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ABSTRACT 

A system for measurement of oxygen consumption (V02) and determination of respiratory quotient (RQ: RQ = 

V02Nc02) is currently being developed by a joint project between Novametrix Inc. (Wallingford CT) and the 
University of Utah Department of BioEngineering. The system may prove to be highly useful on 'extended duration 
space flight to monitor the metabolic rate of astronauts. The system employs a novel oxygen partial pressure sensor 
based on oxygen luminescence quenching technology for real-time measurement of respiratory oxygen 
concentration. This paper addresses the sensors's signal vs. noise properties. The signal to noise (SIN) ratio of the 
sensor has been found to degrade progressively with increasing oxygen partial pressure (p02) with the degradation 
appearing to become problematic at oxygen partial pressures above approximately 60%. In order to improve the 
(high p02) SIN ratio of the sensor, a number of signal processing techniques were investigated. These techniques 
were selected based on a qualitative assessment of the sensor's unique signal processing requirements and the 
effectiveness of the techniques was quantitatively characterized for comparison purposes. The techniques included 
linear as well as non-linear filtering strategies. The linear filtering strategies investigated consisted of two classes of 
notch filters while the more disparate non-linear filters consisted of classes of polynomial (Voltera series) filters, 
median and median-related filters, order statistic filters, morphological filters and weighted majority with minimum 
range filters. Each of the filters investigated were optimized using actual sensor data to improve sensor SIN ratio 
performance while maintaining adequate sensor dynamics. A number of candidate filters with varying degrees of 
computational complexity and noise suppression effectiveness are proposed for the sensor. Future studies will 
evaluate the performance of these filters within the framework of candidate oxygen consumption algorithms. 

Key Words: Signal Processing, Filter, Indirect Calorimetry, Voltera Series, Median Filter, Order Statistic Filter, 
Morphological Filter, Weighted Majority with Minimum Range Filter. 

Introduction 

A sensor for measurement of respiratory gas based 
on oxygen's unique ability to quench the 
phosphorescent decay of a lumiphore was previously 
described l

. This paper addresses the sensors's signal 
vs. noise properties, specifically, a number of signal 
processing techniques aimed at increasing the signal 
to noise (SIN) ratio of the sensor are investigated. 

The QUO oxygen sensor's SIN ratio degrades 
progressively with increasing oxygen partial pressure 
of the gas mixture being measured. This degradation 
is due an increase in the peak-to-peak noise 
magnitude seen at higher p02. Table 1. shows the 
magnitude of the noise for steady state input 
increasing with p02. The exact point at which this 
SIN ratio degradation becomes problematic for any 
given oxygen consumption algorithm is a matter of 

subjectivity relative to its ultimate effect on the 
algorithm's accuracy. However, the author states 

without proof that it is intuitively obvious that 
reduced SIN ratios will lead to reduced oxygen 
consumption algorithm accuracy regardless of the 
algorithm strategy employed. Thus, general 
improvements in SIN ratio performance are sought in 
this paper independent of, and preliminary to, oxygen 
consumption algorithm development and validation. 

Table 1. Degradation of SIN ratio with increasing p02. 

20% 
40% 
60% 
80% 
100% 

Peak to Peak Noise Value 
-0.2 cmH20 
-0.3 cmH20 
- 0.5 cmH20 
-0.9 cmH20 
- 1.5 cmH20 



The Signal processing strategies employed in this 
paper, must be optimized for a number of subjective 
design goals including: 

• Maintenance of adequate system dynamics 
• Sufficient suppression of noise at high p02. 
• Acceptable degradation of signal at low p02. 
• Acceptable computational complexity. 

This subjectivity implies an infinite number of 
solutions given the continuum of possible weights for 
each subjective measure above. Therefore, only one 
weight for each subjective measure of performance is 
used producing only one optimal solution for each 
signal processing strategy employed. 

