305 research outputs found

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Perfect reconstruction QMF banks for two-dimensional applications

    Get PDF
    A theory is outlined whereby it is possible to design a M x N channel two-dimensional quadrature mirror filter bank which has perfect reconstruction property. Such a property ensures freedom from aliasing, amplitude distortion, and phase distortion. The method is based on a simple property of certain transfer matrices, namely the losslessness property

    Subband vector quantization of images using hexagonal filter banks

    Get PDF
    Journal ArticleAbstract Results of psychophysical experiments on human vision conducted in the last three decades indicate that the eye performs a multichannel decomposition of the incident images. This paper presents a subband vector quantization algorithm that employs hexagonal filter banks. The hexagonal filter bank provides an image decomposition similar to what the eye is believed to do. Consequently, the image coder is able to make use of the properties of the human visual system and produce compressed images of high quality at low bit rates. We present a systematic approach for optimal allocation of available bits among the subbands and also for the selection of the size of the vectors in each of the subbands

    A generalized, parametric PR-QMF/wavelet transform design approach for multiresolution signal decomposition

    Get PDF
    This dissertation aims to emphasize the interrelations and the linkages of the theories of discrete-time filter banks and wavelet transforms. It is shown that the Binomial-QMF banks are identical to the interscale coefficients or filters of the compactly supported orthonormal wavelet transform bases proposed by Daubechies. A generalized, parametric, smooth 2-band PR-QMF design approach based on Bernstein polynomial approximation is developed. It is found that the most regular compact support orthonormal wavelet filters, coiflet filters are only the special cases of the proposed filter bank design technique. A new objective performance measure called Non-aliasing Energy Ratio(NER) is developed. Its merits are proven with the comparative performance studies of the well known orthonormal signal decomposition techniques. This dissertation also addresses the optimal 2-band PR-QMF design problem. The variables of practical significance in image processing and coding are included in the optimization problem. The upper performance bounds of 2-band PR-QMF and their corresponding filter coefficients are derived. It is objectively shown that there are superior filter bank solutions available over the standard block transform, DCT. It is expected that the theoretical contributions of this dissertation will find its applications particularly in Visual Signal Processing and Coding

    Application of multirate digital signal processing to image compression

    Full text link
    With the increasing emphasis on digital communication and digital processing of images and video, image compression is drawing considerable interest as a means of reducing computer storage and communication channels bandwidth requirements. This thesis presents a method for the compression of grayscale images which is based on the multirate digital signal processing system. The input image spectrum is decomposed into octave wide subbands by critically resampling and filtering the image using separable FIR digital filters. These filters are chosen to satisfy the perfect reconstruction requirement. Simulation results on rectangularly sampled images (including a text image) are presented. Then, the algorithm is applied to the hexagonally resampled images and the results show a slight increase in the compression efficiency. Comparing the results against the standard (JPEG), indicate that this method does not have the blocking effect of JPEG and it preserves the edges even in the presence of high noise level

    Adapted generalized lifting schemes for scalable lossless image coding

    No full text
    International audienceStill image coding occasionally uses linear predictive coding together with multi-resolution decompositions, as may be found in several papers. Those related approaches do not take into account all the information available at the decoder in the prediction stage. In this paper, we introduce an adapted generalized lifting scheme in which the predictor is built upon two filters, leading to taking advantage of all this available information. With this structure included in a multi-resolution decomposition framework, we study two kinds of adaptation based on least squares estimation, according to different assumptions, which are either a global or a local second order stationarity of the image. The efficiency in lossless coding of these decompositions is shown on synthetic images and their performances are compared with those of well-known codecs (S+P, JPEG-LS, JPEG2000, CALIC) on actual images. Four images' families are distinguished: natural, MRI medical, satellite and textures associated with fingerprints. On natural and medical images, the performances of our codecs do not exceed those of classical codecs. Now for satellite images and textures, they present a slightly noticeable (about 0.05 to 0.08 bpp) coding gain compared to the others that permit a progressive coding in resolution, but with a greater coding time

    Swarm Intelligence in Wavelet Based Video Coding

    Get PDF

    Low-complexity wavelet filter design for image compression

    Get PDF
    Image compression algorithms based on the wavelet transform are an increasingly attractive and flexible alternative to other algorithms based on block orthogonal transforms. While the design of orthogonal wavelet filters has been studied in significant depth, the design of nonorthogonal wavelet filters, such as linear-phase (LP) filters, has not yet reached that point. Of particular interest are wavelet transforms with low complexity at the encoder. In this article, we present known and new parameterizations of the two families of LP perfect reconstruction (PR) filters. The first family is that of all PR LP filters with finite impulse response (FIR), with equal complexity at the encoder and decoder. The second family is one of LP PR filters, which are FIR at the encoder and infinite impulse response (IIR) at the decoder, i.e., with controllable encoder complexity. These parameterizations are used to optimize the subband/wavelet transform coding gain, as defined for nonorthogonal wavelet transforms. Optimal LP wavelet filters are given for low levels of encoder complexity, as well as their corresponding integer approximations, to allow for applications limited to using integer arithmetic. These optimal LP filters yield larger coding gains than orthogonal filters with an equivalent complexity. The parameterizations described in this article can be used for the optimization of any other appropriate objective function
    • 

    corecore