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Abstract

Medical imaging is one of the primary modalities used for clinical diagnosis and

treatment planning. Building up a reliable automatic system to assist clinicians

read the enormous amount of images benefits the efficiency and accuracy in general

clinical trail. Recently deep learning techniques have been widely applied on med-

ical images, but for applications in real clinical scenario, the accuracy, robustness,

interpretability of those algorithms requires further validation.

In this dissertation, we introduce different strategies of knowledge fusion for

improving current approaches in various tasks in medical image analysis. (i) To

improve the robustness of segmentation algorithm, we propose to learn the shape

prior for organ segmentation and apply it for automatic quality assessment. (ii) To

detect pancreatic lesion with patient-level label only, we propose to extract shape

and texture information from CT scans and combine them with a fusion network.

(iii) In image registration, semantic information is important yet hard to obtain.

We propose two methods for introducing semantic knowledge without the need

of segmentation label. The first one designs a joint framework for registration

synthesis and segmentation to share knowledge between different tasks. The

second one introduces unsupervised semantic embedding to improve regular
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registration framework. (iv) To reduce the false positives in tumor detection task,

we propose a hybrid feature engineering system extracting features of the tumor

candidates from various perspectives and merging them in the decision stage.
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Chapter 1

Introduction

With advanced medical imaging techniques, an enormous amount of medical

images has been generated every year. These medical images are crucial in lesion

detection, treatment planning and medical intervention to assist doctors making

clinical decisions. Missed or inaccurate diagnosis will lead to improper treatment,

which causes the patients debilitation or even death. However, precise analysis

of medical images requires years of experience from qualified radiologists, and it

is limited by the speed, fatigue, and time cost. Ideally, developing an automatic

system that can well read and understand the medical images surely improves the

accuracy and efficiency of the diagnosis.

Computer-aided detection and diagnosis (CAD) is the system that assists doc-

tors interpreting medical images. The goal of the system is to understand the

anatomical structure inside the medical images and highlight the suspicious area

for lesion detection as well as providing quantitative analysis of the lesion. So it is

usually equipped with machine learning and compute vision algorithm to achieve
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that goal. As a result, the performance of the system is limited by the algorithms.

Even for an expert system which has the same performance with experienced

radiologists, it is not clear whether the diagnosis quality can be improved after

using CAD [156]. There are also conditions that the usage of CAD causes drop of

the diagnosis accuracy [30] when the radiologists get misled by the CAD system.

To ensure the positive effect of CAD system, more robust and accurate algorithms

are always pursued.

In recent years, with the success application of deep learning in the natural

image domain, huge progresses have been made on various vision tasks, includ-

ing image classification[66, 121, 40], object detection [105, 82, 102, 103, 104, 16]

and semantic segmentation [84, 18]. Soon after that the researchers discover that

the ability of deep learning to learn representation can also be applied to med-

ical images. Then the success of deep learning models continues on tasks in

CAD, including organ segmentation[112, 54, 166], lesion detection[147, 170], image

registration[7, 155].

Despite the initial achievements, there remain challenges within medical im-

age analysis community. Firstly getting annotation on medical images requires

massive human efforts from experts, especially for accurate pixel-wise annotation,

which prevents researchers from training or evaluating models on large scale data.

Secondly, due to various image modalities, there usually is a domain gap when

applying a trained model to the data from other institutes. Even when the data

are from the same modality, the performance is not guaranteed because of the

different parameter settings when producing the medical images. As a result, the
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actual performance of the models in the real application scenario is hard to pre-

dict. On facing these challenges, considerable efforts have been made to develop

more robust models, including semi-supervised learning [85, 32, 71] and transfer

learning [133, 59, 28]. However, for most of the methods, the principle idea is

still similar with approaches that are designed for natural images. We argue that

medical images possess unique prior information which is not shared with natural

images and combining such knowledges into the AI system benefits the robustness

of algorithms [29].

1.1 Priors in Medical Images

Medical images contain several types of prior information which are not shared

with natural images.

Content Prior The objects inside a medical images is stable within a certain

body range. For example, the radiologists are expecting to find a pancreas, a liver

etc in every abdominal CT of a healthy patient. But in a natural image, there is no

guarantee whether a certain object, like a car will appear in this image or not.

Positional Prior When taking a medical images, the patient is usually required

to keep a straight pose until finish. For modalities like CT and MRI, which are able

to reflect the anatomical structure in 3D, the relative position between organs is

stable. As shown in [33], such prior information and can be utilized for improving

model robustness across datasets.

