CHEN, L., MARCONI, T., AND MITRA, T. 2012. Online scheduling for multi-core shared reconfigurable fabric.
In Proceedings of IEEE Conference on Design, Automation and Test in Europe (DATE). 582 –585.

CHENG, Y., ZHANG, L., HAN, Y., AND LI, X. 2013. Thermal-constrained Task Allocation for Interconnect
Energy Reduction in 3-D Homogeneous MPSoCs. IEEE Transactions on Very Large Scale Integration
Systems (TVLSI) 21, 2, 239–249.

CHOI, J., OH, H., KIM, S., AND HA, S. 2012. Executing synchronous dataflow graphs on a SPM-based
multicore architecture. In Proceedings of ACM Design Automation Conference (DAC). 664–671.

CHOU, C.-L. AND MARCULESCU, R. 2008. User-aware dynamic task allocation in networks-on-chip. In Pro-
ceedings of IEEE Conference on Design, Automation and Test in Europe (DATE). 1232–1237.

CHOU, C.-L., OGRAS, U. Y., AND MARCULESCU, R. 2008. Energy- and performance-aware incremental
mapping for networks on chip with multiple voltage levels. Trans. Comp.-Aided Des. Integ. Cir. Sys.,
1866–1879.

CHOUDHURY, P., CHAKRABARTI, P. P., AND KUMAR, R. 2007. Online Dynamic Voltage Scaling Using Task
Graph Mapping Analysis for Multiprocessors. In Proceedings of the International Conference on VLSI
Design (VLSID). 89–94.

CONG, J. AND GURURAJ, K. 2009. Energy Efficient Multiprocessor Task Scheduling Under Input-dependent
Variation. In Proceedings of IEEE Conference on Design, Automation and Test in Europe (DATE). 411–
416.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 A. K. Singh et al.

COSKUN, A. K., AYALA, J. L., ATIENZA, D., ROSING, T. S., AND LEBLEBICI, Y. 2009. Dynamic thermal
management in 3D multicore architectures. In Proceedings of IEEE Conference on Design, Automation
and Test in Europe (DATE). 1410–1415.

DA SILVA REGO, A., CELESTINO, J., DOS SANTOS, A., CERQUEIRA, E. C., PATEL, A., AND TAGHAVI, M.
2012. BEE-C: a bio-inspired energy efficient cluster-based algorithm for data continuous dissemination
in Wireless Sensor Networks. In IEEE International Conference on Networks (ICON). IEEE, 405–410.

DAS, A., SINGH, A. K., AND KUMAR, A. 2013. Energy-aware dynamic reconfiguration of communication-
centric applications for reliable mpsocs. In IEEE International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC). 1–7.

DAVIS, R. I. AND BURNS, A. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput. Surv. 43, 4, 35:1–35:44.

DAVIS, R. I., ZABOS, A., AND BURNS, A. 2008. Efficient exact schedulability tests for fixed priority real-time
systems. IEEE Transactions on Computers 57, 9, 1261–1276.

DE DINECHIN, B. D., VAN AMSTEL, D., POULHIÈS, M., AND LAGER, G. 2014. Time-critical computing on a
single-chip massively parallel processor. In Proceedings of IEEE Conference on Design, Automation and
Test in Europe (DATE). 1–6.

DE MATOS PEDRO, A., PEREIRA, D., PINHO, L. M., AND PINTO, J. S. 2015. Logic-based schedulability
analysis for compositional hard real-time embedded systems. ACM SIGBED Review 12, 1, 56–64.

DERIN, O., KABAKCI, D., AND FIORIN, L. 2011. Online task remapping strategies for fault-tolerant
Network-on-Chip multiprocessors. In IEEE/ACM Symposium on Networks on Chip (NoCS). 129 –136.

DERTOUZOS, M. L. AND MOK, A. K.-L. 1989. Multiprocessor online scheduling of hard-real-time tasks.
IEEE Transactions on Software Engineering 15, 12, 1497–1506.

DING, J.-H., CHANG, Y.-T., GUO, Z.-D., LI, K.-C., AND CHUNG, Y.-C. 2014. An efficient and comprehensive
scheduler on Asymmetric Multicore Architecture systems. Journal of Systems Architecture 60, 3, 305–
314.

DZIURZANSKI, P., SINGH, A. K., AND INDRUSIAK, L. S. 2016. Feedback-Based Admission Control for Hard
Real-Time Task Allocation under Dynamic Workload on Many-core Systems. In Proceedings of the In-
ternational Conference on Architecture of Computing Systems (ARCS). 157–169.

DZIURZANSKI, P., SINGH, A. K., INDRUSIAK, L. S., AND SABALLUS, B. 2015. Hard Real-time Guarantee of
Automotive Applications During Mode Changes. In Proceedings of the International Conference on Real
Time and Networks Systems (RTNS). 161–170.

EBI, T., KRAMER, D., KARL, W., AND HENKEL, J. 2011. Economic learning for thermal-aware power budget-
ing in many-core architectures. In Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software
Codesign and System Synthesis (ISSS+CODES). 189–196.

