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ABSTRACT
In this paper we focus on algorithms and reconfigurable
multi-core architectures for streaming digital signal process-
ing (DSP) applications. The multi-core concept has a num-
ber of advantages: (1) depending on the requirements more
or fewer cores can be switched on/off, (2) the multi-core
structure fits well to future process technologies, more cores
will be available in advanced process technologies, but the
complexity per core does not increase, (3) the multi-core
concept is fault tolerant, faulty cores can be discarded and
(4) multiple cores can be configured fast in parallel. Be-
cause in our approach processing and memory are combined
in the cores, tasks can be executed efficiently on cores (lo-
cality of reference). There are a number of application do-
mains that can be considered as streaming DSP applica-
tions: for example wireless baseband processing (for Hiper-
LAN/2, WiMax, DAB, DRM, and DVB), multimedia pro-
cessing (e.g. MPEG, MP3 coding/decoding), medical image
processing, colour image processing, sensor processing (e.g.
remote surveillance cameras) and phased array radar sys-
tems. In this paper the key characteristics of streaming DSP
applications are highlighted, and the characteristics of the
processing architectures to efficiently support these types of
applications are addressed. We present the initial results of
the Annabelle chip that we designed with our approach.

Categories and Subject Descriptors
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Heterogeneous (hybrid) systems; C.4 [Computer Systems
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1. INTRODUCTION
This paper addresses the design issues of a reconfigurable

multi-core System-on-Chip (SoC) platform for streaming DSP
applications. In streaming DSP applications computations
can be specified as a data flow graph with streams of data
items (the edges) flowing between computation kernels (the
nodes). Most signal processing applications can be natu-
rally expressed in this modelling style [3]. Typical examples
of streaming DSP applications are: wireless baseband pro-
cessing, multi-media processing, medical image processing
and sensor processing e.g. for remote surveillance cameras
and phased array radars. In the 4S project we defined a dy-
namically reconfigurable heterogeneous multi-core SoC ar-
chitecture (see section 2). In this architecture a core can
either be: a bit-level reconfigurable unit (e.g. FPGA), a
word-level reconfigurable unit (e.g. Montium tiles [7, 8]), or
a general-purpose programmable unit (DSP or microproces-
sor). The cores on the SoC are interconnected by a recon-
figurable Network-on-Chip (NoC). The programmability of
the individual cores enables the system to be targeted at
multiple application domains.

1.1 Holistic Approach
In the 4S project we take a holistic approach, which means

that all aspects of systems design need to be addressed simul-
taneously in a systematic way. We believe that this is key for
an efficient overall solution. An interesting optimization in a
small corner of the design might lead to inefficiencies in the
overall design. For example the design of the NoC should be
coordinated with the design of the processing cores, and the
design of the processing cores should be coordinated with
the tile specific compilers. Eventually, there should be a
tight fit between the application requirements and the SoC
and NoC capabilities.

1.2 Predictable Solutions
To manage the complexity of streaming DSP applications,

predictable techniques should be used. For example: the
NoC should provide latency and throughput guarantees, and
the real-time schedulers in core processors should provide la-
tency guarantees. One reason for predictability is that the
amount of data in streaming DSP applications is so high
that even a large buffer would be too small to compensate
for unpredictably behaving components and that the latency
that these buffers would introduce is not acceptable in typ-
ical streaming DSP applications. A second reason for using
predictable techniques is because of the composability issue.
In case multiple applications are mapped on the same plat-
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form, the behaviour of one application should not influence
another application.

Furthermore, in these applications there are often hard
deadlines at the beginning of the chain (e.g. sampling rate of
an A/D converter) or at the end of the chain (e.g. fixed rate
of the D/A converter, or update rate of the screen). In other
applications such as phased arrays applications individual
paths of signals should be exactly timed before they can be
combined. Also in these applications the data rate is so high
(e.g. 100 Msamples/s) that buffering of data is not useful.

Unfortunately, future semiconductor technologies will in-
troduce more uncertainty. Design techniques will have to
include resiliency at the circuit and micro-architecture level
to deal with these uncertainties and the variability at the
device technology level. One of the future challenges is to
design predictable systems with unpredictable components.

1.3 Energy-efficiency
Portable devices rely on batteries; the functionality of

these devices is strictly limited by the energy consumption.
There is an exponential increase in demand for streaming
communication and processing for wireless protocol base-
band processing and multimedia applications, but the en-
ergy content of batteries is only increasing at a pace of 10%
per year.Also for high performance computing there is a need
for energy-efficient architectures to reduce the cost for cool-
ing and packaging.