Preliminaries 

Linear filtering techniques exploit discemable 
spectral differences in signals to attenuate one signal 
relative to another. The type of attenuation sought 
(e.g. bandpass, highpass, lowpass filter) is contingent 
upon design goals. In order to determine what type of 
attenuation or filtering might be beneficial in this 
case, a power spectral density plot of both signals as 
well as noise propagating through the sensor are 
required. 

Spectral Characterizations via Mathematical Model 

The exact characteristics of the sensor, although 
previously modeled2, cannot be known with certainty. 
Therefore a mathematical representation of the sensor 
to assess noise and signal propagation through the 
sensor might lead to inaccuracies resulting from 
inaccuracies in the model itself. Thus, a purely 
mathematical approach to signal/noise spectral 
characterization was not taken here. 

Spectral Characterizations via Actual Sensor 

The approach to signal/noise spectral characterization 
taken consisted of using the actual oxygen sensor, 
thus eliminating any possible modeling errors. Two 
input signals to the sensor were used. First, a DC 
input (unchanging p02) was selected such that the 
output variations in the sensor were assumed to be 
heavily influenced by noise propagation. Second, a 
rapidly changing binary input sequence (flat 
spectrum pseudo-random binary sequence) was 
selected such that the output of the sensor was 
proportionately more heavily influenced by signal 
propagation. The output of the sensor, given each of 
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these input signals was then used to generate power 
spectral density plots which could be considered 
reflective of \) the noise and 2) the signal. These 
plots are shown in Figure 4. of Appendix A. 
Spectral Ambiguity 

The plots in Figure 4. clearly indicate a large amount 
of spectral overlap between the sensor and the noise. 
Further, the overlap occurs at frequencies which 
characteristic of typical power spectra of human 
breathing. This spectral overlap significantly 
complicates the filtering task by calling into question 
the possible effectiveness of the spectral 
discrimination properties of linear filters as a solution 
methodology. Therefore, this paper explores not only 
linear filters, but non-linear filters as well. 

Methods 

LINEAR SIGNAL PROCESSING 

Linear signal processing methods were utilized even 
though a clear spectral overlap exists between the 
sensor signal and the noise signal. The linear signal 
processing strategy used was a notch filter optimized 
to the noise power spectrum peak at approximately 2 
Hz. A notch filter, also known as a bandstop filter, is 
a filter which contains deep notches in its frequency 
response characteristic which tends to null out or 
attenuate a certain frequency (or frequency bandi. 

The notch filter can be described in digital signal 
processing terms as consisting of a complex 
conjugate pair of zeros on or near the z-domain unit 
circle which creates a null at a frequency 000 as 
follows: 

Z1.2 = e +/·j",o (\ ) 

Thus, the system function for this sensor would be 
defined as: 

(2) 

This type of system function, typically referred to as 
a finite-duration impulse response (FIR) system 
function, produces a notch filter which has a 
relatively broad bandwidth. The implications of this 
large bandwidth are that frequencies near but not at 
the frequency which we seek to attenuate may 
themselves become attenuated more than the desired 
amount. To reduce the attenuation bandwidth, a pair 



of complex conjugate poles may be placed near the 
unit circle at the same null frequency 0)0 as follows: 

+1 . 
Pl.2 = re -]CDo; r < 1 (3) 

These poles introduce a resonance at the null 
frequency and reduce the bandwidth of the notch 
filter. Introduction of the poles into the system 
function gives: 

(4) 

Which is equivalent to: 

H(z) = 1lo*(1-2*cosroo*z· + Z2)/ (1-2r*cosroo*z· + rz2) (5) 

This type of system function is typically referred to 
as an infinite-duration impulse response (IIR) system 
function. The adjustable parameters in this IIR notch 
filter are the null frequency roo, a weighting 
coefficient an, and the distance from the center of the 
unit circle to the pole r. The system function in 
Equation (5) is a first order realization of a notch 
filter. Increasing the order of the notch filter can 
result in a filter with a still narrower bandwidth, this 
however, at the cost of increased computational 
complexity. Higher order notch filters can be realized 
by adding pairs of complex conjugate zeros and poles 
to the system function in Equation (5). 