FATTAH, M., LILJEBERG, P., PLOSILA, J., AND TENHUNEN, H. 2014. Adjustable contiguity of run-time
task allocation in networked many-core systems. In Proceedings of IEEE Asia and South Pacific Design
Automation Conference (ASP-DAC). 349–354.

FATTAH, M., PALESI, M., LILJEBERG, P., PLOSILA, J., AND TENHUNEN, H. 2014. Shifa: System-level hi-
erarchy in run-time fault-aware management of many-core systems. In Proceedings of the 51st Annual
Design Automation Conference. DAC ’14. ACM, New York, NY, USA, 101:1–101:6.

FAZZINO, F., PALESI, M., AND PATTI, D. 2008. Noxim: Network-on-chip simulator. URL: http://sourceforge.
net/projects/noxim.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co.

GIOVANNI, B., FOSSATI, L., AND SCIUTO, D. 2010. Decision-theoretic design space exploration of multipro-
cessor platforms. Trans. Comp.-Aided Des. Integ. Cir. Sys., 1083–1095.

GÖTZINGER, M., RAHMANI, A. M., PONGRATZ, M., LILJEBERG, P., JANTSCH, A., AND TENHUNEN, H.
2016. The role of self-awareness and hierarchical agents in resource management for many-core sys-
tems. In IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MC-
SoC). IEEE, 53–60.

GREWE, D., WANG, Z., AND OBOYLE, M. F. 2013. Opencl task partitioning in the presence of gpu con-
tention. In International Workshop on Languages and Compilers for Parallel Computing. 87–101.

HAMEED, A., KHOSHKBARFOROUSHHA, A., RANJAN, R., JAYARAMAN, P. P., KOLODZIEJ, J., BALAJI, P.,
ZEADALLY, S., MALLUHI, Q. M., TZIRITAS, N., VISHNU, A., ET AL. 2014. A survey and taxonomy on
energy efficient resource allocation techniques for cloud computing systems. Computing, 1–24.

HAN, C.-C. AND LIN, K.-J. 1989. Scheduling parallelizable jobs on multiprocessors. In Proceedings Real
Time Systems Symposium (RTSS). IEEE, 59–67.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:33

HEISS, H.-U. AND SCHMITZ, M. 1995. Decentralized dynamic load balancing: The particles approach. In-
formation Sciences 84, 1, 115–128.

HENKEL, J., BAUER, L., DUTT, N., GUPTA, P., NASSIF, S., SHAFIQUE, M., TAHOORI, M., AND WEHN, N.
2013. Reliable On-chip Systems in the Nano-era: Lessons Learnt and Future Trends. In Proceedings of
ACM Design Automation Conference (DAC). DAC ’13. 99:1–99:10.

HENKEL, J., HERKERSDORF, A., BAUER, L., WILD, T., HUBNER, M., PUJARI, R., GRUDNITSKY, A., HEISS-
WOLF, J., ZAIB, A., VOGEL, B., LARI, V., AND KOBBE, S. 2012. Invasive manycore architectures. In
ASP-DAC. 193 –200.

HERRERA, F. AND SANDER, I. 2013. Combining analytical and simulation-based design space exploration
for time-critical systems. In Forum on Specification Design Languages (FDL). 1–8.

HOFFMANN, H., HOLT, J., KURIAN, G., LAU, E., MAGGIO, M., MILLER, J. E., NEUMAN, S. M., SINANGIL,
M., SINANGIL, Y., AGARWAL, A., CHANDRAKASAN, A. P., AND DEVADAS, S. 2012. Self-aware comput-
ing in the Angstrom processor. In Proceedings of ACM Design Automation Conference (DAC). 259–264.

HONG, S., CHANTEM, T., AND HU, X. S. 2015. Local-Deadline Assignment for Distributed Real-Time Sys-
tems. IEEE Transactions on Computers 64, 7, 1983–1997.

HONG, S., NARAYANAN, S. H. K., KANDEMIR, M., AND ÖZTURK, O. 2009. Process variation aware thread
mapping for chip multiprocessors. In Proceedings of IEEE Conference on Design, Automation and Test
in Europe (DATE). 821–826.

HU, J. AND MARCULESCU, R. 2003. Energy-aware mapping for tile-based NoC architectures under per-
formance constraints. In Proceedings of IEEE Asia and South Pacific Design Automation Conference
(ASP-DAC). 233–239.

HUANG, J., RAABE, A., BUCKL, C., AND KNOLL, A. 2011. A workflow for runtime adaptive task allocation
on heterogeneous mpsocs. In Proceedings of IEEE Conference on Design, Automation and Test in Europe
(DATE). 1–6.

HUANG, L. AND XU, Q. 2010. Performance yield-driven task allocation and scheduling for MPSoCs under
process variation. In Proceedings of ACM Design Automation Conference (DAC). 326 –331.

HUANG, L., YE, R., AND XU, Q. 2011. Customer-aware task allocation and scheduling for multi-mode MP-
SoCs. In Proceedings of ACM Design Automation Conference (DAC). 387 –392.

