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Abstract. The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in
a two parts paper dealing respectively with its theoretical and practical aspects.
The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building
of new image processing transformations using context-dependent analysis. With the help of a specified analyzing
criterion, such transformations perform a more significant spatial analysis, taking intrinsically into account the
local radiometric, morphological or geometrical characteristics of the image. Moreover they are consistent with
the physical and/or physiological settings of the image to be processed, using general linear image processing
frameworks.
In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology
(MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to
the local contextual details of the studied image. The resulting morphological operators perform a really spatially-
adaptive image processing and notably, in several important and practical cases, are connected, which is a great
advantage compared to the usual ones that fail to this property.
Several GANIP-based results are here exposed and discussed in image filtering, image segmentation, and image
enhancement. In order to evaluate the proposed approach, a comparative study is as far as possible proposed
between the adaptive and usual morphological operators. Moreover, the interests to work with the Logarithmic
Image Processing framework and with the ’contrast’ criterion are shown through practical application examples.

Keywords: General Adaptive Neighborhoods, Image Processing Frameworks, Intrinsic Spatially-Adaptive Anal-
ysis, Mathematical Morphology, Nonlinear Image Representation
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Abbreviations

AN : Adaptive Neighborhood

ANIP : Adaptive Neighborhood Image Processing

ASE : Adaptive Structuring Element

ASF : Alternating Sequential Filter

CLIP : Classical Linear Image Processing

IP : Image Processing

GAN : General Adaptive Neighborhood

GANIP : General Adaptive Neighborhood Image Processing

GANMM : General Adaptive Neighborhood Mathematical Morphology

GLIP : General Linear Image Processing

LIP : Logarithmic Image Processing

LRIP : Log-Ratio Image Processing

MHIP : Multiplicative Homomorphic Image Processing

MM : Mathematical Morphology

SE : Structuring Element

This paper deals with intensity images, that is to say image mappings defined on a spatial
support D in the Euclidean space R

2 and valued into a gray tone range, which is a positive real
numbers interval.
The first occurrence of a specific and/or important term will appear in italics.
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1. Introduction

The Adaptive Neighborhood (AN) paradigm allows the building of new image processing trans-
formations using context-dependent analysis. Such transforms are no longer spatially invariant,
but vary over the whole image with ANs as adaptive operational windows, taking intrinsically
into account the local image features. This AN concept is largely extended [20], using well-
defined mathematical concepts, to that of General Adaptive Neighborhood (GAN) in two main
ways.Firstly, an analyzing criterion is added within the definition of the ANs in order to consider
the radiometric, morphological or geometrical characteristics of the image, allowing a more
significant spatial analysis. Secondly general linear image processing (GLIP) frameworks are
introduced in the GAN approach, using concepts of abstract linear algebra, so as to develop
operators that are consistent with the physical and/or physiological settings of the image to be
processed. The so-called General Adaptive Neighborhood Image Processing (GANIP) approach
is more particularly studied [20] in the context of Mathematical Morphology (MM). The struc-
turing elements, required for MM, are substituted by GAN-based structuring elements, fitting
to the local contextual details of the studied image. The resulting transformations perform
a really spatially-adaptive image processing, in an intrinsic manner, that is to say without a
priori knowledge of the image structures. Moreover, in several important and practical cases,
the GANIP-based morphological operators are connected, which is an overwhelming advantage
compared to the usual ones which fail to this property. The theoretical aspects of the General
Adaptive Neighborhood Image Processing (GANIP) approach are presented in [20].
In this paper, GANIP-based practical application examples, and more particularly in the context
of MM, are successively exposed in image filtering, image segmentation, and image enhancement.
In order to evaluate the proposed approach, a comparative study is as far as possible proposed
between the adaptive and usual morphological operators. The results achieved from GAN-
based morphological operators take into account specified and appropriate general adaptive
neighborhood sets.

2. Image Filtering

Most of the time, image filtering is a necessary preliminary step in image pre-processing, such as
denoising, restoration, pre-segmentation, enhancement, sharpening, brightness correction, . . .
[31]. GANIP-based filtering [19] allows such transformations to be defined. More particularly,
Section 2 addresses image filtering in the respective noise-free and noisy conditions, highlighting
the generalized aspect of the GANIP approach. Thereafter, Sections 3. and 4. show respectively
the advantages of the GAN-based morphological filters in image pre-segmentation and image
enhancement.