In addition to that there are also environmental concerns
that urge for more efficient architectures in particular for
systems that run 24 hours per day such as wireless base
stations and search engines (e.g. Google has an estimated
server park of one million servers that run 24 hours per day).

Most components are fabricated using CMOS technology
today. The dominant component of energy consumption (85
to 90%) in 130 nm CMOS technology is dynamic power con-
sumption. However, when technology scales to lower dimen-
sions, the static power consumption will become more and
more important. A first order approximation of the dynamic
power consumption of CMOS circuitry is given by the for-
mula:

Pd = α · Ceff · f · V 2 (1)

where Pd is the power in Watts, Ceff is the effective switch
capacitance in Farads, V is the supply voltage in Volts, α
the activity factor and f is the frequency of operations in
Hertz.

Equation (1) suggests that there are essentially four ways
to reduce power: reduce the capacitive load Ceff , reduce
the supply voltage V , reduce the switching frequency f , or
reduce the activity α. In the context of this paper we will
mainly address reducing the capacitance by using locality of
reference and using adaptivity.

1.3.1 Minimize Capacitance
As shown in equation (1) energy consumption in CMOS

circuitry is proportional to capacitance. Therefore energy
consumption can be reduced by minimizing the capacitance.
This can not only be reached at the technological level, but
much profit can be gained by an architecture that exploits
locality of reference. Connections to external components
typically have much higher capacitance than connections to
on-chip resources. For example: on-chip capacitance is in
the order of 10-50 fF, whereas off-chip capacitance is in the

order of 10-20 pF. This means that the energy it takes to
read a 32 bit value from an off-chip memory is far more than
the energy it takes to perform e.g. a 32x32 multiplication.
Therefore, to save energy, use few off-chip wires, and have
them toggle as infrequently as possible. Consequently, it is
beneficial to use on-chip memories like caches, scratchpads
and registers.

1.3.2 Locality of Reference
References to memory typically display a high degree of

temporal and spatial locality of reference. Temporal locality
of reference refers to the observation that referenced data is
often referenced again in the near future. Spatial locality
of reference refers to the observation that once a particular
location is referenced, a nearby location is often referenced
in the near future. Accessing a small and local memory
is much more energy-efficient than accessing a big and far
distant memory. Transporting a signal over a 1 mm wire
in a 45 nm technology will require more than 50 times the
energy of a 32-bit operation in the same technology (the off-
chip interconnect will consume more than a 1000 times the
energy of an on-chip 32-bit operation). A multi-core archi-
tecture intrinsically encourages the usage of small and local
on-core memories. Exploiting the locality of reference princi-
ple extensively improves the energy-efficiency substantially.
Due to the locality of reference principle the communications
within a core are more frequent than between cores.

1.3.3 Adaptivity
When the system can adapt (at run-time) to the environ-

ment, significant savings in computational costs can be ob-
tained [13]. One of the main reasons for introducing recon-
figurable hardware in a wireless terminal is to support mul-
tiple wireless communication standards [11]. The support
of multiple wireless communication standards introduces a
first level of adaptivity in the wireless terminal because the
terminal can switch between standards. For example, when
packet data transport is performed over Universal Mobile
Telecommunications System (UMTS) and a Wireless Local
Area Network (WLAN) hotspot becomes available the ter-
minal can switch from UMTS to a WLAN standard. This
is referred to as standards level adaptivity.

Although a wireless communication standard usually de-
fines the DSP functionality, it usually does not define the
algorithms that have to be used to implement these func-
tions. Therefore, the communication system can “adapt the
algorithms” that are used to implement the DSP function-
ality.

“Adapt the algorithms” means that the communication
system selects an algorithm from a set of algorithms that
implement the same DSP functionality. This second level of
adaptivity is referred to as algorithm-selection level adaptiv-
ity. Within a specific algorithm, there are also opportuni-
ties for adaptivity by changing parameters of the algorithm.
This third level of adaptivity is called algorithm-parameter
level adaptivity.

Dynamic reconfiguration of hardware is required to achieve
real adaptive systems. The reconfiguration rate is highly
dependent on the operating environment. Changes within
the standards level are due to interaction with the end-user
whereas changes within the parameter-level are due to the
physical environment. For instance, the standard selected
by the user changes on a minute or hour rate, while the
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parameters of a standard can change on a sub-second rate,
influenced by the quality of, e.g., the wireless channel.