A number of design methods are available for IIR 
notch filters to determine the values of roo, an, and r, 
or equivalently stated to find the location of the poles 
and zeros. These include Chebyshev Type 1 
(equiripple behavoir in passband and monotonic 
characteristic in stopband), Chebyshev Type 2 
(monotonic in passband and equiripple in stopband) 
and Butterworth (magnitude response that is 
maximally flat in passband and monotonic overall). 
All of these design techniques lend themselves to 
particular signal processing tasks/requirements, 
however, this paper will abandon these commonly 
used techniques in favor of a design method based on 
the minimization of a cost function. This algorithm 
(described later in this paper) will seek out the 
polelzero locations of an optimal filter given a 
particular data set. A variant of this cost function 
algorithm will be used in the design of all of the 
filters in this paper. 

NON-LINEAR SIGNAL PROCESSING 

An exploration of non-linear filtering strategies 
offered the possibility of the realization of filters 
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which perform better than linear filters for this 
particular application. A study of possible non-linear 
techniques which might prove effective led to the 
following five general classes of non-linear filters for 
investigation: 
• Polynomial (Voltera) Filters 
• Median and Median-Related Filters 
• Order Statistic Filters 
• Morphological Filters 
• Weighted Majority with Minimum Range Filters 

Polynomial (Voltera) Filters 

General Filtering Strategy 

The approach taken to develop a Voltera series filter 
for the QUO sensor consisted of two steps. First, a 
non-linear system identification was performed using 
a Voltera series representation of the sensor. Second, 
input was be generated for both the system 
identification model as well as for the actual sensor. 
The output of the system identification model and the 
output of the sensor were compared. The difference 
consisting of noise and modeling error residuals. An 
adaptive second order Voltera kernel was then found 
by using a gradient descent search algorithm. This 
adaptively determined kernel has the function of 
transforming actual sensor output to idealized sensor 
output as represented by the model (Figure 1). The 
adaptive Voltera filter kernel was "locked" after the 
completion of a sufficiently long adaptation process. 
The "locked" kernel was then used as the kernel of a 
Voltera Series filter to reduce noise in the output of 
the sensor. 

X(n) 

Y(n) - --· 

Figure 1. Adaptive Filtering Strategy Employed. 

Description of Voltera Series Expansions 

Recent work by V.J. Mathews4 provides a basis for 
the description of non-linear systems and filters using 



polynomial signal processing techniques based on 
Voltera series expansions. 

A Voltera series expansion description of a non
linear system with memory can be expressed by the 
following equation: 

;(t)=hot- L h(~«t-rl}irl+ L L ~rl,$(t-$(t-r2):idiz2+ .. 

L .... Lhfoi. .. ,,);(t-rl) .. l(t-~ .. dp+.... (6) 

The multidimensional functions hp( t I ... tp) are 
called Voltera kernels and completely characterize 
the system much as an impulse response signal h(t) 
characterizes a linear time-invariant system in the 
following convolution integral: 

yet) = .c h(r)x(t - r)dr (7) 

The lower limits of integration in equation (6) are set 
to zero, thus limiting our discussion to causal signals 
or signals in which the output can only respond to 
changes in the input which proceed it in time. The 
multidimensional convolution integrals in equation 
(5) can be written in more compact form as: 

hp[x(I)} = C .. .. [hp(T1 , .... rp)x(t - rl) .. (x(t - rp)drl .. d ; (8) 

Thus, the Voltera series expansion can be written 
more compactly as: 

y (t) = ho + f hp [x (t)] (9) 
p = 1 

Where the parameter P is called the order or the 
degree of the Voltera series expansion. 