2.1. Noise-free image filtering

An illustration of GANIP-based filtering using adaptive opening-closings (Eq. 53 in [20]) is
exposed in Figure 1 on a part of the ’Moon’ image. The process is performed within the CLIP,
MHIP, LRIP and LIP frameworks (Subsection 2.4 in [20]) selected for the space of criterion
mappings, denoted respectively CCLIP , CMHIP , CLRIP and CLIP . These spaces will be shortly
named criterion spaces in the following. The homogeneity tolerance m7, used as parameter in
the ASEs (Paragraph 4.3.1 in [20]), is valued within CCLIP from a positive real value m. In order
to generalize this parameter to any GLIP framework, the value of the homogeneity tolerance,
denoted m7, is obtained from m ∈ R

+ added up to the real value corresponding to the neutral
element 07 of the considered framework:

m7 = 07 +m (1)
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However, the value m ∈ R
+ should be chosen such as 07 +m belongs to the positive intensity

value range E +7 (Tab.I in [20]).
In this way, the homogeneity tolerance given in the CLIP, MHIP, LRIP or LIP framework is
respectively valued as:

CCLIP : m = 0 +m (2)

CMHIP : m� = 1 +m (3)

CLRIP : m♦ =
M

2
+m (4)

CLIP : m△ = 0 +m (5)

Two positive real values are considered, in Figure 1, for the homogeneity tolerance: m = 1 and
m = 20. From this point, the equivalent corresponding values within the spaces CCLIP , CMHIP ,
CLRIP and CLIP of criterion mappings, are inferred from Equations (2)-(5).
Concerning the second parameter of the ASEs, the analyzing criterion is the ’luminance’.

a. original f

b. OCf
1(f) in CCLIP c. OCf

1�
(f) in CMHIP d. OCf

1♦
(f) in CLRIP e. OCf

1△
(f) in CLIP

f. OCf
20(f) in CCLIP g. OCf

20�
(f) in CMHIP h. OCf

20♦
(f) in CLRIP i. OCf

20△
(f) in CLIP

Figure 1. GANIP-based filtering using adaptive opening-closings COf
m on a part of the ’Moon’ [a] image f . The

processing is illustrated within the CLIP (first column except image [a]), MHIP (second column), LRIP (third
column) and LIP (fourth column) frameworks selected for the space of criterion mappings. Two distinct values
(in their respective framework) of the homogeneity tolerance, m = 1 (second line) and m = 20 (third line), are
exposed to point out the effects induced by this intensity-based parameter.

The filtering process performs a smoothing all the more strong so the value of the parameter
m increases. The original ’Moon’ image f (Figure 1.a) is already damaged for m = 1 (Figure
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1.c) within the criterion space CMHIP , whose IP framework, MHIP, is consequently not adapted.
Next, CCLIP and CCLIP generate several drawbacks, removing (Figure 1.f,h) over quickly sig-
nificant details such as the ’crater’ located in the left-center of the original image. Finally, the
LIP framework appears to be the most appropriate to this filtering process, allowing the original
image to be smoothed without damaging its features (Figure 1.i).

2.2. Noisy image filtering

The adaptive filters using the elementary GANs work well if the processed images are noise free
or a bit corrupted (Fig. 1). In the presence of impulse noise, such as ’salt and pepper’ noise,
the GANs need to be combined to provide efficient filtering operators. Indeed, the elementary
GAN of a corrupted point by such a noise does not generally fit to the ’true’ region of which it
belongs, for any homogeneity tolerance m7.
Consequently, a specific kind of GANs, the Combined General Adaptive Neighborhoods (C-GANs)
denoted Zf

m7
(.), are introduced to enable images corrupted by such a noise to be restored. They

are built by combination (with the set union) of the W-GANs {V f
m7

(y)}y∈D using the luminance

criterion. Explicitly, the C-GANs are defined as following:

Definition 1 (Combined General Adaptive Neighborhoods).
∀(m7, f, x) ∈ E

+7 × I ×D

Zf
m7

(x) =











⋃

y∈B1(x)

{V f
m7

(y)} if A(V f
m7

(x)) ≤ π ∗ q2

V f
m7

(x) otherwise
(6)

where B1(x) refers to the disk of radius 1 centered to x, and A(X) to the area of X, and q to a
real number.