1.4 Streaming Applications
In this paper the focus is on multi-core SoC architectures

for streaming DSP applications where we can assume that
the data streams are semi-static and have a periodic be-
haviour. This means that for a long period of time subse-
quent data items of a stream follow the same route through
the SoC, often modelled as a data-flow graph.

We have implemented and analysed several streaming ap-
plications. For example, physical layer processing for Hiper-
LAN/2, DAB, DRM, WiMAX, and multimedia processing
for MPEG-4 video decoding.

The common characteristics of typical streaming DSP ap-
plications are:

• They are characterized by relatively simple local pro-
cessing but a huge amount of data. The trend is that
energy costs for data communication dominates energy
costs of processing.

• Data arrives at nodes at a rather fixed rate, which
causes periodic data transfers between successive pro-
cessing blocks. The resulting communication band-
width is application dependent so a large variety in
communication bandwidth is required.

• The size of the data items is application dependent,
e.g. 14-bit samples for a sensor system, 64 32-bits
words for HiperLAN/2 [4] OFDM symbols or 8 x 8
x 24-bits macro blocks for a video application. Also
the data rate is application dependent e.g. 100 Msam-
ples/sec after the A/D converter for a sensor system,
200k OFDM symbols per second for HiperLAN/2, 50
frames/sec for video.

• The data flows through the successive processes in a
pipelined fashion. Processes might work in parallel on
parallel processors or can be time-multiplexed on one
or more processors. Therefore, streaming applications
show a predictable temporal and spatial behaviour.

• For our application domains typically throughput guar-
antees (in data items per sec.) are required for the
communication as well as for the processing. Some-
times also latency requirements are given.

• The life-time of a communication stream is semi-static,
which means a stream is fixed for a relatively long time.

2. EFFICIENT MULTI-CORE
ARCHITECTURES

Flexible and efficient SoCs can be realized by integrating
reconfigurable hardware parts (called tiles or cores) of dif-
ferent granularities into heterogeneous reconfigurable SoCs.
In this paper the term core is used for processor-like hard-
ware blocks and the term tile is used for ASICs, fine-grain
reconfigurable- and memory blocks. In this section we present
techniques we use to design predictable and energy-efficient
systems. In line with the holistic view, these techniques
range from pure hardware- to software design techniques.

FPGA GPP DSP FPGA

DSRC ASIC FPGA GPP

DSRC DSRC FPGA DSP

ASIC GPP ASIC DSRC

Figure 1: Heterogeneous tiled organization

In our approach we assume that the interconected building
blocks can be heterogeneous (see figure 1), e.g.: bit-level re-
configurable tiles (e.g. embedded FPGAs), word-level recon-
figurable cores (e.g. Montium tiles), general-purpose pro-
grammable cores (e.g. DSPs and microprocessor cores) and
memory blocks.

From a systems point of view these architectures are het-
erogeneous multi-processor systems on a single chip. The
programmability and reconfigurability of the architecture
enables the system to be targeted at multiple applications.

2.1 Multi-core Architectures
Recently a number of Multi-core architectures have been

proposed for the streaming DSP application domain. Exam-
ples are: Silicon Hive (an incubator of Philips Research) [6];
the PACT-XPP [2]; the Maya [3] and Pleiades [1] chips from
Berkeley; and the Chameleon/Montium architecture from
the University of Twente and Recore Systems [8]. For an
overview we refer to [7].

A multi-core architecture has a number of advantages:

• It is a future-proof architecture, as the processing cores
do not grow in complexity with technology. Instead,
as technology scales, simply the number of cores on
the chip grows.

• A multi-core organization can contribute to the energy-
efficiency of a SoC. The best energy savings can be ob-
tained by simply switching off cores that are not used,
which also helps for reducing the static power con-
sumption. Furthermore, the processing of local data
in small autonomous cores abides by the locality of
reference principle. Moreover, a core processor might
not need to run at full clock speed to achieve the re-
quired QoS at a particular moment in time.

• When one of the cores is discovered to be defect (ei-
ther due to a manufacturing fault or discovered at
operating-time by the built-in-diagnosis) this defective
core can be switched-off and isolated from the rest of
the design.

• A multi-core approach also eases verification of an in-
tegrated circuit design, since the design of identical
cores only has to be verified once. The design of a
single core is relatively simple and therefore a lot of
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effort can be put in (area/power) optimizations on the
physical level of integrated circuit design.

• The computational power of a multi-core architecture
scales linearly with the number of cores. The more
cores there are on a chip, the more computations can
be done in parallel (providing that the network ca-
pacity scales with the number of cores and there is
sufficient work).