Shape Prior Firstly the shape of organs and tissues obeys a certain distribution,
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which is shared in human species. Although due to genetic variation, the size

and shape of organs change for each specific person, the variation still stays in a

range [106]. Secondly, 2D natural images are produced by projecting a 3D scene

from a certain view into a surface. The shape of an object will change according

to the view and it also causes ambiguity due to the information loss at projecting

step. However, there is no such ambiguity brought by view change in 3D medical

images. Even for 2D medical images, the images are also produced under a preset

view. [134, 152, 101] have proposed additional shape related module to guide

the training process, but how to model the complex shape variation and further

incorporate such shape prior constraints in the decision level of algorithms remains

an open question.

Intensity Prior Due to the basic principles of producing medical images [14],

the intensity value in each pixel of medical image corresponds to the physical

properties inside the body. Although the intensity value is related with parameter

setting during the imaging process, modality, usage of contrast media, the intensity

value still has a physical meaning which can be shared across all the hospitals and

institutes. For natural images, the appearance for an object is more arbitrary and is

affected by lighting, occlusion.

1.2 Outlines

In this dissertation we study how to improve robustness and efficiency by incorpo-

rating additional knowledge into the AI system in medical image analysis.
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1.2.1 Automatic Quality Assessment

We aim at building a quality assessment system for segmentation task. Quality

assessment module is used to monitor the output from the algorithm and tries to

give confidence and quality evaluation of the output. It is important in large-scale

data related applications to ensure the input and output of system have expected

quality and can save a lot of human efforts. It is usually hard for a learning

system to predict correctly on rare events that never occur in the training data.

Meanwhile, manual inspection of each case to locate the failures becomes infeasible

due to the trend of large data scale and limited human resource, especially for the

segmentation task, which requires pixel-level annotation first in order to evaluate.

In chapter 2 we propose an alarm system [76] that will set off alerts when the

segmentation result is possibly unsatisfactory, assuming no corresponding ground

truth mask is provided. One plausible solution is to project the segmentation

results into a low dimensional feature space; then learn classifiers/regressors

to predict their qualities. Motivated by this, we learn a feature space using the

shape information which is a strong prior shared among different datasets and

robust to the appearance variation of input data. The shape feature is captured

using a Variational Auto-Encoder [63] (VAE) network that trained with only the

ground truth masks. During testing, the segmentation results with bad shapes

shall not fit the shape prior well, resulting in large loss values. Thus, the VAE is

able to evaluate the quality of segmentation result on unseen data, without using

ground truth. Finally, we learn a regressor in the one-dimensional feature space

to predict the qualities of segmentation results. Our alarm system is evaluated
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on several recent state-of-art segmentation algorithms [91, 168, 19, 68] for 3D

medical segmentation tasks across three public datasets. Compared with other

standard quality assessment methods, our system consistently provides more

reliable prediction on the qualities of segmentation results.

1.2.2 Lesion Detection

We focus on early detection of pancreatic tumors (PDAC) in CT scans. Compared

with segmentation framework [164] which requires accurate voxel-wise annotation

of tumors from radiologists, we treat the detection as a 3D volume classification

task so that we only need patient-level annotation.

Considering that the tumor inside pancreas will cause the shape change of

pancreas. In chapter 3 we propose to obtain the representation of the shape of

pancreas and then use it for classifying anomaly [77]. A two-stage framework is

developed, which first segments the pancreas into a binary mask, then compresses

the mask into a shape vector and performs abnormality classification. Shape

representation and classification are performed in a joint manner, both to exploit

the knowledge that PDAC often changes the shape of the pancreas and to prevent

over-fitting. Experiments are performed on normal scans and PDAC cases in

JHU PDAC dataset. The system achieves accurate result with only the shape

information of pancreas and shows promise for clinical applications.

Although shape prior is important itself, the texture information is also crucial

in detecting pancreatic tumors. It is sub-optimal for the system to only consider

shape of pancreas. In chapter 4, we propose to fuse the cues from both shape and
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texture by designing a system to extract the shape and texture feature at the same

time for detecting PDAC [80]. A two-stage method is used for this 3D classification

task. First, we segment the pancreas into a binary mask. Second, a FusionNet

is proposed to take both the binary mask and CT image as input and perform

a binary classification. The optimal architecture of the FusionNet is obtained by

searching a pre-defined functional space. We show that the classification results

using either shape or texture information are complementary, and by fusing them

with the optimized architecture, the performance improves by a large margin.