HUSSAIN, H., MALIK, S. U. R., HAMEED, A., KHAN, S. U., BICKLER, G., MIN-ALLAH, N., QURESHI, M. B.,
ZHANG, L., YONGJI, W., GHANI, N., KOLODZIEJ, J., ZOMAYA, A. Y., XU, C.-Z., BALAJI, P., VISHNU,
A., PINEL, F., PECERO, J. E., KLIAZOVICH, D., BOUVRY, P., LI, H., WANG, L., CHEN, D., AND RAYES,
A. 2013. Review: A survey on resource allocation in high performance distributed computing systems.
Parallel Comput. 39, 11, 709–736.

INDRUSIAK, L. S. 2014. End-to-end schedulability tests for multiprocessor embedded systems based on
networks-on-chip with priority-preemptive arbitration. Journal of Systems Architecture 60, 7, 553 –
561.

INDRUSIAK, L. S., DZIURZANSKI, P., AND SINGH, A. K. 2016. Dynamic Resource Allocation in Embedded,
High-Performance and Cloud Computing. River Publishers.

INTEL. 2016. Intel Hardware Accelerator Research Program. https://www.nextplatform.com/2016/03/14/intel-
marrying-fpga-beefy-broadwell-open-compute-future/.

IRWIN, D. E., GRIT, L. E., AND CHASE, J. S. 2004. Balancing Risk and Reward in a Market-Based Task
Service. In IEEE International Symposium on High Performance Distributed Computing (HPDC). 160–
169.

ISOVIC, D. AND FOHLER, G. 2004. Quality aware mpeg-2 stream adaptation in resource constrained sys-
tems. In Proceedings of IEEE Euromicro Conference on Real-Time Systems (ECRTS). 23–32.

JAHR, R., FRIEB, M., GERDES, M., UNGERER, T., HUGL, A., AND REGLER, H. 2014. Paving the way for
multi-cores in industrial hard real-time control applications. In IEEE International Symposium on In-
dustrial Embedded Systems (SIES). 1–4.

JAVAID, H. AND PARAMESWARAN, S. 2009. A design flow for application specific heterogeneous pipelined
multiprocessor systems. In Proceedings of ACM Design Automation Conference (DAC). 250–253.

JAVAID, H., SHAFIQUE, M., HENKEL, J., AND PARAMESWARAN, S. 2014. Energy-Efficient Adaptive
Pipelined MPSoCs for Multimedia Applications. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems (TCAD) 33, 5, 663–676.

JAYACHANDRAN, P. AND ABDELZAHER, T. 2008. Delay composition in preemptive and non-preemptive real-
time pipelines. Real-Time Systems 40, 3, 290–320.

JERRAYA, A., TENHUNEN, H., AND WOLF, W. 2005. Guest Editors’ Introduction: Multiprocessor Systems-
on-Chips. Computer 7, 36–40.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 A. K. Singh et al.

JHA, V., JHA, M., AND SHARMA, G. 2014. Estimation of optimized energy and latency constraints for task
allocation in 3d network on chip. arXiv preprint arXiv:1405.0109.

JIA, Z. J., PIMENTEL, A., THOMPSON, M., BAUTISTA, T., AND NUNEZ, A. 2010. NASA: A generic infrastruc-
ture for system-level MP-SoC design space exploration. In Proceedings of IEEE/ACM/IFIP Workshop
on Embedded Systems for Real-Time Multimedia (ESTIMedia). 41 –50.

JONSSON, J. AND SHIN, K. G. 2002. Robust adaptive metrics for deadline assignment in distributed hard
real-time systems. Real-Time Systems 23, 3, 239–271.

JUNG, H., LEE, C., KANG, S.-H., KIM, S., OH, H., AND HA, S. 2014. Dynamic Behavior Specification
and Dynamic Mapping for Real-Time Embedded Systems: HOPES Approach. ACM Transactions on
Embedded Computing Systems (TECS) 13, 4s, 135:1–135:26.

KADIN, M., REDA, S., AND UHT, A. 2009. Central vs. distributed dynamic thermal management for
multi-core processors: which one is better? In Proceedings of ACM Great Lakes symposium on VLSI
(GLSVLSI). 137–140.

KAO, B. AND GARCIA-MOLINA, H. 1997. Deadline assignment in a distributed soft real-time system. IEEE
Transactions on Parallel and Distributed Systems 8, 12, 1268–1274.

KHEMKA, B., FRIESE, R., PASRICHA, S., MACIEJEWSKI, A. A., SIEGEL, H. J., KOENIG, G. A., POWERS, S.,
HILTON, M., RAMBHAROS, R., AND POOLE, S. 2015. Utility maximizing dynamic resource management
in an oversubscribed energy-constrained heterogeneous computing system. Sustainable Computing: In-
formatics and Systems 5, 14–30.

KIM, J. AND ORSHANSKY, M. 2006. Towards formal probabilistic power-performance design space explo-
ration. In Proceedings of ACM Great Lakes symposium on VLSI (GLSVLSI). 229–234.