• Although cores operate together in a complex system,
an individual tile operates quite autonomously. In a
multi-core architecture every processing core is config-
ured independently. In fact, a core is a natural unit
of partial reconfiguration. Unused cores can be con-
figured for a new task, while at the same time other
cores continue performing their tasks. That is to say,
a multi-core architecture can be reconfigured dynami-
cally.

2.2 Heterogeneous Multi-core SoC
The reason for heterogeneity is that typically, some al-

gorithms run more efficiently on bit-level reconfigurable ar-
chitectures (e.g. PN-code generation), some on DSP-like
architectures and some perform optimal on word-level re-
configurable platforms (e.g. FIR filters or FFT algorithms).
Application designers or high-level compilers can choose the
most efficient processing core for the type of processing need-
ed for a given application task. Such an approach combines
performance, flexibility and energy-efficiency. It supports
high performance through massive parallelism, it matches
the computational model of the algorithm with the granu-
larity and capabilities of the processing entity, it can operate
at minimum supply voltage and clock frequency and hence
provides energy-efficiency and flexibility at the right granu-
larity only when and where needed and desirable.

A thorough understanding of the algorithm domain is cru-
cial for the design of an (energy-) efficient reconfigurable ar-
chitecture. The architecture should impose little overhead to
execute the algorithms in its domain. Inter-processor com-
munication is in essence also overhead, as it does not con-
tribute to the computation of an algorithm. Therefore, there
needs to be a sound balance between computation and inter-
processor communication. These are again motivations for
a holistic approach.

2.3 Dynamic Reconfiguration
Reconfigurable systems offer the flexibility and adaptivity

needed for future streaming DSP applications. The flex-
ibility of a platform is revealed as the ease of upgrading
the system with a new or enhanced application or standard
(standard-level adaptivity) as well as the ability of the sys-
tem to adapt dynamically to changing environmental condi-
tions (algorithm-level and parameter-level adaptivity).

There are quite a number of good reasons for using recon-
figurable architectures in future mobile systems:

• When the system can adapt – at run-time – to the
environment significant power-saving can be obtained.
For example: depending on the distance of the receiver
and transmitter or cell occupation, more or less pro-
cessing power is needed.

• Standards evolve quickly; this means that future sys-
tems have to have the flexibility and adaptivity to

adapt to changes in the standards. By using reconfig-
urable architectures instead of ASICs costly re-designs
can be avoided.

• The design costs complex ASICs is growing rapidly; in
particular the mask costs of these chips are very high.
With reconfigurable processors it is expected that less
chips have to be designed, so companies can save on
mask costs.

• Reconfigurability reduces risks; because these systems
can adapt to standards that may change during and
after product development, and the time to market
can be shortened.

• Dynamically reconfigurable architectures allow to ex-
periment with new concepts such as software-defined
radios, multi-standard terminals, cognitive radio, adap-
tive turbo decoding, adaptive equalizer modules and
adaptive interference rejection modules.

Reconfigurability also has another more economic motiva-
tion: it will be important to have a fast track from sparkling
ideas to the final design. Time to market is crucial. If the
design process takes too long, the return on investment will
be less.

The combination of high-level design tools and reconfig-
urable hardware architectures will enable designers to de-
velop highly flexible, efficient and adaptive systems and ap-
plications for future systems.

2.4 Network-on-Chip
A multi-core architecture has to be supported by a pre-

dictable inter-core communication network e.g. NoC. A
NoC that routes data items has a higher bandwidth than
an on-chip bus, as it supports multiple concurrent com-
munications. The well-controlled electrical parameters of
an on-chip interconnection network enable the use of high-
performance circuits that result in significantly lower power
dissipation, higher propagation velocity and higher band-
width than is possible with conventional circuits.

To describe the network traffic in a system, we adopt the
notation used in [12]. According to the type of services re-
quired, the following types of traffic can be distinguished in
the network:

• Guaranteed throughput (GT) is the part of the traffic
for which the network has to give real-time guarantees
(i.e. guaranteed bandwidth, bounded latency).

• Best effort (BE) is the part of the traffic for which the
network guarantees only fairness but does not give any
bandwidth and timing guarantees.

The main-stream of the communication we foresee has a
guaranteed throughput character; a minor part (assumed
to be less then 5%) is of best effort nature e.g. control,
interrupts and configuration data. This communication has
more relaxed requirements for the network and hence can
use the best effort services.