Equations (8) and (9) can be modified to describe 
discrete, time-invariant, causal systems with memory 
as follows: 

"" 
y(n)=ho+Lhp[x(n)] (10) 

p=1 

"" "" 
hp[x(n)] = ~> L,hp(ml, .... ,mp)x(n - ml) .. .x(n - mp) (11) 

ml =O mp:r.O 

where ho is an offset term, and ht(mt) is the impulse 
response of a discrete-time L TI filter and hp( m t .. mp) 
is a pth order impulse response which characterizes 
the non-linear behavior of the system. The upper 
limit of the summation is the amount of memory the 
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system is assumed to have, which is our case is 
limited to 7 cycles which is enough memory to 
encapsulate the significant components of the 
sensor's impulse response2

• 

The input-output relationship of the oxygen sensor is 
assumed to be second order as increasing the order 
beyond this will lead to filter realizations which are 
computationally unwieldy. Thus, given a second 
order model, the sensor's input-output relationship 
can described as follows: 

Where yen) is the system output, x(n) is the system 
input and I::(n) is additive white noise, statistically 
independent of the input signal. 

Voltera Kernel Determination 

The Voltera kernel representation of the system, and 
the adaptive Voltera kernel representation of the 
noise (and modeling error residuals) are determined 
using two different methods. The Voltera kernel 
representation of the system is determined in "batch" 
mode using a least squares parameter estimation 
technique which is based on a minimization of the 
following cost function: 

1 AI 
J(M) = -2: (d(k) - X'(k)H)2 

M k= 1 
(13) 

Where J(M) is the cost function which is minimized, 
M represents the number of samples taken, d 
represents the desired solution, X' represents the 
transpose of the input vector, and H represents the 
Voltera kernel. This cost function minimization 
problem can be shown4 to reduce to the following 
easily utilized relations: 

Ii opt 
• -I • 

=R.aPdx (14) 

Where H opt represents the optimal V oltera kernel 

given k;}. which represents the inverse of the 

autocorrelation matrix of the data and p <Ix which 

represents the cross correlation vector of den) as 
follows: 

Rxx = ~ ~ X(k)X'(k) 
M B (15) 

Pdx = ~ I.d(k)X(k) (16) 
M k=1 



The adaptive Voltera kernel for removal of noise is 
determined differently. An adaptive LMS approach is 
taken in which the idealized kernel is iteratively 
approached using a gradient descent search method. 
This algorithm is shown below: 

(17) 

Where a represents a small step size and e(n) 
represents the error vector determined as follows: 

e(n) = d(n) - XI '(n)H I (n) (18) 

given an a small enough so as not to cause instability 
in the solution and large enough to ensure timely 
convergence, this algorithm will eventually approach 
the idealized solution. 

Voltera Filter Hardware System 

The input-output data from the sensor used in the 
linear filter determination in which a binary input 
was employed cannot be used for characterization of 
non-linear systems of order two and higher. In order 
to accurately characterize a second order non
linearity in a system, three input states must be useds. 
Thus, in order to determine the Voltera kernel of a 
second order system, hardware capable of generating 
the appropriate 3-state (trinary) input sequence, and 
measuring the output of the sensor was constructed. 
This hardware system consisted of four sub-systems 
(Figure 2). The first sub-system being an IBM 
compatible computer running a custom software 
program developed in the Borland C++ Builder 
development environment. This sub-system served to 
both generate trinary excitation signals as well as to 

r'~~~l'~/ "I r············································! 
: I'" I : .~ 1 I ~~ 0 / // I~ , ~ 
; _ // ; L~.~~~~~.i.~.~~~~,el ~~~~.~~~~~.i.~..! 
; IBM Compatible Computer 1 :+ 

(:::::·~~fI~~~j::··~i !·····::~:·· ; ·:····:::~~:, ·i.: 
1 r ....... ~// ;""-1 
: ~ . .: . GuSuppty.2 : 