KOBBE, S., BAUER, L., LOHMANN, D., SCHRÖDER-PREIKSCHAT, W., AND HENKEL, J. 2011. DistRM: dis-
tributed resource management for on-chip many-core systems. In Proceedings of IEEE/ACM/IFIP Con-
ference on Hardware/Software Codesign and System Synthesis (ISSS+CODES). 119–128.

KOOMEY, J. 2011. Growth in data center electricity use 2005 to 2010. A report by Analytical Press, completed
at the request of The New York Times.

KUMAR, A., CORPORAAL, H., MESMAN, B., AND HA, Y. 2010. Multimedia Multiprocessor Systems: Analysis,
Design and Management. Springer Science & Business Media.

KUO, T.-W., CHANG, L.-P., LIU, Y.-H., AND LIN, K.-J. 2003. Efficient online schedulability tests for real-
time systems. IEEE Transactions on Software Engineering 29, 8, 734–751.

KWOK, Y.-K. ET AL. 2006. A semi-static approach to mapping dynamic iterative tasks onto heterogeneous
computing systems. J. Parallel Distrib. Comput. 66, 1, 77–98.

LAKSHMANAN, K., DE NIZ, D., AND RAJKUMAR, R. 2009. Coordinated task scheduling, allocation and syn-
chronization on multiprocessors. In IEEE Real-Time Systems Symposium (RTSS). IEEE, 469–478.

LAUZAC, S., MELHEM, R., AND MOSSE, D. 1998. An efficient rms admission control and its application to
multiprocessor scheduling. In Symposium on Parallel and Distributed Processing (SPDP). IEEE, 511–
518.

LEE, C., KIM, H., PARK, H.-W., KIM, S., OH, H., AND HA, S. 2010. A task remapping technique for reliable
multi-core embedded systems. In CODES+ISSS. 307–316.

LEE, C., KIM, S., AND HA, S. 2013. Efficient run-time resource management of a manycore accelerator
for stream-based applications. In Proceedings of IEEE/ACM/IFIP Workshop on Embedded Systems for
Real-Time Multimedia (ESTIMedia). 51–60.

LEE, J., SHIN, I., AND EASWARAN, A. 2012. Convex optimization framework for intermediate deadline
assignment in soft and hard real-time distributed systems. Journal of Systems and Software 85, 10,
2331–2339.

LEONTYEV, H. AND ANDERSON, J. H. 2008. A unified hard/soft real-time schedulability test for global edf
multiprocessor scheduling. In IEEE Real-Time Systems Symposium (RTSS). 375–384.

LIN, Y.-C., YANG, C.-Y., CHANG, C.-W., CHANG, Y.-H., KUO, T.-W., AND SHIH, C.-S. 2010. Energy-Efficient
Mapping Technique for Virtual Cores. In Proceedings of IEEE Euromicro Conference on Real-Time Sys-
tems (ECRTS). 66–75.

LOMBARDI, M. AND MILANO, M. 2012. Optimal methods for resource allocation and scheduling: a cross-
disciplinary survey. Constraints 17, 1, 51–85.

LOPEZ, J. M., DIAZ, J. L., AND GARCIA, D. F. 2004. Minimum and maximum utilization bounds for
multiprocessor rate monotonic scheduling. IEEE Transactions on Parallel and Distributed Systems
(TPDS) 15, 7, 642–653.

LU, C., STANKOVIC, J. A., SON, S. H., AND TAO, G. 2002. Feedback control real-time scheduling: Frame-
work, modeling, and algorithms*. Real-Time Systems 23, 1-2, 85–126.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:35

LUK, C.-K., HONG, S., AND KIM, H. 2009. Qilin: exploiting parallelism on heterogeneous multiprocessors
with adaptive mapping. In Proceedings of IEEE/ACM International Symposium on Microarchitecture
(MICRO). 45–55.

MALLIK, A. ET AL. 2011. MNEMEE - An Automated Toolflow for Parallelization and Memory Management
in MPSoC Platforms. In Proceedings of ACM Design Automation Conference (DAC).

MANDELLI, M., OST, L., CARARA, E., GUINDANI, G., GOUVEA, T., MEDEIROS, G., AND MORAES, F. G.
2011. Energy-aware dynamic task mapping for NoC-based MPSoCs. In IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 1676–1679.

MANIMARAN, G., MURTHY, C. S. R., AND RAMAMRITHAM, K. 1998. A new approach for scheduling of
parallelizable tasks in real-time multiprocessor systems. Real-Time Systems 15, 1, 39–60.

MARCON, C., MORENO, E., CALAZANS, N., AND MORAES, F. 2008. Comparison of network-on-chip mapping
algorithms targeting low energy consumption. IET Computers Digital Techniques, 471 –482.

MARCULESCU, R., OGRAS, U., PEH, L.-S., JERGER, N., AND HOSKOTE, Y. 2009. Outstanding Research
Problems in NoC Design: System, Microarchitecture, and Circuit Perspectives. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 1, 3–21.

MARIANI, G., AVASARE, P., VANMEERBEECK, G., YKMAN-COUVREUR, C., PALERMO, G., SILVANO, C., AND

ZACCARIA, V. 2010. An industrial design space exploration framework for supporting run-time resource
management on multi-core systems. In Proceedings of IEEE Conference on Design, Automation and Test
in Europe (DATE). 196–201.