If diverse wireless standards are to be supported by the
SoC it requires the support of several levels of granularity
for individual data-streams. We already observed that the
required bandwidth between the processes of the different
applications varies widely from several kbit/s (DRM) up to
more than 0.5 Gbit/s (HiperLAN/2).
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We distinguish between two mechanisms for transferring
data between the NoC and the core processor: block-mode
and streaming-mode. Some processes require all the input
data to be in the local memories of the core before the exe-
cution can be started. This operation mode is called block-
mode. Typically, a block-mode operation is done in three
stages: the input data is loaded into the local memories, the
process is executed and the result is fetched from the local
memories and sent to another core. During the data trans-
fers, the core is halted to make sure that the execution is not
started until all data is valid. Some cores support reading in-
put data and writing output data while they are processing,
using the network interface as a slave for performing data
transfers. This operation mode is called streaming-mode.

Depending on the standard we can use block-based com-
munication (e.g. OFDM) or streaming-mode (e.g. UMTS)
for example because the blocks get too large. Typically, dur-
ing the execution of a process in streaming-mode, connec-
tions for the input data and output data remain open. This
is an advantage for both the sender as well as for the receiver,
since the overhead for packet assembly and re-assembly is
avoided.

Whether block-mode or streaming-mode should be used,
is determined by the application programmer and strongly
depends on the characteristics of the application process.
When the application operates in block-mode, no compu-
tation and communication occurs simultaneously. This in-
creases the ease of programming at process level, but gives
overhead at application level. For applications in streaming-
mode the programmer has to carefully plan how and when
the communication takes place. In general streaming-mode
reduces the required buffer size.

2.5 Run-time Mapping of Streaming
Applications to Multi-core Architectures

As discussed above, today’s multi-core SoC architectures
are composed of commercially of-the-shelf available recon-
figurable intellectual property (IP) blocks.

Ultimately, we would like to design a generic heteroge-
neous multi-core SoC architecture that is flexible enough
to run different applications (within a certain application
domain). However, mapping an application to such a het-
erogeneous SoC is more difficult compared to mapping to a
homogeneous one [5].

Today, common practice is to map applications to the ar-
chitecture at design-time. In our approach we perform the
mapping at run-time. Run-time mapping offers a number of
advantages over design-time mapping. It offers the possibil-
ity:

• to adapt to the available resources. Only at run-time
the available resources are known to the mapping al-
gorithm. Moreover, the available resources may vary
over time for example due to applications running si-
multaneously or adaptation of algorithms to the en-
vironment or QoS parameters (e.g. video frame rate,
screen size) set by the user.

• to enable unforeseeable upgrades after first product re-
lease time, e.g. new applications and new or changing
standards.

• to avoid defective parts of a SoC. Larger chip area
means lower yield. The yield can be improved when

the mapper is able to avoid faulty parts of the chip.
Also aging can lead to faulty parts that are unforesee-
able at design-time.

We assume that the mapping algorithm runs as a soft-
ware process on a central (on-chip) general purpose proces-
sor that has an overview of the entire SoC which is needed
for the earlier mentioned holistic approach. This mapping
algorithm also generates the routes in the NoC and does the
(re)configuration of the processing tiles.The mapping algo-
rithm requires a description of the streaming applications,
a library of process implementations, a description of the
architecture and the current status of the system.

The objective of the run-time mapping algorithm is to
determine at run-time a near-optimal mapping of the ap-
plication(s) to the architecture using the library of process
implementations and the current status of the system. The
mapping algorithm should minimize the energy consump-
tion and has to satisfy all the constraints of the application
and the architecture e.g. real-time guarantees or bandwidth
constraints. The considered problem is a combination of sev-
eral optimization problems (which, on their own, are already
hard) that have to be solved by light weighted methods.

The problems we consider differ from multi-processor load-
balancing or scheduling mechanisms [5] because: (1) we not
only consider processing but also inter-core communication.
Inter-core communication is becoming a major source of en-
ergy consumption, and by optimizing the inter-core commu-
nications (i.e. placing frequently communicating processes
close together on neighbouring cores) considerable energy
can be saved, (2) we target at heterogeneous architectures
and not just at homogeneous multi-processors, (3) we op-
timize for energy and not just for (time-) performance and
(4) we perform the mapping at run-time. As a consequence
often used scheduling techniques (such as ILP, branch and
bound/price and dynamic programming [5, 10]) are not ap-
plicable and for existing heuristics (such as priority rules and
local search) we carefully have to evaluate whether they can
be adapted for solving at least some of the sub problems of
the overall problem or not.