1 COSMO Respiratory Monitor; !Solenoid Valve and Gas Supply 1 
L9.~g~9.:~~.~.:~~.~~ .~:.~.~:~ .. j :. .............................................. : 
Figure 2. System identification Hardware 
collect data. The excitation signals were transmitted 
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to the solenoid valve drive circuit sub-system where 
the signals were amplified. The amplified excitation 
signals were then fed to the solenoid valve and gas 
supply sub-system which served to divert gas flows 
based on the state of the excitation signal. Finally, 
the oxygen sensor , fed its output back to the IBM 
personal computer where data was collected for off
line analysis of sensor dynamics. A more detailed 
description of this system is contained in Reference 
2. 

Voltera Filter Software System 

The software system used was a modified version of 
the software system used for linear system 
identification2

• This software performs four primary 
tasks as follows: 

• The synthesis of appropriate excitation signals 
• Collection of sensor output data 
• Output of random trinary sequences 
• Output of data to external text file 

The software is described in more detail in reference 
2 and will not, in the interest of brevity, be covered 
here. 

Median and Median-Related Filters 

J.W. Tukel is credited with first describing the 
median filter in the 1970's. Since then the non-linear 
median filter has been a commonly used filtering 
methodology in signal processing. There are a 
number of variants on the median filter7

, three of 
which were investigated for this application. These 
include: 

• The Median Filter 
• The (r,s)-Fold Trimmed Median Filter 
• The Modified Trimmed Median Filter 

All three strategies have at their heart, the 
replacement of the current signal value with a median 
value based on a preceding window of signal values. 
For example, given the following set (5 element 
window) of signal values: 

X={54893} 

The median value takes the center value of ordering 
(e.g. MED( x) = {3 4 5 8 9} = 5). The median filter 
so named here uses this strategy and allows for 
variable length windows which provides some 



flexibility as to the filter form. The (r,s)-Fold 
Trimmed Median Filter also uses this strategy but 
removes the r smallest and s largest values from 
consideration before performing the median 
operation. Finally, the modified trimmed median 
filter selects values from the window which are 
within a predefined value q (± q) of the median, sums 
those values, and divides by the number of summed 
values to obtain the output. The (r,s)-fold trimmed 
median filter allows for adjustment of r, sand 
window length to obtain an optimal filter and the 
modified trimmed median filter allows adjustment of 
q and window length. Thus, both the (r,s)-fold 
trimmed and modified median filters provide for 
more variation in filter morphology than the median 
filter. 

Order Statistic Filters 

This class of non-linear filters uses linear 
combinations of order statistics. The order statistic 
filter used here is referred to as the L-Filter7

. The L
Filter performs an ordering operation on a window of 
data (as in median filtering) and weights each of the 
ordered elements according to a pre-defined 
coefficient vector. For instance, given the 5-element 
signal set: 

X={54893} 

Further, given our coefficient vector 

= {OA 0.100.1 OA} 

We have the following: 

L{5 4 8 9 3} = 0.4*3 + 0.1*4 + 0*5 + 0.1*8 + 0.4*9 
L{54893}=6.0 

Thus, the L-Filter can be thought of as a combination 
of a discrete linear FIR filter and a median filter. 
Adjustable filter parameters include the window 
length and the values of the coefficient vector§§. 

Morphological Filters 

The mathematic roots of morphological filters can be 
traced to the work of Matheron8 and Serra9

. These 

§§ The following restriction is generally placed on the 
coefficient vector: 

; =WindowLengrh 

LA(i)=1 (19) 
1=1 
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non-linear filters derive their function from the 
morphologic transformation of signals by sets. 
Starting with a mathematic description of the general 
morphology of a signal, these filters can remove 
specific undesirable shapes or contours from the 
signal, ideally transforming the signal into a general 
contour more characteristic of the true or expected 
Morphological filters use two basic operations called 
signal. This signal processing strategy can be used to 
great effect to remove specific undesirable features 
from the signal. 