The value of the parameter q has been visually tuned to 0.6. A specific study should be lead
so as to find an automatic way of picking this parameter (probably linked to the percentage
of damaged points in the image). These C-GANs allow to detect the ’true’ neighborhood of a
corrupted point x, with the help of the area of its W-GAN V f

m7
(x).

Remark 2. It is obviously possible to introduce other combined GANs relating to the specific
kind of noise to be removed.

Several operators, based on these C-GANs, could be introduced. Figure 2 illustrates a restoration
process using median filtering [31]. When performing median filtering, the output value of each
image point to be processed is determined by the median value of all points in a selected neigh-
borhood (isotropic centered disk, GAN, . . . ). The median value q of a neighboring population
(set of points in a neighborhood) is this value for which half of the population has smaller values
than q, and the other half has larger values than q. The classical median filter, denoted Medr,
using a disk of radius r and the adaptive filters using W-GANs (V -Med

g
20(.)) and C-GANs (Z-

Med
g
20(.)), with the luminance criterion and the parameter 20 as homogeneity tolerance in the

CLIP framework, are applied on the ’Lena’ image g, which is corrupted by a salt and pepper
noise.

The results show the necessity to combine the W-GANs to perform a significant filtering. In
addition, the median filter (using the C-GANs) supplies a better result than the usual median
filter (using an isotropic disk). Indeed, the edges are damaged with the classical approach (blur
occurs around the eyes and the hairs), contrary to the GANIP one.
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a. noise-free image f

b. noisy image g c. Med1(g)

d. V -Med
g
20(g) e. Z-Med

g
20(g)

Figure 2. Image restoration. Image [a] is corrupted with a 10% salt and pepper noise [b]. Median filtering is used
to filter the noisy image: usual filtered image [c] with a disk of radius 1 as operational window, adaptive median
filtered image [d] with V

g
20(.) GANs and adaptive filtered image [e] with Z

f
20(.). The most efficient denoising is

supplied by the C-GANs filter.
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The GANIP-based morphological filters are then used as preliminary processes generally required
in image segmentation.

3. Image Segmentation

The segmentation of an intensity image can be defined as its partition (in fact the partition of
the spatial support D) into different connected regions, each having certain properties. From a
mathematical point of view, the segmentation is well-defined as follow:
the segmentation [31] of an image f ∈ I is a partition of its definition domain D into n disjoint
nonempty subsets R1, . . . , Rn, called regions, such that the union of all subsets equals D:

(D = ∪n
i=1Ri) and (∀i 6= j Ri ∩Rj = ∅) (7)

In this paper, the segmentation process is based on a morphological transformation called
watershed [4] and a GANIP-based decomposition process [20].

3.1. Recalls on watershed

The watershed transformation is now well recognized as being a fundamental step in many pow-
erful morphological segmentation processes [5, 62]. It has been made computationally practical
thanks to a fast technique presented by Vincent and Soille [106]. Watershed analysis (Fig. 3)
subdivides the image, considered as a topographic surface, into low-gradient catchment basins
surrounded by high-gradient watersheds. A catchment basin consist of an homogeneous set
of points that are all connected, through a path, to the same minimun altitude point. The
watersheds are made up of connected points exhibiting local maxima in gradient magnitude; to
achieve a final segmentation, these points are typically absorbed into adjacent catchment basins.

Figure 3. Watershed segmentation: considering the image as a topographic surface, the flooding of its regional
minima, while preventing the merging of the waters coming from different sources, partitions the image into two
different sets: the catchment basins and the watersheds.

In order to produce a segmentation into meaningful regions, the input image is generally trans-
formed to output a so-called segmentation function, on which the watershed transformation
is applied. In practice, the gradient image is often used as segmentation function, since the
catchment basins should theoretically correspond to the homogeneous gray level regions of the
image, and the watersheds to the discontinuities of the image.

3.2. Usefulness of GANIP-based Filtering

Nevertheless, a direct computation of the watershed on the gradient image generally creates an
over-segmentation which is due to the presence of spurious minima. This problem is overcome
by a GANIP-based decomposition process to decrease the number of minima, and consequently
the number of segmented regions. Indeed, the GAN filters enable to smooth the image without
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damaging the transitions, thanks to their connectivity property [20].
In the following of this section, four examples will be exposed and illustrated.

3.3. Pyramidal Segmentation with Alternating Sequential Filters

The aim of this first application example (Fig. 4) is to produce a multiscale segmentation of the
’Lena’ image, based on a decomposition process using GAN-based and non-adaptive pyramidal
operators [93] whose definition is below-mentioned.