3. CASE STUDY: ANNABELLE SOC
As an example we will now present the Annabelle chip as

depicted in figure 2. The Annabelle SoC has been developed
within the 4S project and was processed with ATMEL’s pro-
prietary process (130 nm process). In November 2007 we
received the first samples of the chip. A quick inspection of
the samples revealed that the most important elements of
the chip are fully functional. The performance figures men-
tioned below are still estimations; we just started to collect
real measurement data. We will show how we obtained a
predictable and energy-efficient SoC/NoC.

In the Annabelle SoC a conventional ARM926 architec-
ture is complemented by ASIC blocks (for example Viterbi
and DDC) and four domain specific coarse-grain reconfig-
urable Montium cores [8] (see figure 2). The key issue in the
design of future SoC platforms for streaming applications is
to find a good balance between flexibility and high process-
ing power on one side, and area and energy-efficiency of the
implementation on the other side.

3.1 Montium
The Montium targets the 16-bit DSP algorithm domain.
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Figure 2: Block diagram of the Annabelle chip
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A single Montium core is depicted in figure 3. At first glance
the Montium architecture bears a resemblance to a VLIW
processor. However, the control structure of the Montium
is very different. For (energy) efficiency it is imperative to
minimize the control overhead.

The lower part of figure 3 shows the Communication and
Configuration Unit (CCU) and the upper part shows the
reconfigurable Tile Processor (TP). The CCU implements
the interface for off-tile communication. The off-tile inter-
face depends on the interconnect technology that is used in
the SoC.

The TP is the computing part that can be configured to
implement a particular algorithm. figure 3 reveals that the
hardware organization of the TP is very regular. The data
path of the ALUs has a width of 16-bits and the ALUs sup-
port both signed integer and signed fixed-point arithmetic.
The five identical ALUs (ALU1. . . ALU5) in a tile can ex-
ploit spatial concurrency to enhance performance. This par-
allelism demands a very high memory bandwidth, which is
obtained by having 10 local memories (M01. . .M10) in par-
allel. The local memories imply a good locality of reference.
A relatively simple sequencer controls the entire tile proces-
sor. The sequencer selects configurable tile instructions that
are stored in the decoders (see figure 3).

Each local SRAM is 16-bit wide and has a depth of 1024
positions, which adds up to a storage capacity of 16Kbit

per local memory. A reconfigurable Address Generation
Unit (AGU) accompanies each memory. The AGUs can gen-
erate the most frequently used address patterns, but when
needed also an ALU can generate address patterns. It is
also possible to use the memory as a lookup table for com-
plicated functions that cannot be calculated using an ALU,
such as sine or division (with one constant). A memory can
be used for both integer and fixed-point lookups.

A single ALU has four 16-bit inputs. Each input has a pri-
vate input register file that can store up to four operands.
The input register file cannot be bypassed, i.e. an operand
is always read from an input register. Input registers can
be written by various sources via a flexible interconnect.
An ALU has two 16-bit outputs, which are connected to
the interconnect. The ALU is entirely combinational and
consequentially there are no pipeline registers within the
ALU. Neighbouring ALUs can also communicate directly:
the West-output of an ALU connects to the East-input of
the ALU neighbouring on the left.

3.2 CCU Network Interface
Each core processor in the SoC requires a customized net-

work interface that is used to provide a footprint that exactly
fits the NoC. As each processor operates independently, they
need to be controlled separately. The ARM926 processor,
the control processor, controls the other cores by sending
configuration messages to their network interface (NI). Since
the cores might not be running at the same clock speed as
the NoC, the network interface synchronizes the data trans-
fers.

The CCU is an interface developed to serve the Mon-
tium [14]. It provides the functionality to configure the Mon-
tium, to manage the memories by means of direct memory
access (DMA) and to start/wait/reset the computation of
the algorithm configured.

Both streaming-mode and block-mode communication are
supported by the CCU. In block-mode, the DMA interface
is used to manage data transfers. The network interface acts
as a master for the tile processor, while the data transfers
are directed by the control processor. In streaming-mode the
algorithm’s designer implicitly describes how the data trans-
fers are performed and, therefore, the Montium controls the
network interface to take care of the data flow from and to
the NoC.