1.2.3 Unsupervised Image Registration

Image registration is a challenging but also important clinical task for many real

applications and scenarios. As the first step in analysis, deformable registration

among different image modalities is often required in order to provide comple-

mentary visual information. During registration, semantic information is the key

to match homologous points and pixels. Nevertheless, many conventional regis-

tration methods are incapable in capturing high-level semantic anatomical dense

correspondences.

In chapter 5, we propose a novel multi-task learning system, JSSR [73], based

on an end-to-end 3D convolutional neural network that is composed of a generator,

a registration and a segmentation component. The system is optimized to satisfy

the implicit constraints between different tasks in an unsupervised manner. It

first synthesizes the source domain images into the target domain, then an intra-

modal registration is applied on the synthesized images and target images. The
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segmentation module are then applied on the synthesized and target images,

providing additional cues based on semantic correspondences. The supervision

from another fully-annotated dataset is used to regularize the segmentation. We

extensively evaluate JSSR on a large-scale medical image dataset containing 1,485

patient CT imaging studies of four different contrast phases (i.e., 5,940 3D CT

scans with pathological livers) on the registration, segmentation and synthesis

tasks. The performance is improved after joint training on the registration and

segmentation tasks compared to a highly competitive and accurate deep learning

baseline. The registration also consistently outperforms conventional state-of-the-

art multi-modal registration methods.

In chapter 6, we take advantages of dense anatomical/semantic representation

from another work [146] and propose a fast and accurate system [79] for unsuper-

vised 3D medical image registration. The system breaks down image registration

into three steps: affine transformation, coarse deformation, and deep deformable

registration. Using high level semantic embeddings, we enhance these steps by

finding more coherent correspondences, and providing features and a loss function

with better semantic guidance. We collect a multi-phase chest computed tomogra-

phy dataset with 35 annotated organs for each patient and conduct inter-subject

registration for quantitative evaluation. Results show that our system outperforms

widely-used traditional registration techniques and learning based method for

two separate tasks of within-contrast-phase and across-contrast-phase registration,

respectively. Our system achieves the comparable performance to the best tradi-

tional registration method, DEEDS [46] (from our evaluation), while being orders
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of magnitude faster.

1.2.4 False Positive Reduction

False positive reduction (FPR) is an important stage in automatic lesion detec-

tion framework, especially when early diagnosis is needed on the target lesion.

Most recent methods rely on learning discriminative features for FPR via deep

networks [130, 27, 119, 127], which however can be biased towards texture. The

complementary features, such like shape, are usually better captured by hand-

crafted feature engineering. How to effectively combine comprehensive features

regarding to different aspects and different engineering processes to boost FPR

performance remains an unsolved problem.

In chapter 7, we propose a Hybrid Feature Engineering (HFE) framework for

FPR in pancreatic lesion detection. It consists of 1) A massive hybrid feature pool

which contains both hand-crafted and learned features to represent each false

positive candidate from different aspects; 2) A sequential feature selection which

efficiently picks up useful features from the pool; 3) A random forest classifier,

which is learned upon the selected hybrid feature pool. Our HFE framework

achieves high accuracy on identifying false positives from the lesion detection

candidates extracted from JHU CT dataset and reduces the false positive rate by a

large margin with merely drop in the sensitivity.

In Chapter 8, we state the conclusion of this thesis and provide potential direc-

tions for future work.
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ECCV 2020.
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Chapter 2

An Alarm System for Segmentation
Algorithm Based on Shape Model

2.1 Introduction

Segmentation algorithms often fail on rare events, and it is hard to fully avoid

such issue. The rare events may occur due to limited number of training data. The

most intuitive way to handle this problem is to increase the number of training

data. However, the labelled data is usually hard to collect especially in medical

domain, e.g., fully annotating a 3D medical CT scan requires professional radiology

knowledge and several hours of work. Meanwhile, even large number of labelled

data is usually unable to cover all possible cases. Previously, various methods have

been proposed to make better use of the training data, like sampling strategies

paying more attention to the rare events [135]. But still they may fail on rare

events that never occur in the training data. Another direction is to increase

the robustness of the segmentation algorithm to rare events. [60] proposed the

Bayesian neural network that models the uncertainty as an additional loss to
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CT image Ground Truth Prediction
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(Reconstruction)