Definition 3 (Pyramid of Operators).
A pyramid of operators {ψλ}λ∈N from I into I, is a collection depending on a positive parameter
λ ∈ N, called the level, so that:

∀(λ, µ) ∈ N
2 λ ≥ µ ≥ 0 ∃ν ∈ N | ν ≥ µ⇒ ψνψµ = ψλ (8)

This pyramid of operators generates a pyramidal decomposition (Def. 4) of any image f ∈ I.

Definition 4 (Pyramidal Decomposition).
A pyramidal decomposition of an image f ∈ I consists in a collection {ψλ(f)}λ∈N of images
belonging to I, decomposed at different resolution levels λ ∈ N, using a ’pyramid of operators’
{ψλ}λ∈N.

In Figure 4, the considered pyramid of operators, applied on the original ’Lena’ image, is a family
of Alternating Sequential Filters (ASF), which satisfy the property (8). These operators then
generate a pyramidal decomposition, filtering the original image to avoid an over-segmentation
(Fig. 4.e.). Indeed, the original image is smoothed all the more strong so the ASF order increases.
In this way, the number of minima of the segmentation function, and consequently the number
of regions of the resulting segmentation, decreases.

At each pyramid level λ ∈ N, the process of the considered pyramidal segmentation (Fig. 4) is
achieved in three consecutive steps:

1. the original image f is morphologically filtered with an ASF of order λ,

2. the morphological gradient, denoted MG, is computed on the resulting filtered image,

3. finally, the watershed transformation, denoted Wat, is completed on this segmentation
function.

The operator denoted Seg designates the two last steps of this segmentation process, therefore
denoted Wat ◦MG, i.e. the morphological gradient followed by the watershed transformation.
In this application example, multiscale segmentation processes, using GAN-based and classical
ASFs, are compared. Note that ASFCOm,r (resp. ASFCOf

m,n (Eq. 64 in [20])) represents the
usual (resp. adaptive) alternating (closing-opening) sequential filter of order n using the disk of
radius r centered in x, denoted Br(x), as usual SE (resp. using the ASEs {Nf

m(x)}x∈D (Eq. 34
in [20]), computed with the ’luminance’ criterion in the CLIP framework). About the spatial
parameter r and the intensity-based parameter m, they are fixed to r = 1 for the disk radius
of usual SEs, and m = 5 for the homogeneity tolerance of adaptive SEs. For n, three filtering
orders are used both for GAN-based and usual ASFs: n = 4, 7, 10, in order to show different
levels of the pyramidal segmentation.
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a. original f b. ASFCO1,4(f) c. ASFCO1,7(f) d. ASFCO1,10(f)

e. Seg(f) f. Seg(ASFCO1,4(f)) g. Seg(ASFCO1,7(f)) h. Seg(ASFCO1,10(f, 0))

i. ASFCOf
5,4(f) j. ASFCOf

5,7(f) k. ASFCOf
5,10(f)

l. Seg(ASFCOf
5,4(f)) m. Seg(ASFCOf

5,7(f)) n. Seg(ASFCOf
5,10(f))

Figure 4. Pyramidal segmentation of the ’Lena’ [a] image. First, the original image is decomposed using classical
[b-d] and adaptive [i-k] alternating sequential filters. Secondly, the morphological gradient followed by the water-
shed transformation, denoted Seg, is computed on the decomposed images as segmentation functions, achieving
respectively the images [f-h] and [l-n], for the non-adaptive MM-based and GANMM-based approach. The original
image is decomposed so as to avoid an over-segmentation [e]. The GANIP approach provides a better segmentation
taking into account the local multiscale features of the original image.

Therefore, Figure 4 shows that the GANMM-based approach overcomes the non-adaptive MM-
based one. Indeed ’Lena’ is all the more distinguishing with the segmentation achieved by
the adaptive filters so the filtering order n increases, while it’s entirely impossible with the
classical corresponding approach. Thus, these results highlight the importance of connectivity
of the GANMM-based operators f 7→ ASFCOf

m,n(f) (Rem. 20 in [20]). It is an overwhelming
advantage, contrary to the corresponding non-adaptive ones f 7→ ASFCOm,n(f) that fail to this
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property. The ’Lena’ image is simplified in producing flat zones while preserving the contour in-
formation. Moreover, the level of the pyramid is intrinsically dependent on the local structures of
the image. Consequently, the GANIP-based operators perform a more significant decomposition
than the usual ones, taking into account the multiscale topological characteristics.

