4,406 research outputs found

    Quo Oxygen Sensor: Linear and Non-Linear Filtering Approaches to Noise Reduction

    Get PDF
    A system for measurement of oxygen consumption (V02) and determination of respiratory quotient (RQ: RQ = VO2/VCO2) is currently being developed by a joint project between Novametrix Inc. (Wallingford CT) and the University of Utah Department of BioEngineering. The system may prove to be highly useful on \u27extended duration space flight to monitor the metabolic rate of astronauts. The system employs a novel oxygen partial pressure sensor based on oxygen luminescence quenching technology for real-time measurement of respiratory oxygen concentration. This paper addresses the sensors\u27s signal vs. noise properties. The signal to noise (SIN) ratio of the sensor has been found to degrade progressively with increasing oxygen partial pressure (pO2) with the degradation appearing to become problematic at oxygen partial pressures above approximately 60%. In order to improve the (high pO2) SIN ratio of the sensor, a number of signal processing techniques were investigated. These techniques were selected based on a qualitative assessment of the sensor\u27s unique signal processing requirements and the effectiveness of the techniques was quantitatively characterized for comparison purposes. The techniques included linear as well as non-linear filtering strategies. The linear filtering strategies investigated consisted of two classes of notch filters while the more disparate non-linear filters consisted of classes of polynomial (Voltera series) filters, median and median-related filters, order statistic filters, morphological filters and weighted majority with minimum range filters. Each of the filters investigated were optimized using actual sensor data to improve sensor SIN ratio performance while maintaining adequate sensor dynamics. A number of candidate filters with varying degrees of computational complexity and noise suppression effectiveness are proposed for the sensor. Future studies will evaluate the performance of these filters within the framework of candidate oxygen consumption algorithms

    Gray-level Texture Characterization Based on a New Adaptive

    Get PDF
    In this paper, we propose a new nonlinear exponential adaptive two-dimensional (2-D) filter for texture characterization. The filter coefficients are updated with the Least Mean Square (LMS) algorithm. The proposed nonlinear model is used for texture characterization with a 2-D Auto-Regressive (AR) adaptive model. The main advantage of the new nonlinear exponential adaptive 2-D filter is the reduced number of coefficients used to characterize the nonlinear parametric models of images regarding the 2-D second-order Volterra model. Whatever the degree of the non-linearity, the problem results in the same number of coefficients as in the linear case. The characterization efficiency of the proposed exponential model is compared to the one provided by both 2-D linear and Volterra filters and the cooccurrence matrix method. The comparison is based on two criteria usually used to evaluate the features discriminating ability and the class quantification. Extensive experiments proved that the exponential model coefficients give better results in texture discrimination than several other parametric features even in a noisy context

    Gray-level Texture Characterization Based on a New Adaptive Nonlinear Auto-Regressive Filter

    Get PDF
    In this paper, we propose a new nonlinear exponential adaptive two-dimensional (2-D) filter for texture characterization. The filter coefficients are updated with the Least Mean Square (LMS) algorithm. The proposed nonlinear model is used for texture characterization with a 2-D Auto-Regressive (AR) adaptive model. The main advantage of the new nonlinear exponential adaptive 2-D filter is the reduced number of coefficients used to characterize the nonlinear parametric models of images regarding the 2-D second-order Volterra model. Whatever the degree of the non-linearity, the problem results in the same number of coefficients as in the linear case. The characterization efficiency of the proposed exponential model is compared to the one provided by both 2-D linear and Volterra filters and the cooccurrence matrix method. The comparison is based on two criteria usually used to evaluate the features discriminating ability and the class quantification. Extensive experiments proved that the exponential model coefficients give better results in texture discrimination than several other parametric features even in a noisy context

    Multichannel Speech Enhancement

    Get PDF

    General Adaptive Neighborhood Image Processing. Part II: Practical Applications Issues

    Get PDF
    23 pagesInternational audienceThe so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyzing criterion, such transformations perform a more significant spatial analysis, taking intrinsically into account the local radiometric, morphological or geometrical characteristics of the image. Moreover they are consistent with the physical and/or physiological settings of the image to be processed, using general linear image processing frameworks. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting morphological operators perform a really spatiallyadaptive image processing and notably, in several important and practical cases, are connected, which is a great advantage compared to the usual ones that fail to this property. Several GANIP-based results are here exposed and discussed in image filtering, image segmentation, and image enhancement. In order to evaluate the proposed approach, a comparative study is as far as possible proposed between the adaptive and usual morphological operators. Moreover, the interests to work with the Logarithmic Image Processing framework and with the 'contrast' criterion are shown through practical application examples
    corecore