Prediction
(Reconstruction)
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Figure 2.1: The visualize on an NIH CT data for pancreas segmentation. The Dice between
GT and Prediction is 47.06 (real Dice) while the Dice between Prediction and Predic-
tion(Reconstruction) from VAE is 47.25 (fake Dice). Our method uses the fake Dice to
predict the former real Dice which is usually unknown at inference phase of real applica-
tions. This case shows how these two Dice scores are related to each other. In contrast, the
uncertainty used in existing approaches (introduced in section 2) mainly distributes on
the boundary of predicted mask, which makes it a vague information when detecting the
failure cases.

make the algorithm more robust to noisy data. These kinds of methods make the

algorithm insensitive to certain types of perturbations, but the algorithms may still

fail on other perturbations.

Since it is hard to completely prevent the segmentation algorithm from failure,

we consider detecting the failure instead: build up an alarm system cooperating

with the segmentation algorithm, which will set off alerts when the system finds
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that the segmentation result is not good enough. It is assumed that there is no cor-

responding ground truth mask, which is usually true after the model deployment

due to the trend of large data scale and limited human resource. This task is also

called as quality assessment. Several works have been proposed in this field. [58]

applied Bayesian neural network to capture the uncertainty of the segmentation

result and set off alarm based on its value. However, this system also suffers from

rare events since the segmentation algorithms often make mistakes confidently

on some rare events [143], shown in Figure 2.1. [65] provided an effective way by

projecting the segmentation results into a feature space and learn from this low

dimension space. They manually designed several heuristic features, e.g., size,

intensity, and assumed such features would indicate the quality of the segmen-

tation results. After projecting the segmentation results into a low-dimensional

feature space, they learned a classifier to predict its quality which distinguishes

good segmentation results from bad ones directly. In a reasonable feature space,

the representation of the failure output should be far from that of the ground truth

when the segmentation algorithm fails. So the main problems is what these “good”

features are and how to capture them. Many features selected in [65] are actually

less related to the quality of segmentation results, e.g., size.

In our system, we choose the shape feature which is more representative and

robust because the segmented objects (foreground in the volumetric mask) usually

have stable shapes among different cases even though their image appearance

may vary a lot, especially in 3D. So the shape feature could provide a strong prior

information for judging the quality of segmentation results, i.e., bad segmentation
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Figure 2.2: The architecture of our alarm system. In train step 1, the VAE is trained to
reconstruct the ground truth masks. In train step 2, the parameters of VAE are fixed and a
regressor is trained to predict the real Dice score. F represents a preparation segmentation
algorithm which is used to generate prediction masks for training the regressor. During
testing, F is replaced with the target segmentation algorithm to be evaluated. On the right
side we show the structure of VAE used. (Conv: convolution layers with stride 1. Down:
convolution layers with stride 2. Deconv: transpose convolution layers with stride 1. Up:
transpose convolution layers with stride 2. FC: fully connected layers. kkk: convolution
kernel numbers.) Further details about the structure are presented in section 4.3.

results tend to have bad shapes and vice versa. Furthermore, modeling the prior

from the segmentation mask space is much easier than doing it in the image space.

The shape prior can be shared among different datasets while the features like

image intensity are affected by many factors. Thus, the shape feature can deal with

not only rare events but also different data distributions in the image space, which
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shows great generalization power and potential in transfer learning. We propose to

use the Variational Auto-Encoder(VAE) [63] to capture the shape feature. The VAE

is trained on the ground truth masks, and afterwards we define the value of the

loss function as the shape feature of a segmentation result when it is tested with

VAE network. Intuitively speaking, after the VAE is trained, the bad segmentation

results with bad shapes are just rare events to VAE because it is trained using

only the ground truth masks, which are under the distribution of normal shapes.

Thus they will have larger loss value. In this sense we are utilizing the fact that

the learning algorithms will perform badly on the rare events. Formally speaking

(detailed in Sec. 3.1), the loss function, known as the variational lower bound, is

optimized to approximate the function log P(Y) during the training process. So

after the training, the value of the loss function given a segmentation result Ŷ is

close to log P(Ŷ), thus being a good definition for the shape feature.

In this paper, we proposed a VAE-based alarm system for segmentation algo-

rithms, shown in Figure 4.1. The qualities of the segmentation results can be well

predicted using our system. To validate the effectiveness of our alarm system,

we test it on multiple segmentation algorithms. These segmentation algorithms

are trained on one dataset and tested on several other datasets to simulate when

the rare events occur. The performance for the segmentation algorithms on the

other datasets (rather than the training dataset) varies a lot but our system can still

predict their qualities accurately. We compare our system with several other alarm

systems on the above tasks and ours outperforms them by a large margin, which

shows the importance of shape feature in the alarm system and the great power of
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VAE in capturing the shape feature.