3.4. Hierarchical Pyramidal Segmentation with Adaptive Sequential Closings

This subsection introduces a multiscale segmentation illustrated on Figure 5, using a pyramid of
connected operators, applied on the ’Tools’ test image (Fig. 5.a). Such a pyramid of connected
operators generates a hierarchical pyramidal decomposition:

Definition 5 (Hierarchical Pyramidal Decomposition).
A hierarchical pyramidal decomposition of an image f ∈ I is a collection {ψλ(f)}λ∈N of images
belonging to I, decomposed at different resolution levels λ ∈ N, using a pyramid of connected
operators {ψλ}λ∈N.

The resulting hierarchical pyramidal segmentation is more relevant than a pyramidal segmenta-
tion (Subsection 3.3). Indeed, if the set of connected operators {ψλ} creates a pyramid satisfying
the property (8), then the flat zones of ψλ increase with the parameter λ [93]. It means that
the flat zones are merged. It enables the structures of image to be more suitably analyzed and
linked across levels of the pyramid.

In this example, the pyramid is generated with a set of GAN filters: the adaptive sequential
closings {Cf

m,p}p (Eq. 59 in [20]) using the adaptive SEs Nf
m(x) (Eq. 34 in [20]) computed

with the ’luminance’ criterion in the CLIP framework. These filters are connected and satisfy
the property (8), since it is a size distribution [20]. Consequently, the collection of adaptive
sequential closings {Cf

m,p}p defines a pyramid of connected operators, necessary to perform a
hierarchical pyramidal segmentation.

In this way, at each level p of the pyramid, the segmentation process is achieved in three
consecutive steps:

1. the original image is filtered with an adaptive sequential closing of order p,

2. the morphological gradient, denoted MG, is computed on the filtered image,

3. finally, the watershed transformation, denoted Wat, is completed on this segmentation
function.

The operator denoted Seg designates the two last steps of this segmentation process, therefore
denoted Wat ◦MG, i.e. the morphological gradient followed by the watershed transformation.

Concerning the parameter p of the GAN filters, three filtering orders have been used, p = 5, 15, 25,
in order to show different levels of the resulting hierarchical pyramid. About m, it has been
selected to the real value 4 by tuning these techniques so that they produce resulting segmented
images that are visually the most satisfying.
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a. original f b. C
f
4,5(f) c. C

f
4,15(f) d. C

f
4,25(f)

e. Seg(f) f. Seg(C
f
4,5(f)) g. Seg(C

f
4,15(f)) h. Seg(C

f
4,25(f))

Figure 5. Hierarchical pyramidal segmentation of the ’Tools’ [a] image. First, the original image is decomposed
using adaptive sequential closing filters [b-d]. Secondly, the morphological gradient followed by the watershed
transformation, denoted Seg, is computed on the decomposed images as segmentation functions, achieving the
images [f-h]. The original image is decomposed so as to avoid an over-segmentation [e]. The process Seg(C

f
4,n(f))

provides a well-accepted segmentation for n ≥ 15 [g,h].

The resulting hierarchical segmentation supplies nested partitions of the original image inducing

a graph representation [93, 103]. Thereafter, the process C
f
4,n supplies the expected result for

n = 15 or n > 15. Indeed, this operator is saturated from this value : ∀n > 15 C
f
4,n = C

f
4,15.

This characteristic should be studied, promising relevant topological properties.

Moreover, the resulting hierarchical segmentation, where flat zones are nested, is achieved
without any operators by reconstruction [16] that are generally used in classical methods.

Remark 6. The filters by reconstruction require geodesic transformations to define connected
operators, which are traditionally used for this kind of multiscale segmentation [86, 93, 103].
So, the connectivity characteristic of the GANMM-based operators [20] is an overwhelming
advantage: all operators built by composition or combination with the supremum and the infimum
of the adaptive dilation and erosion, thus define connected operators.