Dilation and Erosion. 

These operations are related and can be considered 
conceptually as inverses of each other. In dilation, a 
moving vector (also known as a structuring element) 
of predefined weights (e.g. w(-I) = 1, w(O) = 2, 
W (1) = I, W (2) = 0) is added to the current position 
in the signal set, and the maximum of these values is 
taken. This maximum then replaces the current value 
of the signal set (Y) as follows: 

Signal Set Y = {O 4 2 I 8 2 1 4} 

Y Dilated by w: {- 6 8 9 10 9 - - } 

Conversely, erosion takes the minimum value of the 
signal set Y when each element is added to the vector 
of weights w. Thus, for erosion we obtain the 
following: 

Signal Set Y = {O 4 2 I 8 2 I 4} 

Y Eroded by w: {- I 2 2 1 2 - - } 

A few final concepts need to be presented before 
proceeding to a global examination of the algorithm. 
First, being the concept of a symmetric structuring 
element set. The symmetric structuring set is 
obtained by rotating the original structuring set by 
180 degrees in the plane: 

WS={-X:XEW} (20) 

Thus, given the structuring element set walready 
defined, we have: 

w(-I) = I, w(O) = 2, w(l) = I, w(2) = 0 
w S(-2) = 0, wS(_I) = 1, WS(O) = 2, wS(I) = 1 

A sequential operation involving the erosion of a 
signal set by a structuring element and subsequent 
dilation of the eroded signal set by the symmetric 



structuring set is known as opening. Conversely, a 
sequential operation involving the dilation of a signal 
set by a structuring element and subsequent erosion 
of the dilated signal set by the symmetric structuring 
set is known as closing. An opening operation can be 
conceptually understood as a rolling ball 
transformation7 in which the contour followed by the 
rolling ball traces out the output of the filter (Figure 
3). This serves to remove positive moving impulsive 
signal changes while broadening negative impulses. 
The closing operation can be pictured as the inverse, 
namely removing negative moving impulsive signal 
changes while broadening positive impulses. 

The opening and closing operations can be 
sequentially implemented on a signal to remove 
particular noise shapes (as defined in the structuring 
element). This paper uses sequential opening and 
closing operations, and adjusts the structuring 
element values and lengths to minimize a cost 
function. 

Figure 3. Rolling ball transformation (ad~ted 
from Astola and Kuosmanen ) 
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Weighted Majority with Minimum Range Filters 

The weighted majority with minimum range class of 
filters7 were developed with the goal of preserving 
high frequency signal components while attenuating 
noise in regions where the underlying signal is not 
rapidly changing. The algorithm has at its root the 
trimming of undesirable data. The trimming is 
performed to select the best concentration of the data. 
The algorithm uses a moving window of data 
selected from, and in synchrony with the progression 
of the signal data (X). These data are then arranged 
using a sorting algorithm from smallest to largest 
value and placed in a second vector (Y) . An integer 
value m is selected such that m is less than the 
window length. The values of Y (i+m-I) - Y (i) are 
determined sequentially within the window. The 
value of Y (i*) which minimizes this sequence is then 
chosen as a starting point in which Y(i*), Y(i*+I), 
... Y (i*+m) are multiplied by a weighting coefficient 
vector A §§ which itself contains m values. The 
weighed values are then summed and divided by m to 
find their arithmetic mean. This algorithm is shown 
numerically below for m = 3 and A = {0.6 0.3 0.1}: 

X 
Y 

Y(i+m-I) - Y(i) 

1234567 
{256342} 
{1223456} 
{11222 } 

So indices 1 and 2 minimize the range. Therefore 
these indices are equivalently used as a starting point 
for multiplication by the weighting vector A : 

= (0.6* 1 + 0.3*2 + 0.1 *2) + (0.6*2 + 0.3*2 + 0.2*3) 
2 

= 1.9 

In order to optimize this filter to a particular signal 
data set, the values of the vector A must be chosen 
as well as the window length and the value of m. 