2.2 Related Work

2.2.1 Quality Assessment:

[60] employed Bayesian neural network (BNN) to model the aleatoric and epis-

temic uncertainty. Afterwards, [68] applied the BNN to calculate the aleatoric and

epistemic uncertainty on medical segmentation tasks. [58] utilized the BNN and

model another kind of uncertainty-based on the entropy of segmentation results.

They calculated a doubt score by summing over weighted pixel-vise uncertainty.

Other methods like [131][108] used registration based approach for quality

assessment. It registered the image of testing case with a set of reference image and

also transfer the registration to the segmentation mask to find the most matching

one. However it can be slow to register with all the reference image especially

in 3D. Also the registration based approach can hardly be transferred between

datasets or modalities. [17] and [34] used unsupervised methods to estimate

the segmentation quality using geometrical and other features. However their

application in medical settings is not clear. [65] introduced a feature space of shape

and appearance to characterize a segmentation. The shape features in their system

contain volume size and surface area, which are not necessarily related with the

quality of the segmentation results. Meanwhile, [107] tried a simple method using

image-segmentation pairs to directly regress the quality. [12] used the feature from

deep network for quality assessment.
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2.2.2 Anomaly Detection:

Quality assessment is also related with Out-of-Distribution (OOD) detection. In-

vestigation related research papers can be found in [97]. Previous works in this

field [48] [72] made use of the softmax output in the last layer of a classifier to

calculate the out-of-distribution level. In our case, however, for a segmentation

method, we can only get a voxel-wise out-of-distribution level using these meth-

ods. How to calculate the out-of-distribution level for the whole mask as an entity

becomes another problem. In addition, the segmentation algorithm can usually

predict most of background voxels correctly with a high confidence, making the

out-of-distribution level on those voxels less representative.

2.2.3 Auto-Encoder:

Auto-Encoder(AE), as a way of learning representation of data automatically, has

been widely used in many areas such as anomaly detection [171], dimension re-

duction, etc. Unlike [139] which needs to pre-train with RBM, AE can be trained

following an end-to-end fashion. [98] learned the shape representation from point

cloud form, while we choose the volumetric form as a more natural way to corpo-

rate with segmentation task. [95] utilizes AE to evaluate the difference between

prediction and ground truth but not in an unsupervised way. [165] explored shape

features using AE. [10] utilized the reconstruction error of brain MRI image by

AE and [117] used GAN for anomaly detection but it is sometimes hard to gen-

erate a realistic image abdominal CT scan. [118] used AE and a one-class SVM

to identify anomalous regions in OCT images through unsupervised learning on
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healthy examples. Variational autoencoder(VAE) [63], compared with AE, adds

more constraint on the latent space, which prevents from learning a trivial solution

identity mapping. [2] applied VAE for anomaly detection on MNIST and KDD

datasets. In this paper we employ VAE to learn the shape representation for the

volumetric mask and use that for quality assessment task.

2.3 Our VAE-based Alarm System

We first define our task formally. Denote the datasets as (X ,Y), where Y is the label

set of X . We divide (X ,Y) into training set (Xt,Yt) and validation set (Xv,Yv).

Suppose we have a segmentation algorithm F trained on Xt. Usually we validate

the performance of F on Xv using Yv. Now we want to do this task without Yv.

Formally, we try to find a function L such that

L(F(X), Y) = L(F, X; ω) (2.1)

where L is a function used to calculate the similarity of the segmentation result

F(X) respect to the ground truth Y, i.e., the quality of F(X). How to design L

to take valuable information from F and X, is the main question. Recall that the

failure may happen when X is a rare event. But to detect whether an image X

is within the distribution of training data is very hard because of the complex

structure of image space. In uncertainty-based method [58] and [68], the properties

of F are encoded by sampling its parameters and calculating the uncertainty of

output. The uncertainty does help predict the quality but the performance strongly

relies on F. It requires F to have Bayesian structure, which is not in our assumption.
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Also for a well-trained F, the uncertainty will mainly distribute on the boundary

of segmentation prediction. So we change the formulation above to

L(F(X), Y) = L(F(X); ω) (2.2)

By adding this constraint, we still take the information from F and X, but not

in a direct way. The most intuitive idea to do is directly training a regressor on

the segmentation results to predict the quality. But the main problem is that the

regression parameters trained with a certain segmentation algorithm F highly

relate with the distribution of F(X), which varies from different F.