3.5. Segmentation with Alternating Filters

A real example in image segmentation is here presented (Fig. 6) on a metallurgic grain boundary
image. The goal of the application is to detect the boundaries of the grains. It will allow metal-
lurgists to get a quantitative analysis of the grains. Several methods, addressing this problem,
have ever been exposed. For example, Chazallon and Pinoli [11] proposed an efficient approach
based on the residues of alternating sequential filters. Nevertheless, the method still presents few
drawbacks for complex images: its inability to remove some artifacts and to preserve disconnected
grain boundaries. On the whole, the published methods need most of the time advanced processes
and metallographically relevant and tractable a priori knowledges, requiring expert intervention.
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In this application example, a simple segmentation method resulting from two steps is pro-
posed:

1. a decomposition process, through non-adaptative MM-based and GANMM-based closing-
openings, is applied on the original image,

2. the watershed transformation is then computed on these segmentation functions.

This approach does not require a gradient operator. Indeed, seeing that the crest lines of the
original image fit with the narrow grain boundaries, the watershed transformation, denoted
Wat, is directly computed on filtered images (processed with closing-openings) in order to avoid
an over-segmentation seen in Figure 6.e. The segmentation function is then the filtered image,
without using any gradient operators.

A comparison between the GANMM-based approach [20] and the corresponding MM-based one
is performed through the filtering process.
Note that COr (resp. COf

m) represents the usual closing-opening (resp. the adaptive closing-
opening (Eq. 54 in [20])) using the disk of radius r centered in x, denoted Br(x), as usual SE
(resp. using the ASEs {Nf

m(x)}x∈D (Eq. 34 in [20]), computed with the ’luminance’ criterion in
the CLIP framework).
For each approach, three parameters have been fixed: r = 1, 2, 3 for the radius of the usual SEs,
and m = 10, 20, 30 for the homogeneity tolerance of the adaptive SEs.
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a. original f b. CO1(f) c. CO2(f) d. CO3(f)

e. Wat(f) f. Wat(CO1(f)) g. Wat(CO2(f)) h. Wat(CO3(f))

i. COf
10(f) j. COf

20(f) k. COf
30(f)

l. Wat(COf
10(f)) m. Wat(COf

20(f)) n. Wat(COf
30(f))

Figure 6. Segmentation of a real metallurgic grain boundaries [a] image. Pyramidal segmentation of the original [a]
image. First, the original image is decomposed using classical [b-d] and adaptive [i-k] closing-openings. Secondly,
the watershed transformation, denoted Wat, is computed on the decomposed images as segmentation functions,
achieving respectively the images [f-h] and [l-n], for the non-adaptive MM-based and GANIP approach. The
original image is decomposed to avoid an over-segmentation [e]. The adaptive approach provides a well-accepted
segmentation reached for the homogeneity tolerance m = 20.

The adaptive GANMM-based approach overcomes the usual non-adaptive MM-based one, achiev-
ing a much better segmentation of the original image, with the visually expected result reached
for m = 20. Indeed, these connected GAN filters do not damage the grain boundaries and well
smooth the image inside the grains, contrary to those usual non-adaptive ones.



14 J. D. & J.C. P.

Remark 7. Therefore, the minima of the adaptively filtered image provide significant markers,
necessary to the watershed process.

3.6. Segmentation in Uneven Illumination Conditions

The main aim of this subsection is to practically put in evidence the physical irrelevance of the
CLIP framework. It is illustrated on the previous metallurgic image where the segmentation in
uneven illumination conditions is not robustly achieved within the CLIP framework. Precisely,
image segmentation in presence of a locally small change in scene illumination is robustly ad-
dressed by the LIP approach, contrary to the CLIP one (Fig. 8).
To simulate the small change in scene illumination, the original image f has been modified in
three steps, to produce f̌ (Fig. 7):

1. the original image f is first inverted: f = M − f , where M is the supremum of the range
where images are digitized and stored,

2. f is then lightened gradually from left to right using a multiplicative lightening function Ilt
[27] defined by:

∀(x, y) ∈ D Ilt(x, y) =

(

1 − 0.8

(

1 − cos

(

π

2
×

x

256

)))

(9)

where (x, y) denotes the point coordinates.
So, g = Ilt × f ,

3. the image g is finally inverted to produce the resulting image: f̌ = g = M − g.

The transformation g = Ilt × f is in accordance with the multiplicative reflectance and trans-
mittance image formation models [72, 44].
In practice, the original image and the non-uniformly lightened image are exposed in Figure 7.

a. original f b. non-uniformly lightened f̌

Figure 7. Simulation of a locally small change in scene illumination: original [a] image, and a non-uniformly
lightened [b] image obtained by (8).