GENERAL OPTIMIZATION TECHNIQUE 

A number of different filtering methodologies are 
investigated in this paper. However, all filtering 
strategies are optimized to the same data set using the 
same optimization strategy. The optimization consists 
of changing filter parameters and determining a 
minimum mean squared error (MMSE) between an 
ideal signal and the actual signal. A balancing act or 
engineering tradeoff exists between preserving step 
response and attenuating the noise. Thus, two signals 



were used for optimization. Optimizing for one signal 
attenuates noise, optimizing for the other signal 
preserves the dynamics of the sensor. A cost function 
based on these MMSE values and the number of filter 
related processor operations was developed for 
optimization. The coefficients of the cost function 
can be adjusted so emphasize improved step 
performance, improved noise attenuation and reduced 
algorithm complexity. In this way, the results of all of 
the filters can be quantitatively compared relative to 
their affect on sensor dynamics and relative to the 
degree of computational complexity of the given 
filter algorithm Further, the results of the filtering 
operations can be quantitatively compared using a 
SIN ratio index. All optimizations were performed in 
Matlab Version 6.0 (with the signal processing and 
system identification toolboxes installed). 

Results 

The results of optimizing each of the filters presented 
here can be seen in Figures 5 and 6 in Appendix B. 
These results clearly show that, after filter 
optimization, some filters outperform other filters 
specific to the data set investigated. The first plot in 
Figures 5 and 6 contain the (unfiltered) noise and step 
response as 

Table 3. Subjective Ranking of Most Promising 
Filters 

Rank Filter Cost Function 
Value 

Noise Step 

151 Notch Filter 0.243 1.65 
2M L-Filter 0.18 1.73 
3rd Morphological Filter 0.88 5.12 
-- Median Filter 1.50 0.87 
-- (r,s)-Trimmed Median 0.38 1.99 

Filter 
-- Modified Trimmed 0.60 1.04 

Median Filter 

-- Weighted Median 3.06 1.84 
Filter 

-- Weighted Majority 1.73 2.87 
with Minimum Range 

Filter 
-- Voltera Filter 0.69 4.61 

measured in the sensor. The plots which follow show 
the resulting noise and step response of the data after 
having been passed through the optimized filter 
indicated in the title of the plots. Finally, the last plot 

-

8 

in Figures 5 and 6 provides a quantitative comparison 
of the MMSE values of noise and step response error. 
Table 2. lists the optimized filter parameters for each 
of the filters investigated. Table 3. Provides a 
SUbjective ranking of the most promising filtering 
strategies for the QUO sensor with the linear notch 
filter being the best candidate filter and the non-linear 
L-Filter being the second most promising filter. Table 
4. lists the optimized filter coefficients. 

Table 4. Optimized Filter Coefficients 

Filter O\ltimized Filter Coefficients 

Notch Filter a_o - 0.4; r - 0.94; w_o - 4.72 

Morphological Filter Closing_1 - 0.3; 
Closing_ 2 = 0.1; 
Closing_3 = 0.1; 
Closing_ 4 = 0.1; 
Closing_S = 0.3; 
OpeninILI = 0.4; 
Opening _2 = 0.4; 
Opening _3 = 0.4; 
Opening_4 = 0.4; 
O\lening 5 = 0.4; 

L-Filter a_I - 0.03 ; a_2 - 0.03; 
a_3 = 0.06; a_4 = 0.1; 

a_S = 0.2; a_6 = 0.2667; 
a 7 =0.3 

Median Filter W=7 
(r,s)-Trimmed Median R = I; s = I ; W = 8; 

Filter 
Modified Trimmed N-21;q-1.2 

Median Filter 
Weighted Median Filter a_I - 0.01 ; a_2 - 0.01 ; 

a_3 = 0.02; a_ 4 = 0.6; 
a_S = 3.4; a_6 = 0.6; 

a 7 =0.02 
Weighted Majority with A_I = 0.8; a_2 = 0.06; 
Minimum Range Filter a 3 = 0.06; a 4 = 0.06 