MARINCA, D., MINET, P., AND GEORGE, L. 2004. Analysis of deadline assignment methods in distributed
real-time systems. Computer Communications 27, 15, 1412–1423.

MARTIN, G. 2006. Overview of the mpsoc design challenge. In Proceedings of ACM Design Automation
Conference (DAC). 274 –279.

MARWEDEL, P., TEICH, J., KOUVELI, G., BACIVAROV, I., THIELE, L., HA, S., LEE, C., XU, Q., AND HUANG,
L. 2011. Mapping of applications to MPSoCs. In Proceedings of IEEE/ACM/IFIP Conference on Hard-
ware/Software Codesign and System Synthesis (ISSS+CODES). 109–118.

MEDIATEK. 2016. MediaTek’s Helio X20 Chip. http://www.mediatek.com/products/mediatek-helio.

MEHRAN, A., KHADEMZADEH, A., AND SAEIDI, S. 2008. DSM: A Heuristic Dynamic Spiral Mapping algo-
rithm for network on chip. IEICE Electronics Express 13, 464–471.

MELANI, A., BERTOGNA, M., BONIFACI, V., MARCHETTI-SPACCAMELA, A., AND BUTTAZZO, G. 2015.
Response-time analysis of conditional dag tasks in multiprocessor systems. In Proceedings of IEEE
Euromicro Conference on Real-Time Systems (ECRTS). 211–221.

MENDIS, H. R., INDRUSIAK, L. S., AND AUDSLEY, N. C. 2014. Predictability and utilisation trade-off in the
dynamic management of multiple video stream decoding on network-on-chip based homogeneous em-
bedded multi-cores. In Proceedings of the International Conference on Real-Time Networks and Systems
(RTNS). 161–170.

MENDIS, H. R., INDRUSIAK, L. S., AND AUDSLEY, N. C. 2015. Bio-inspired distributed task remapping for
multiple video stream decoding on homogeneous nocs. In Proceedings of IEEE/ACM/IFIP Workshop on
Embedded Systems for Real-Time Multimedia (ESTIMedia). IEEE, 1–10.

MEYER, B. H., HARTMAN, A. S., AND THOMAS, D. E. 2010. Cost-effective slack allocation for lifetime
improvement in NoC-based MPSoCs. In Proceedings of IEEE Conference on Design, Automation and
Test in Europe (DATE). 1596–1601.

MODARRESSI, M., ASADINIA, M., AND SARBAZI-AZAD, H. 2013. Using task migration to improve non-
contiguous processor allocation in noc-based cmps. Journal of Systems Architecture 59, 7, 468–481.

MOHANTY, S., PRASANNA, V. K., NEEMA, S., AND DAVIS, J. 2002. Rapid design space exploration of hetero-
geneous embedded systems using symbolic search and multi-granular simulation. SIGPLAN Not. 37, 7,
18–27.

MOREIRA, O., MOL, J.-D., BEKOOIJ, M., AND VAN MEERBERGEN, J. 2005. Multiprocessor resource alloca-
tion for hard-real-time streaming with a dynamic job-mix. In IEEE Real Time and Embedded Technol-
ogy and Applications Symposium (RTAS). IEEE, 332–341.

MOREIRA, O., MOL, J. J.-D., AND BEKOOIJ, M. 2007. Online resource management in a multiprocessor
with a network-on-chip. In Proceedings of ACM Symposium on Applied Computing (SAC). 1557–1564.

MOREIRA, O., VALENTE, F., AND BEKOOIJ, M. 2007. Scheduling multiple independent hard-real-time jobs
on a heterogeneous multiprocessor. In EMSOFT. 57–66.

MUDRY, P.-A. AND TEMPESTI, G. 2009. Self-scaling stream processing: A bio-inspired approach to resource
allocation through dynamic task replication. In NASA/ESA Conference on Adaptive Hardware and
Systems (AHS). IEEE, 353–360.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 A. K. Singh et al.

MURALI, S., COENEN, M., RADULESCU, A., GOOSSENS, K., AND DE MICHELI, G. 2006. A methodology
for mapping multiple use-cases onto networks on chips. In Proceedings of IEEE Conference on Design,
Automation and Test in Europe (DATE). 118–123.

MURALI, S., MUTAPCIC, A., ATIENZA, D., GUPTA, R., BOYD, S., BENINI, L., AND DE MICHELI, G. 2008.
Temperature control of high-performance multi-core platforms using convex optimization. In Proceed-
ings of IEEE Conference on Design, Automation and Test in Europe (DATE). 110–115.

NAYAK, S. K., PADHY, S. K., AND PANIGRAHI, S. P. 2012. A novel algorithm for dynamic task scheduling.
Future Generation Computer Systems 28, 5, 709–717.

NG, J., WANG, X., SINGH, A. K., AND MAK, T. 2015. Defrag: Defragmentation for efficient runtime re-
source allocation in noc-based many-core systems. In Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP). 345–352.