3.3 Predictable Network-on-Chip
For the Annabelle SoC we developed a predictable circuit-

switched NoC [15] that interconnects the four Montium cores.
Circuit switching has been chosen as it simplifies the NI, be-
cause it does not have to embed the data in specific network
protocol and include the routing information. This is an ad-
vantage for both the sender and receiver, since there is no
overhead during the communication for packaging of data
(assembly or re-assembly of packets). For the Annabelle
it was expected that the mapped applications, for example
DRM and DAB, would be rather static with fixed informa-
tion streams. Due to the semi-static behaviour of streaming
applications, the connections for the input data and output
data remain open during their execution.

The connections in the NoC, i.e. the routers’ configura-
tion, is controlled via the AHB bridge. The routers’ control
interfaces are included in the memory map of the bridge.
The original proposed NoC architecture used a serialization
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Table 1: Static power consumption of one Mon-
tium on Annabelle

Module Static power [mW]

Datapath 0.09
Memories 0.06
Sequencer 0.01
Decoders 0.03
CCU 0.01
Total 0.20

to reduce the link wires, but this part is omitted for this
small network. Furthermore, it would create a significant
bottleneck compared to the large internal communication
bandwidth offered by the Montium.

4. IMPLEMENTATION RESULTS
The ASIC synthesis of the Annabelle was performed using

ATMEL’s proprietary 130 nm process technology. For the
local data memories and sequencer instruction memory of
the Montium TP, embedded SRAMs are used. The embed-
ded SRAM is an optimized component from a cell library.

For ASIC synthesis, worst case military conditions are as-
sumed. In particular, the supply voltage is 1.1 V and the
temperature is 125 oC. Results obtained with the synthesis
are:

• The area of one Montium core is 3.5 mm2 of which 0.2
mm2 for the CCU and 3.3 mm2 for the Montium TP.

• With Synopsys® tooling we estimated that the Mon-
tium TP, within the Annabelle ASIC realization, can
implement an FIR filter at about 100 MHz or an FFT
at 50 MHz. The worst case clock frequency of the
Annabelle chip is 25 MHz.

• With the Synopsys Prime Power tool, we estimated the
energy consumption using placed and routed netlists
under nominal conditions (supply voltage is 1.2 V and
temperature is 25 oC). The following section provides
some of the results.

4.1 Average Power Consumption
To determine the average power consumption of the Anna-

belle we performed a number of power estimations on the
placed and routed netlist using the Synopsis Prime Power.
Table 1 gives the static power consumption. Table 2 pro-
vides the dynamic power consumption in mW/MHz of var-
ious Montium blocks for three well-known DSP algorithms.
These figures show that the overhead of the sequencer and
decoder is low; <16% of the total dynamic power consump-
tion. Finally, table 3 compares the energy consumption of
the Montium and the ARM926 on Annabelle. For the FIR-5
algorithm the memory is not used.

4.2 Locality of Reference
As mentioned above locality of reference is an important

design parameter. One of the reasons for the excellent en-
ergy figures of the Montium is the use of locality of refer-
ence. To illustrate this, table 4 gives the amount of mem-
ory references local to the cores compared to the amount

Table 2: Dynamic power consumption
of one Montium on Annabelle

Energy [mW/MHz]

Module FIR-5 FFT-512 FFT-288

Datapath 0.19 0.24 0.15
Memories 0.0 0.27 0.21
Sequencer 0.02 0.07 0.05
Decoders 0.0 0 0.0
CCU 0.02 0.02 0.02

Total 0.23 0.60 0.43

Table 3: Energy comparison Mon-
tium/ARM926

Montium ARM926 Ratio
Algorithm [μJ] [μJ]

FIR-5 0.243 − −
FFT-112 0.357 9 25
FFT-176 0.616 16 26
FFT-256 0.707 14 20
FFT-288 1.001 23 23
FFT-512 1.563 30 19
FFT-1920 5.054 168 33

of off-core communications. These figures are as expected
algorithm dependent. Therefore we chose in this table three
well-known algorithms in the streaming DSP application do-
main: a 1024p FFT, a 200 tap FIR filter, and a part of a
Turbo decoder (SISO algorithm [9]). The results show that
for these algorithms 80-99% of the memory references are
local (within a tile).