Voltera Filter V _CCI) - 9.82; V _C(2) -4.29; 
V _C(3) = 3.14; V _C(4) = 1.01; 
V _CCS) = -3.26;V _C(6) = -6.61 ; 
V _C(7) = -7.30;V _C(8) = 2.74; 
V _C(9) = -1.63;V _CCIO) = -1.52; 
V _C(ll} = -1.l2;V _C(12) = -0.26; 
V_C(13) = 1.62; V_CCI4) = 3.17; 
V _CCIS) = 3.40; V_CCI6) = 4.43 ; 
Input Vector: 
X(n) = [ x(n) x(n-I) x(n-2) x(n-3) 

x(n-4) x(n-S) x(n-6) x(n-7) 
x"2(n) x"2(n-l) x"2(n-2) 
x"2(n-3) x"2(n-4) 
x"2(n-S) x"2(n-6) 
x"2(n-7)1 

Adaptability of Results Given Sensor Production 
Variability 

The QUO sensor remains in a stage of development 
in which improvements or changes can be made to 



the sensor. These future changes have the potential of 
affecting the results presented here. For this reason, 
the tools used for tuning and qualitative/quantitative 
assessment of filter performance have been 
developed to allow for relative ease of use with 
regards to any potential future filter retuning efforts. 

Scaling of Filter Output to Expected Noise 
Magnitude 

Table 1. indicates that noise propagating though the 
sensor becomes more pronounced at higher p02 
levels. Thus, the need for filtering becomes more 
acute as the level of p02 rises. Figure 7 in Appendix 
C shows typical noise peak-to-peak values as plotted 
relative to p02 level. An exponential curve was fit to 
this data and provides a good fit (R2 

= 0.99). This 
curve will provide a basis for the weighting of 
filtered output given specific p02 input levels. This 
weighting is independent of the filtering 
methodology ultimately selected as it is simply takes 
the form of an exponential scaling operation on the 
filtered output. Further, the weighting ofthe filter can 
be adjusted by a coefficient term (k) to tune the 
overall filter strength: 

Noise oc e2.564*p0 2 (21) 

Thus, relative filter strength (S) should be scaled as 
proportional to this same expression: 

(22) 

An adjustment coefficient (k) should be added to 
allow for global filter weighting as follows: 

S oc k*e2.564*p0
2 (for all S < I) (23) 

Finally, the filter strength term operates on the filter 
output as follows to adjust the filter output for both 
the exponential noise vs. p02 curve, as well as for 
global filter weighting (Olinal = Final Output Value): 

Ofinal = ( (Unfiltered Output)*(I-S) + (Filter Output)*(S» /2 

Additional modifications of filter output may be 
indicated specific to the filter chosen. For example 
the Notch filter magnitude may need to be adjusted 
relative to filtering strength to accommodate the 
reduced step response magnitude resulting from the 
filtering operation (Figure 6.) 
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Validation of Filtering Technique 

The candidate filters will, in the future, be assessed 
for efficacy in candidate V02 algorithms. Adjustment 
of the global filtering weighting coefficient (k) will 
allow for different strengths of promising filters to be 
used. All filters will ultimately be judged by their 
performance with respect to V02 algorithm accuracy. 
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Figure 4. Power Spectral Density of Signal and Noise (Before and After application of256 point Hamming 
Window) 
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Figure 5. Raw Signal (Noise and Step) on first row. Filters investigated shown in Rows 
2- 4. Tabulated cost functions in Row 5. 
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Figure 6. Raw Signal (Noise and Step) on first row. Filters investigated shown in Rows 2-5. 
Tabulated cost functions in Row 6. 
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Figure 7. Noise vs. p02 curve with exponential regression fit. 
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