20 research outputs found

    Medical image registration using unsupervised deep neural network: A scoping literature review

    Full text link
    In medicine, image registration is vital in image-guided interventions and other clinical applications. However, it is a difficult subject to be addressed which by the advent of machine learning, there have been considerable progress in algorithmic performance has recently been achieved for medical image registration in this area. The implementation of deep neural networks provides an opportunity for some medical applications such as conducting image registration in less time with high accuracy, playing a key role in countering tumors during the operation. The current study presents a comprehensive scoping review on the state-of-the-art literature of medical image registration studies based on unsupervised deep neural networks is conducted, encompassing all the related studies published in this field to this date. Here, we have tried to summarize the latest developments and applications of unsupervised deep learning-based registration methods in the medical field. Fundamental and main concepts, techniques, statistical analysis from different viewpoints, novelties, and future directions are elaborately discussed and conveyed in the current comprehensive scoping review. Besides, this review hopes to help those active readers, who are riveted by this field, achieve deep insight into this exciting field

    Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice

    Get PDF
    Artificial intelligence has become a ubiquitous term in radiology over the past several years, and much attention has been given to applications that aid radiologists in the detection of abnormalities and diagnosis of diseases. However, there are many potential applications related to radiologic image quality, safety, and workflow improvements that present equal, if not greater, value propositions to radiology practices, insurance companies, and hospital systems. This review focuses on six major categories for artificial intelligence applications: study selection and protocoling, image acquisition, worklist prioritization, study reporting, business applications, and resident education. All of these categories can substantially affect different aspects of radiology practices and workflows. Each of these categories has different value propositions in terms of whether they could be used to increase efficiency, improve patient safety, increase revenue, or save costs. Each application is covered in depth in the context of both current and future areas of work

    A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond

    Full text link
    Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration

    KNOWLEDGE FUSION IN ALGORITHMS FOR MEDICAL IMAGE ANALYSIS

    Get PDF
    Medical imaging is one of the primary modalities used for clinical diagnosis and treatment planning. Building up a reliable automatic system to assist clinicians read the enormous amount of images benefits the efficiency and accuracy in general clinical trail. Recently deep learning techniques have been widely applied on medical images, but for applications in real clinical scenario, the accuracy, robustness, interpretability of those algorithms requires further validation. In this dissertation, we introduce different strategies of knowledge fusion for improving current approaches in various tasks in medical image analysis. (i) To improve the robustness of segmentation algorithm, we propose to learn the shape prior for organ segmentation and apply it for automatic quality assessment. (ii) To detect pancreatic lesion with patient-level label only, we propose to extract shape and texture information from CT scans and combine them with a fusion network. (iii) In image registration, semantic information is important yet hard to obtain. We propose two methods for introducing semantic knowledge without the need of segmentation label. The first one designs a joint framework for registration synthesis and segmentation to share knowledge between different tasks. The second one introduces unsupervised semantic embedding to improve regular registration framework. (iv) To reduce the false positives in tumor detection task, we propose a hybrid feature engineering system extracting features of the tumor candidates from various perspectives and merging them in the decision stage

    Unsupervised image registration towards enhancing performance and explainability in cardiac and brain image analysis

    Get PDF
    Magnetic Resonance Imaging (MRI) typically recruits multiple sequences (defined here as “modalities”). As each modality is designed to offer different anatomical and functional clinical information, there are evident disparities in the imaging content across modalities. Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging, as for example before imaging biomarkers need to be derived and clinically evaluated across different MRI modalities, time phases and slices. Although commonly needed in real clinical scenarios, affine and non-rigid image registration is not extensively investigated using a single unsupervised model architecture. In our work, we present an unsupervised deep learning registration methodology that can accurately model affine and non-rigid transformations, simultaneously. Moreover, inverse-consistency is a fundamental inter-modality registration property that is not considered in deep learning registration algorithms. To address inverse consistency, our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent representations, and involves two factorised transformation networks (one per each encoder-decoder channel) and an inverse-consistency loss to learn topology-preserving anatomical transformations. Overall, our model (named “FIRE”) shows improved performances against the reference standard baseline method (i.e., Symmetric Normalization implemented using the ANTs toolbox) on multi-modality brain 2D and 3D MRI and intra-modality cardiac 4D MRI data experiments. We focus on explaining model-data components to enhance model explainability in medical image registration. On computational time experiments, we show that the FIRE model performs on a memory-saving mode, as it can inherently learn topology-preserving image registration directly in the training phase. We therefore demonstrate an efficient and versatile registration technique that can have merit in multi-modal image registrations in the clinical setting

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    ADVANCED MOTION MODELS FOR RIGID AND DEFORMABLE REGISTRATION IN IMAGE-GUIDED INTERVENTIONS

    Get PDF
    Image-guided surgery (IGS) has been a major area of interest in recent decades that continues to transform surgical interventions and enable safer, less invasive procedures. In the preoperative contexts, diagnostic imaging, including computed tomography (CT) and magnetic resonance (MR) imaging, offers a basis for surgical planning (e.g., definition of target, adjacent anatomy, and the surgical path or trajectory to the target). At the intraoperative stage, such preoperative images and the associated planning information are registered to intraoperative coordinates via a navigation system to enable visualization of (tracked) instrumentation relative to preoperative images. A major limitation to such an approach is that motions during surgery, either rigid motions of bones manipulated during orthopaedic surgery or brain soft-tissue deformation in neurosurgery, are not captured, diminishing the accuracy of navigation systems. This dissertation seeks to use intraoperative images (e.g., x-ray fluoroscopy and cone-beam CT) to provide more up-to-date anatomical context that properly reflects the state of the patient during interventions to improve the performance of IGS. Advanced motion models for inter-modality image registration are developed to improve the accuracy of both preoperative planning and intraoperative guidance for applications in orthopaedic pelvic trauma surgery and minimally invasive intracranial neurosurgery. Image registration algorithms are developed with increasing complexity of motion that can be accommodated (single-body rigid, multi-body rigid, and deformable) and increasing complexity of registration models (statistical models, physics-based models, and deep learning-based models). For orthopaedic pelvic trauma surgery, the dissertation includes work encompassing: (i) a series of statistical models to model shape and pose variations of one or more pelvic bones and an atlas of trajectory annotations; (ii) frameworks for automatic segmentation via registration of the statistical models to preoperative CT and planning of fixation trajectories and dislocation / fracture reduction; and (iii) 3D-2D guidance using intraoperative fluoroscopy. For intracranial neurosurgery, the dissertation includes three inter-modality deformable registrations using physic-based Demons and deep learning models for CT-guided and CBCT-guided procedures
    corecore