Following the idea of [65], we develop a two-step method. Firstly we encode the

segmentation result F(X) into the feature space, denoting as S(F(X); θ). Secondly

we learn from the feature space to predict the quality of F(X). Finally it changes to

L(F(X), Y) = L(S(F(X); θ); ω) (2.3)

2.3.1 Shape Feature from Variational Autoencoder

In the first step we learn a feature space of shape from Variational Autoencoder

(VAE) trained with the ground masks Y ∈ Yt, using S(Y; θ) to indicate how perfect

the shape of Y is. Here we define the shape of the segmentation masks as the

distribution of the masks in volumetric form. We assume the normal label Y obeys

a certain distribution P(Y). For a predictive mask ŷ, its quality should be related

with P(Y = ŷ). Our goal is to estimate the function P(Y) using S(Y; θ). Recall

the theory of VAE, we hope to find an estimation function Q(z) minimizing the
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difference between Q(z) and P(z|Y), where z is the variable of the latent space we

want encoding Y into, i.e. optimizing

KL[Q(z)||P(z|Y)] = Ez∼Q[log Q(z)− log P(z|Y)] (2.4)

KL is Kullback-Leibler divergence. By replacing Q(z) with Q(z|Y), finally it

would be deduced to the core equation of VAE [25].

log P(Y)−KL[Q(z|Y)||P(z|Y)]

= Ez∼Q[log P(Y|z)]−KL[Q(z|Y)||P(z)] (2.5)

where P(z) is the prior distribution we choose for z, usually Gaussian, and

Q(z|Y), P(Y|z) correspond to encoder and decoder respectively. Once Y is given,

log P(Y) is a constant. So by optimizing the RHS known as variational lower

bound of log P(Y), we optimize for KL[Q(z|Y)||P(z|Y)]. Here however we are

interested in P(Y). By exchanging the second term in LHS with all terms in RHS in

equation (5), we rewrite the training process as minimizing

EY∼Yt KL[Q(z|Y)||P(z|Y)]

= EY∼Yt | log P(Y)− S(Y; θ)| (2.6)

We choose Ez∼Q[log P(Y|z)] − KL[Q(z|Y)||P(z)] to be S(Y; θ). S(Y; θ) is the

loss function we use for training VAE and the training process is actually learning

the parameters θ to best fit log P(Y) over the distribution of Y. So after training
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VAE, S(Y; θ̂) becomes a natural approximation for log P(Y) where θ̂ is the learned

parameter. So we can just use S(Y; θ̂) as our shape feature. In this method we use

Dice Loss [91] when training VAE, which is widely used in medical segmentation

task. The final form of S is

S(Y; θ) = Ez∼N (µ(Y),Σ(Y))
2|g(z) · Y|

|Y|2 + |g(z)|2

− λ KL[N (µ(Y), Σ(Y))||N (0, 1)] (2.7)

where encoder µ, Σ and decoder g are controlled by θ, and λ is a coefficient to

balance the two terms. The first term is the Dice’s coefficient between Y and g(z),

ranging from 0 to 1 and equal to 1 if Y and g(z) are equal.

2.3.2 Shape Feature for Predicting Quality

In the second step we regress on the shape feature to predict the quality. We assume

that the shape feature is good enough to obtain reliable quality assessment because

intuitively thinking, for a segmentation result F(X), the higher log P(F(X)) is, the

better shape F(X) is in, thus the higher L(F(X), Y) is and vice versa. Formally,

taking the shape feature in section 3.1, we can predict the quality by learning ω

such that

L(F(X), Y) = L(S(F(X); θ̂); ω) (2.8)

Here the parameter θ̂ is learned by training the VAE, using labels in the training

data Yt, and is then fixed during train step two. We choose L to be a simple linear
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Figure 2.3: This figure shows our predictive Dice score (x axis) vs real Dice score (y axis).
For each row, the segmentation algorithm is tested on the left most dataset. The four figures
in each row show how the segmentation results are evaluated by 4 different methods.

model, so the energy function we want to optimize is

E(S(F(X); θ̂); a, b) = ||aS(F(X); θ̂) + b −L(F(X), Y)||2 (2.9)

We only use linear regression model because the experiments show strong linear

correlation between the shape features and the qualities of segmentation results. L

is the Dice’s coefficient, i.e. L(F(X), Y) = 2|F(X)·Y|2
|F(X)|2+|Y|2 .