4.3 Partial Dynamic Reconfiguration
One of the advantages of a multi-core SoC organization

is that each individual core can be reconfigured while the
other cores are operational. In the Montium the configura-
tion memory is organized as a RAM memory. This means
that to reconfigure the Montium, not the entire configu-
ration memory needs to be rewritten, but only the parts
that are changed. Furthermore, because the Montium has
a coarse-grained reconfigurable architecture, the configura-
tion memory is relatively small. The Montium has a config-
uration size of only 2.6 Kbytes. Because the configuration

Table 4: Internal and external memory references
per execution of an algorithm

Number of memory references
Algorithm Internal External Ratio

1024p FFT 51200 4096 12.5
200 tap FIR 405 2 202.5
SISO alg. (N softbits) 18*N 3*N 6
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Table 5: Reconfiguration of algorithms on the Mon-
tium

Algorithm Change Size # cycles

1024p FFT Scaling factors ≤150 bits ≤ 10
to iFFT Twiddle factors 16384 bits 512

200 tap FIR Filter coefficients ≤3200 bits ≤80

memory can be accessed as a RAM memory the system al-
lows for dynamic partial reconfiguration. Table 5 gives some
examples of reconfigurations.

5. CONCLUSIONS
In this paper we address the design issues of a reconfig-

urable multi-core SoC platform for streaming DSP applica-
tions. Streaming DSP applications express computation as a
data flow graph with streams of data items (the edges) flow-
ing between computation kernels (the nodes). Typical exam-
ples of streaming DSP applications are: wireless baseband
processing, multi-media processing, medical image process-
ing and sensor processing. These application domains re-
quire flexible and energy-efficient architectures. This can
be realized with a multi-core architecture, in which cores
are interconnected by a NoC. Energy-efficiency is realized
with locality of reference and adaptivity (dynamic reconfig-
uration). To keep the design manageable we take a holistic
view and we apply deterministic principles, for example we
have a NoC that supports guaranteed throughput. Further,
we presented a heterogeneous reconfigurable multi-core SoC
architecture, called Annabelle, for streaming DSP applica-
tions. We show how locality of reference and partial recon-
figuration works out in this architecture.

6. ACKNOWLEDGEMENTS
This work has been partly supported by the Sixth Euro-

pean Framework Programme as part of the 4S project under
project number IST 001908.5.

The Software described in this document is furnished un-
der a license from Synopsys International Limited. Synop-
sys and the Synopsys product names described herein are
trademarks of Synopsys, Inc.

7. REFERENCES
[1] A. Abnous. Low-Power Domain-Specific Processors for

Digital Signal Processing. PhD thesis, University of
California Berkeley, Berkeley, CA, USA, 2001.

[2] V. Baumgarte, G. Ehlers, F. May, A. Nückel,
M. Vorbach, and M. Weinhardt. PACT XPP – A
self-reconfigurable data processing architecture. The
Journal of Supercomputing, 26(2):167–184, 2003.

[3] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, and
A. Das. Stream processors: Progammability and
efficiency. Queue, 2(1):52–62, 2004.

[4] European Telecommunication Standard Institute
(ETSI). Broadband Radio Access Networks (BRAN);
HIPERLAN Type 2; Physical (PHY) layer, ETSI TS
101 475 v1.2.2 edition, February 2001.

[5] Y. Guo, G. J. M. Smit, and P. M. Heysters. Template
generation and selection algorithms. In W. Badaway
and Y. Ismail, editors, Proceedings of International
Workshop on System-on-Chip for Real-Time
Applications, pages 2–5, Los Alamitos, California,
June 2003. IEEE Computer Society.

[6] I. Held and B. Vandewiele. AVISPA-CH embedded
communications signal processor for multistandard
digital television, March 29-30 2006.

[7] P. M. Heysters. Coarse-Grained Reconfigurable
Processors - flexibility meets efficiency. PhD thesis,
University of Twente, September 2004.

[8] P. M. Heysters and G. J. M. Smit. Mapping of dsp
algorithms on the montium architecture. In IPDPS
’03: Proceedings of the 17th International Symposium
on Parallel and Distributed Processing, page 180.2,
Washington, DC, USA, 2003. IEEE Computer Society.

[9] P. M. Heysters, L. T. Smit, G. J. M. Smit, and
P. J. M. Havinga. Max-log-map mapping on an fpfa.
In Proceedings of the 2005 International Conference
on Engineering of Reconfigurable Systems and
Algorithms (ERSA’02), pages 90–96, Las Vegas, NV,
USA, June 2002. CSREA Press.

[10] M. L. Pinedo. Planning and Scheduling in
Manufacturing and Services. Springer Series in
Operations Research and Financial Engineering.
Springer, 2005.

[11] G. K. Rauwerda, P. M. Heysters, and G. J. M. Smit.
Towards software defined radios using coarse-grained
reconfigurable hardware. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 16(1):3–13,
January 2008.

[12] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen,
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