The segmentation (the same process applied in the precedent subsection 3.5) of the image f̌ is
compared from ASEs (Eq. 34 in [20]) built in the CLIP and LIP frameworks [20] selected for
the space of criterion mappings, denoted respectively CCLIP and CLIP .

The resulting segmentation generated within the LIP framework is far better. Indeed, the process
fails to detect boundaries in the overlighted areas of the lightened image within the CLIP

framework. The process Wat(COf̌
23△

(f̌)) in CLIP supplies, from a visual inspection, the ex-

pected segmentation. This experimental results highlight the LIP approach since it is physically
connected to the human visual system and the perceptual notions of contrast [42, 73].
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a. non-uniformly lightened f̌ b. Wat(f̌)

CLIP approach LIP approach

c. COf̌
10(f̌) f. Wat(COf̌

10(f̌)) i. COf̌
10△

(f̌) l. Wat(COf̌
10△

(f̌))

d. COf̌
20(f̌) g. Wat(COf̌

20(f̌)) j. COf̌
20△

(f̌) m. Wat(COf̌
20△

(f̌))

e. COf̌
23(f̌) h. Wat(COf̌

23(f̌)) k. COf̌
23△

(f̌) n. Wat(COf̌
23△

(f̌))

Figure 8. GANIP-based segmentation of a real metallurgic grain boundaries [a] image in uneven illumination
conditions. The original image is first decomposed with adaptive closing-openings performed in CCLIP [c-e] and
CLIP [i-k] frameworks selected for the space of criterion mappings. Finally, the watershed transform, denoted Wat

is completed on this segmentation function, achieving the images [f-h] and [l-n], for the respective CLIP and LIP

approaches. The LIP technique robustly achieves the segmentation, in the sense that the process Wat(COf̌
23(f̌))

generates almost the same partition as Wat(COf
20(f)) in standard illumination conditions (Fig. 6).

4. Image Enhancement

Image enhancement is the improvement of image quality, wanted e.g. for visual inspection or for
machine analysis. Physiological experiments have shown that very small changes in luminance
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are recognized by the human visual system in regions of continuous gray tones, and not at all
seen in regions of some discontinuities [100]. Therefore, a design goal for image enhancement is
often to smooth images in more uniform regions, but to preserve edges. On the other hand, it
has also been shown that somehow degraded images with enhancement of certain features, e.g.
edges, can simplify image interpretation both for a human observer and for machine recognition
[100]. A second design goal, therefore, is image sharpening [31].

In this paper, the considered image enhancement process is edge sharpening: the approach is
similar with unsharp masking [77] type enhancement where a highpass portion is added to the
original image. The contrast enhancement process is realized through the toggle contrast [96],
whose operator κr is defined as following:

Definition 8 (Toggle Contrast).
∀(f, x, r) ∈ I ×D × R

+

κr(f)(x) =

{

Dr(f)(x) if Dr(f)(x) − f(x) < f(x) − Er(f)(x)

Er(f)(x) otherwise
(10)

where Dr and Er denote respectively the classical dilation and erosion (Eq. 29 and 30 in [20]),
using a disk of radius r as SE.

At each point x, the output value of this filter toggles between the value of the dilation of f by
B (i.e., the maximum of f inside the operational window B centered) at x and the value of its
erosion by B (i.e., the minimum of f within the same window) according to which is closer to
the input value f(x).

Figure 9 illustrates a one-dimensional example of the toggle contrast operator.

point line

value

Dr(f)

Er(f)

f

κr(f)

•
Br

Figure 9. One-dimensional representation of the toggle contrast operator. For a point x of f , the value of the
resulting filter κr(f)(x) toggles between the value Dr(f)(x) and the value Er(f)(x), using the centered disk Br

of radius r.

This non-adaptive toggle contrast is extended through the GANIP approach with adaptive
dilation and erosion (Eq. 35-38 in [20]). Using a ’contrast’ criterion within the definition of ASEs,
which is naturally adapted to that edge sharpening transformation, it leads to the adaptive toggle
contrast (Def. 10). This transformation requires a ’contrast’ definition introduced in the digital
setting of the LIP framework [45] (see [70, 71] for the continuous setting):
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Definition 9 (LIP Contrast).
The LIP contrast at a point x ∈ D of an image f ∈ I, denoted C(f)(x), is defined with the help
of its neighbors included in a disk V (x) of radius 1, centered in x:

C(f)(x) =
1

#V (x)
×△

+△
∑

y∈V (x)

(max(f(x), f(y)) −△ min(f(x), f(y))) (11)

where

+△
∑

and # denote the sum in the LIP sense, and the cardinal symbol, respectively.