23



2.3.3 Training Strategy

In step one, the VAE is trained only using labels in training data. Then in step two

θ is fixed as θ̂. To learn a, b, the standard way is to optimize the energy function in

3.2 using the segmentation results on the training data, i.e.

arg min
a,b

∑
(X,Y)∈(Xt,Yt)

||aS(F(X); θ̂) + b −L(F(X), Y)||2. (2.10)

Here the segmentation algorithm F we use to learn a, b is called the preparation

algorithm. If F is trained on Xt, the quality of F(X) would be always high, thus

providing less information to regress a, b. To overcome this, we use jackknifing

training strategy for F on Xt. We first divide Xt into X 1
t and X 2

t . Then we train two

versions of F on Xt \ X 1
t and Xt \ X 2

t respectively, say F1 and F2. The optimizing

function is then changed to

arg min
a,b

∑
k=1,2

∑
(X,Y)∈(X k

t ,Y k
t )

||aS(Fk(X); θ̂) + b −L(Fk(X), Y)||2. (2.11)

In this way we solve the problem above by simulating the performance of

F on the testing set. The most accurate way is to do leave-one-out training for

F, but the time consumption is not acceptable, and two-fold split is effective

enough according to experiments. When the training is done, we can test on any

segmentation algorithm G and data X to predict the quality Q = âS(G(X); θ̂) + b̂

where â and b̂ are the learned parameters for step 2 using the above strategy.
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2.4 Experimental Results

In this section we test our alarm system on several recent algorithms for automatic

pancreas segmentation that are trained on a public medical dataset. Our system

achieves reliable predictions on the qualities of segmentation results. Furthermore,

the alarm system remains effective when the segmentation algorithms are tested

on other unseen datasets. We show better quality assessment capability and

transferability compared with uncertainty-based methods and direct regression

method. The quality assessment results are evaluated using mean absolute error

(MAE), standard deviation of residual error (STD), Pearson correlation (P.C.) and

Spearman’s correlation (S.C.) between the real quality (Dice’s coefficient) and

predictive quality.

2.4.1 Dataset and Segmentation Algorithm

We adopt three public medical datasets and four recently published segmentation

algorithms in total. All datasets consist of 3D abdominal CT images in portal

venous phase with pancreas region fully annotated. The CT scans have resolutions

of 512 × 512 × h voxels with varying voxel sizes.

• NIH Pancreas-CT Dataset (NIH) The NIH Clinical Center performed 82

abdominal 3D CT scans[113] from 53 male and 27 female subjects. The

subjects are selected by radiologists from patients without major abdominal

pathologies or pancreatic cancer lesions.
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NIH Dataset
MAE STD P.C. S.C.

Direct Regression 6.30 7.93 -18.36 -1.50
Direct Regression+Image 11.74 13.67 2.13 3.16
Jungo et al.[58] 3.51 3.98 82.21 61.95
Kwon et al.[68] 4.07 4.71 82.41 75.93
VAE-2 (53.93) 5.31 6.45 56.66 57.14
VAE-16 (72.46) 4.39 4.84 62.10 76.69
VAE-128 (76.00) 2.89 3.60 81.08 82.86
VAE-1024 (79.65) 3.50 4.15 73.78 80.90

MSD Dataset SYN Dataset
MAE STD P.C. S.C. MAE STD P.C. S.C.
14.47 12.50 72.26 70.17 8.22 10.82 78.29 71.39
21.87 20.83 5.53 9.22 13.80 17.65 36.83 39.80
11.86 16.31 71.24 77.71 9.45 20.61 73.32 79.93
12.68 18.31 70.42 77.77 9.77 22.30 74.80 81.13
14.86 10.73 81.21 77.63 9.63 11.23 79.66 68.19
9.83 9.56 84.86 83.93 6.29 8.30 89.57 82.56
8.14 9.14 86.23 85.02 4.93 7.20 90.92 86.07
8.42 9.24 85.81 85.17 5.71 8.00 88.61 85.98

Table 2.1: Comparison between our method and baseline methods. The target segmen-
tation (BNN) algorithm is evaluated automatically without using ground truth. We have
tried different structures for VAE (VAE-128 for 128-dimensional latent space). Of all the
methods, VAE-128 achieves the highest performance. The numbers in brackets following
the VAE methods are the average Dice score of reconstructing the ground truth masks
on validation data. Usually with more accurate reconstruction of ground truth masks,
the evaluation result is better but too accurate reconstruction may harm the evaluation
capability (thinking of the identity mapping).
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• Medical Segmentation Decathlon (MSD)1 The medical decathlon challenge

collects 420 (281 Training +139 Testing) abdominal 3D CT scans from Memo-

rial Sloan Kettering Cancer Center. Many subjects have cancer lesions within

pancreas region.