NISHITHA, T. AND REDDY, P. C. 2012. Performance evaluation of anthocnet routing algorithm in ad hoc
networks. In IEEE International Conference on Computing Sciences (ICCS). IEEE, 207–211.

NOLLET, V., AVASARE, P., EECKHAUT, H., VERKEST, D., AND CORPORAAL, H. 2008. Run-time management
of a MPSoC containing FPGA fabric tiles. IEEE Trans. Very Large Scale Integr. Syst., 24–33.

OPENCL. Open Computing Language (OpenCL) - The open standard for parallel programming of heteroge-
neous systems. https://goo.gl/A9wXRJ.

OST, L., MANDELLI, M., ALMEIDA, G. M., MOLLER, L., INDRUSIAK, L. S., SASSATELLI, G., BENOIT, P.,
GLESNER, M., ROBERT, M., AND MORAES, F. 2013. Power-aware dynamic mapping heuristics for NoC-
based MPSoCs using a unified model-based approach. ACM Transactions on Embedded Computing
Systems (TECS) 12, 3, 75:1–75:22.

PETER, Z., GILLES, S., NURTEN, U., NICOLAS, S., PASCAL, B., AND MANFRED, G. 2009. A Decentralised
Task Mapping Approach for Homogeneous Multiprocessor Network-On-Chips. International Journal of
Reconfigurable Computing, 3:1–3:14.

PISCITELLI, R. AND PIMENTEL, A. 2012. Design space pruning through hybrid analysis in system-level
design space exploration. In Proceedings of IEEE Conference on Design, Automation and Test in Europe
(DATE). 781 –786.

POP, R. AND KUMAR, S. 2004. A survey of techniques for mapping and scheduling applications to network
on chip systems. School of Engineering, Jonkoping University, Research Report 4, 4.

PRAKASH, A., WANG, S., IRIMIEA, A. E., AND MITRA, T. 2015. Energy-efficient execution of data-parallel
applications on heterogeneous mobile platforms. In Proceedings of IEEE International Conference on
Computer Design (ICCD). 208–215.

QUAN, W. AND PIMENTEL, A. D. 2015. A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs.
ACM Trans. Embed. Comput. Syst. 14, 1, 14:1–14:25.

QUAN, W. AND PIMENTEL, A. D. 2016. A hierarchical run-time adaptive resource allocation framework for
large-scale mpsoc systems. Design Automation for Embedded Systems (DAES) 20, 4, 311–339.

RIVAS, J. M., GARCÍA, J. J. G., GUTIÉRREZ, J. C. P., AND HARBOUR, M. G. 2010. Optimized Deadline As-
signment and Schedulability Analysis for Distributed Real-Time Systems with Local EDF Scheduling.
In ESA. 150–156.

ROWLINGS, M., TYRRELL, A., AND TREFZER, M. 2015. Social-Insect-Inspired Networking for Autonomous
Load Optimisation. Procedia CIRP 38, 259–264.

SAHOO, S. S., KUMAR, A., AND VEERAVALLI, B. 2016. Design and evaluation of reliability-oriented task re-
mapping in mpsocs using time-series analysis of intermittent faults. In Proceedings of IEEE Conference
on Design, Automation and Test in Europe (DATE). 798–803.

SAHU, P. K. AND CHATTOPADHYAY, S. 2013. A survey on application mapping strategies for network-on-
chip design. Journal of Systems Architecture 59, 1, 60–76.

SAIFULLAH, A., AGRAWAL, K., LU, C., AND GILL, C. 2011. Multi-core real-time scheduling for generalized
parallel task models. In IEEE Real-Time Systems Symposium (RTSS). 217–226.

SAKSENA, M. AND HONG, S. 1996. An engineering approach to decomposing end-to-end delays on a dis-
tributed real-time system. In IEEE International Workshop on Parallel and Distributed Real-Time Sys-
tems. 244–251.

SAMSUNG. 2014. Samsung Exynos 5422. www.samsung.com/exynos/.

SCHOR, L., BACIVAROV, I., RAI, D., YANG, H., KANG, S.-H., AND THIELE, L. 2012. Scenario-based de-
sign flow for mapping streaming applications onto on-chip many-core systems. In Proceedings of ACM
Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES). 71–80.

SCHRANZHOFER, A., CHEN, J.-J., AND THIELE, L. 2009. Power-Aware Mapping of Probabilistic Applica-
tions onto Heterogeneous MPSoC Platforms. In IEEE Real Time and Embedded Technology and Appli-
cations Symposium (RTAS). 151–160.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems A:37

SCHRANZHOFER, A., CHEN, J.-J., AND THIELE, L. 2010. Dynamic Power-Aware Mapping of Applications
onto Heterogeneous MPSoC Platforms. IEEE Transactions on Industrial Informatics 4, 692 –707.

SERRELI, N., LIPARI, G., AND BINI, E. 2009. Deadline assignment for component-based analysis of real-
time transactions. In Workshop on Compositional Real-Time Systems. Citeseer.

SHEIKH, H. F. AND AHMAD, I. 2014. Efficient heuristics for joint optimization of performance, energy,
and temperature in allocating tasks to multi-core processors. In IEEE International Green Computing
Conference (IGCC). 1–8.