Consequently, the so-called adaptive toggle contrast is the transformation κ
C(f)
m△ , where C(f) and

m△ denotes respectively the ’contrast’ criterion mapping and the homogeneity tolerance within
the LIP framework (required for the GANs definition):

Definition 10 (Adaptive Toggle Contrast).
∀(f, x,m△) ∈ ICLIP ×D ×Em△

κC(f)
m△

(f)(x) =

{

D
C(f)
m△ (f)(x) if D

C(f)
m△ (f)(x) − f(x) < f(x) − E

C(f)
m△ (f)(x)

E
C(f)
m△ (f)(x) otherwise

(12)

where D
C(f)
m and E

C(f)
m (Eq. 35-38 in [20]) denote respectively the adaptive dilation and adaptive

erosion, using ASEs computed on the criterion mapping C(f) with the homogeneity tolerance
m△ (Eq. 5).

Figure 10 exposes two illustration examples of image enhancement using respectively classical
and adaptive toggle contrast. The process is both applied on the ’Lena’ image, and on a real
image acquired on the retina of a human eye.
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a. original f b. LIP contrast C(f) k. original g l. LIP contrast C(g)

c. κ1(f) g. κ
C(f)
1△

(f) m. κ1(g) q. κ
C(g)
4△

(g)

d. κ5(f) h. κ
C(f)
5△

(f) n. κ5(g) r. κ
C(g)
10△

(g)

e. κ10(f) i. κ
C(f)
20△

(f) o. κ10(g) s. κ
C(g)
30△

(g)

f. κ20(f) j. κ
C(f)
50△

(f) p. κ20(g) t. κ
C(g)
50△

(g)

Figure 10. Two illustration examples of image enhancement using the toggle contrast process. The operator is
both applied on ’Lena’ [a] image, and on a real [k] image acquired on the retina of a human eye. The enhancement
is achieved with the usual toggle contrast [c-f, m-p] and the GANIP-based toggle contrast [g-j, q-t] using the LIP
contrast criterion [b,l]. Using the usual toggle contrast, the edges are disconnected as soon as the filtering becomes
too strong. On the contrary, such structures are preserved and sharpened with the adaptive filters.
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This image enhancement example confirms that the GANIP-based operators are more effective
than the corresponding usual ones. Indeed, the adaptive toggle LIP contrast performs a locally
accurate image enhancement, taking into account the notion of contrast within spatial structures
of the image. Consequently, only the transitions are sharpened while preserving the homogeneous
regions. On the contrary, the usual toggle contrast enhances the image in a uniform way. Thus,
the spatial zones around transitions are rapidly damaged as soon as the filtering becomes too
strong.

5. Conclusion and Prospects

This Part II aimed to present some practical application examples of the General Adaptive
Neighborhood Image Processing (GANIP) approach, whose theoretical aspects have been ex-
posed in [20]. Several fields of image processing have been investigated, such as image filtering,
image segmentation and image enhancement. In this paper, the GANIP approach has been more
particularly used in the context of Mathematical Morphology (MM). In several and practical
cases, it supplies connected operators, which is of great morphological and topological impor-
tance. The resulting adaptive morphological operators perform a significant spatially-adaptive
processing, taking into account the local characteristics of the image, thanks to the analyzing
criterion. For instance, the notion of contrast allows efficient image enhancement (Section 4).
In addition, the use of general linear image processing frameworks enables a connection with
the physical and/or physiological image settings. For example, the LIP framework has been
necessary in uneven illumination conditions (Section 3.6).

Finally, the General Adaptive Neighborhood Image Processing approach opens new pathways
that promise large prospects in several fields of image processing. The authors are interested in
putting into practice processes based on other analyzing criteria, such as curvature, thickness,
orientation, . . . Moreover, the application of topological concepts and tools, using the GAN
paradigm, should allow image features to be more significantly analyzed.
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Department of Mathematics, University of Saint-Etienne, Technical Report 6 (this report is a revised and
expanded synthesis of the theoretical basis and several fundamental applications of the LIP approach pub-
lished from 1984 to 1992. It has been reviewed by international referees and presented in December 1992 for
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