SHOJAEI, H., GHAMARIAN, A., BASTEN, T., GEILEN, M., STUIJK, S., AND HOES, R. 2009. A parameterized
compositional multi-dimensional multiple-choice knapsack heuristic for CMP run-time management.
In Proceedings of ACM Design Automation Conference (DAC). 917–922.

SINGH, A. K., DAS, A., AND KUMAR, A. 2013a. Energy Optimization by Exploiting Execution Slacks in
Streaming Applications on Multiprocessor Systems. In Proceedings of ACM Design Automation Confer-
ence (DAC). 115:1–115:7.

SINGH, A. K., DAS, A., AND KUMAR, A. 2013b. RAPIDITAS: RAPId Design-Space-Exploration Incorpo-
rating Trace-Based Analysis and Simulation. In Proceedings of IEEE Euromicro Conference on Digital
System Design (DSD). 836–843.

SINGH, A. K., DZIURZANSKI, P., AND INDRUSIAK, L. S. 2015a. Market-inspired Dynamic Resource Allo-
cation in Many-core High Performance Computing Systems. In IEEE International Conference on High
Performance Computing & Simulation (HPCS). 413–420.

SINGH, A. K., DZIURZANSKI, P., AND INDRUSIAK, L. S. 2015b. Value and Energy Optimizing Dynamic
Resource Allocation in Many-core HPC Systems. In IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). 180–185.

SINGH, A. K., DZIURZANSKI, P., AND INDRUSIAK, L. S. 2016. Value and Energy Aware Adaptive Resource
Allocation of Soft Real-time Jobs on Many-core HPC Data Centers. In IEEE International Symposium
on Real-Time Computing (ISORC).

SINGH, A. K., KUMAR, A., AND SRIKANTHAN, T. 2013. Accelerating throughput-aware runtime mapping
for heterogeneous mpsocs. ACM Trans. Des. Autom. Electron. Syst., 1–29.

SINGH, A. K., SHAFIQUE, M., KUMAR, A., AND HENKEL, J. 2013. Mapping on Multi/Many-core Systems:
Survey of Current and Emerging Trends. In Proceedings of ACM Design Automation Conference (DAC).
1:1–1:10.

SINGH, A. K., SHAFIQUE, M., KUMAR, A., AND HENKEL, J. 2016a. Analysis and Mapping for Thermal
and Energy Efficiency of 3-D Video Processing on 3-D Multicore Processors. IEEE Transactions on Very
Large Scale Integration Systems (TVLSI) 24, 8, 2745–2758.

SINGH, A. K., SHAFIQUE, M., KUMAR, A., AND HENKEL, J. 2016b. Resource and Throughput Aware Execu-
tion Trace Analysis for Efficient Run-Time Mapping on MPSoCs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 35, 1, 72–85.

SMIT, L., SMIT, G., HURINK, J., BROERSMA, H., PAULUSMA, D., AND WOLKOTTE, P. 2004. Run-time map-
ping of applications to a heterogeneous reconfigurable tiled system on chip architecture. In Proceedings
of IEEE International Conference on Field-Programmable Technology (FPT). 421–424.

STANKOVIC, J. A., LU, C., SON, S. H., AND TAO, G. 1999. The case for feedback control real-time scheduling.
In Proceedings of IEEE Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 11–20.

STUIJK, S., GEILEN, M., AND BASTEN, T. 2006. SDF3: SDF For Free. In Proceedings of IEEE Conference on
Application of Concurrency to System Design (ACSD). 276–278.

STUIJK, S., GEILEN, M., AND BASTEN, T. 2010. A Predictable Multiprocessor Design Flow for Streaming
Applications with Dynamic Behaviour. In DSD. 548–555.

SUN, G., LI, Y., ZHANG, Y., SU, L., JIN, D., AND ZENG, L. 2010. Energy-aware run-time mapping for
homogeneous NoC. In IEEE International Symposium on System on Chip (SoC). 8–11.

TER BRAAK, T. D., HÖLZENSPIES, P. K. F., KUPER, J., HURINK, J. L., AND SMIT, G. J. M. 2010. Run-time
spatial resource management for real-time applications on heterogeneous MPSoCs. In Proceedings of
IEEE Conference on Design, Automation and Test in Europe (DATE). 357–362.

THEOCHARIDES, T., MICHAEL, M. K., POLYCARPOU, M., AND DINGANKAR, A. 2009. Towards embedded
runtime system level optimization for MPSoCs: on-chip task allocation. In Proceedings of ACM Great
Lakes symposium on VLSI (GLSVLSI). 121–124.

THEOCHARIDES, T., MICHAEL, M. K., POLYCARPOU, M., AND DINGANKAR, A. 2010. Hardware-enabled
Dynamic Resource Allocation for Manycore Systems Using Bidding-based System Feedback. EURASIP
J. Embedded Syst. 2010, 3:1–3:21.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 A. K. Singh et al.

THIELE, L., SCHOR, L., YANG, H., AND BACIVAROV, I. 2011. Thermal-aware system analysis and software
synthesis for embedded multi-processors. In Proceedings of ACM Design Automation Conference (DAC).
268–273.

TILE-GX. 2009. First 100-core Processor with the New TILE-Gx Family. http://www.tilera.com/ (Last vis-
ited: 12 February, 2016).

TZILIS, S., SOURDIS, I., VASILIKOS, V., RODOPOULOS, D., AND SOUDRIS, D. 2016. Runtime management of
adaptive mpsocs for graceful degradation. In Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. CASES ’16. ACM, New York, NY, USA, 5:1–5:10.

VANGAL, S., HOWARD, J., RUHL, G., DIGHE, S., WILSON, H., TSCHANZ, J., FINAN, D., IYER, P., SINGH,
A., JACOB, T., JAIN, S., VENKATARAMAN, S., HOSKOTE, Y., AND BORKAR, N. 2007. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In Proceedings of IEEE International Solid-State Cir-
cuits Conference (ISSCC). 98–589.

WANG, F., CHEN, Y., NICOPOULOS, C., WU, X., XIE, Y., AND VIJAYKRISHNAN, N. 2011. Variation-aware
task and communication mapping for mpsoc architecture. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 2, 295 –307.

WANG, S. AND CHEN, J.-J. 2010. Thermal-aware lifetime reliability in multicore systems. In Proceedings of
International Symposium on Quality Electronic Design (ISQED). 399–405.

WANG, X., ZHAO, B., MAK, T., YANG, M., JIANG, Y., AND DANESHTALAB, M. 2015. An efficient runtime
power allocation scheme for many-core systems inspired from auction theory. Integration, the VLSI
Journal 50, 147–157.

WEICHSLGARTNER, A., GANGADHARAN, D., WILDERMANN, S., GLASS, M., AND TEICH, J. 2014. DAARM:
Design-time Application Analysis and Run-time Mapping for Predictable Execution in Many-core Sys-
tems. In Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software Codesign and System Syn-
thesis (ISSS+CODES). 34:1–34:10.

WILDERMANN, S., REIMANN, F., ZIENER, D., AND TEICH, J. 2011. Symbolic design space exploration
for multi-mode reconfigurable systems. In Proceedings of IEEE/ACM/IFIP Conference on Hard-
ware/Software Codesign and System Synthesis (ISSS+CODES). 129–138.

WOO, D. H. AND LEE, H.-H. S. 2008. Extending amdahl’s law for energy-efficient computing in the many-
core era. Computer 41, 12.

WORM, F., IENNE, P., THIRAN, P., AND DE MICHELI, G. 2002. An adaptive low-power transmission scheme
for on-chip networks. In Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software Codesign
and System Synthesis (ISSS+CODES). 92–100.

XILINX. 2016. Zynq UltraScale+ EG MPSoC. https://www.xilinx.com/products/silicon-devices/soc/zynq-
ultrascale-mpsoc.html.

XUE, L., OZTURK, O., LI, F., KANDEMIR, M., AND KOLCU, I. 2006. Dynamic partitioning of processing and
memory resources in embedded MPSoC architectures. In Proceedings of IEEE Conference on Design,
Automation and Test in Europe (DATE). 690–695.

YANG, P., MARCHAL, P., WONG, C., HIMPE, S., CATTHOOR, F., DAVID, P., VOUNCKX, J., AND LAUW-
EREINS, R. 2002. Managing dynamic concurrent tasks in embedded real-time multimedia systems. In
Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software Codesign and System Synthesis
(ISSS+CODES). 112–119.

YEO, C. S. AND BUYYA, R. 2006. A taxonomy of market-based resource management systems for utility-
driven cluster computing. Softw. Pract. Exper. 36, 13, 1381–1419.

YKMAN-COUVREUR, C., AVASARE, P., MARIANI, G., PALERMO, G., SILVANO, C., AND ZACCARIA, V. 2011.
Linking run-time resource management of embedded multi-core platforms with automated design-time
exploration. IET Computers Digital Techniques 2, 123 –135.

ZAMORA, N. H., HU, X., AND MARCULESCU, R. 2007. System-level performance/power analysis for
platform-based design of multimedia applications. ACM Trans. Des. Autom. Electron. Syst., 2:1–2:29.

ZENG, L., HUANG, P., AND THIELE, L. 2016. Towards the design of fault-tolerant mixed-criticality sys-
tems on multicores. In Proceedings of ACM Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES). 6.

ZHOU, X., YANG, J., XU, Y., ZHANG, Y., AND ZHAO, J. 2010. Thermal-aware task scheduling for 3d multicore
processors. IEEE Trans. Parallel Distrib. Syst., 60–71.

ZHU, Y. AND MUELLER, F. 2005. Feedback edf scheduling of real-time tasks exploiting dynamic voltage
scaling. Real-Time Systems 31, 1-3, 33–63.

ZHURAVLEV, S., SAEZ, J. C., BLAGODUROV, S., FEDOROVA, A., AND PRIETO, M. 2012. Survey of scheduling
techniques for addressing shared resources in multicore processors. ACM Comput. Surv. 45, 1, 4:1–4:28.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