• Synapse Dataset2 The multi-atlas labeling challenge provides 50 (30 Training

+20 Testing) abdomen CT scans randomly selected from a combination of

an ongoing colorectal cancer chemotherapy trial and a retrospective ventral

hernia study.

The testing data of the last two datasets is not used in our experiment since we

do not have their annotations. The segmentation algorithms we choose are V-Net

[91], 3D Coarse2Fine [168], DeepLabv3 [19], and 3D Coarse2Fine with Bayesian

structure [68]. The first two algorithms are based on 3D networks while the

DeepLab is 2D-based. The 3D Coarse2Fine with Bayesian structure is employed to

compare with the uncertainty-based method, and we denote it as Bayesian neural

network (BNN) afterwards.

2.4.2 Baseline

Our method is compared with three baseline methods. Two of them are based on

uncertainty and the last one directly applies regression network on the prediction

mask to regress quality in equation (2):

1http://medicaldecathlon.com/index.html
2https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
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• Entropy Uncertainty. [58] calculated the pixel-vise predictive entropy using

Bayesian inference. Then, the uncertainty is summed up over the whole

image to get the doubt score which would replace the shape feature in (8)

to regress the quality. The sum is weighted by the distance to predicted

boundary, which somehow alleviates the bias distribution of uncertainty.

Their method is done in 2D image and here we just transfer it to 3D image

without essential difficulty.

• Aleatoric and Epistemic Uncertainty. [68] divided the uncertainty into two

terms called aleatoric uncertainty and epistemic uncertainty. We implement

both terms and calculate the doubt score in the same way as [58] because

the original paper does not provide a way. The two doubt scores are used in

predicting the quality.

• Direct Regression. A regression neural network is employed to directly learn

the quality of predictive mask. It takes a segmentation mask as input and

output a scalar for the predictive quality.

2.4.3 Implementation Detail

The structure of VAE is shown in Figure 4.1. We apply instance normalization on

each convolution layer. The ReLU activation is applied on each layer except for

the fully connected layer for mean value and the output layer is activated using

the sigmoid function. The structure we use in the direct regression method is the

encoder part of the VAE so that they are fair for comparison.
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3D Coarse2Fine 3D VNet
MAE STD P.C. S.C. Dice MAE STD P.C. S.C. Dice

NIH 3.46 4.09 89.95 85.41 79.38 2.57 3.24 91.35 84.51 81.21
MSD 10.02 9.45 89.67 87.54 51.88 9.34 9.60 86.52 82.50 55.90
Synapse 6.24 9.00 92.39 84.29 62.10 5.67 7.28 91.65 80.11 64.93

DeepLabV3 BNN
MAE STD P.C. S.C. Dice MAE STD P.C. S.C. Dice

NIH 5.35 5.83 63.34 78.80 81.53 2.89 3.60 81.08 82.86 82.15
MSD 9.34 9.60 86.52 82.50 54.96 8.14 9.14 86.23 85.02 57.10
Synapse 5.67 7.28 91.65 80.11 61.03 4.93 7.20 90.92 86.07 66.36

Table 2.2: Results of different target segmentation algorithms are evaluated by our alarm
system on different datasets. The Dice column means the average Dice score for the seg-
mentation algorithm tested with groundtruth on different datasets, provided for reference.
Our system achieves comparable performance as in Table 2.1 (see also in the right bottom
cell) although the segmentation performance differs a lot between datasets. Without tuning
parameters, our alarm system can be directly applied to evaluate other segmentation
algorithms

For data pre-processing, since the voxel size varies from case to case, which

would affect the shape of pancreas and prediction of segmentation, we first re-

sample the voxel size of all CT scans and annotation mask to 1mm×1mm×1mm.

For training VAE, we apply simple alignment on the annotation mask. We employ

a cube bounding box which is large enough to contain the whole pancreas region,

centered at the pancreas centroid, then crop both volume and label mask out and

resize it to a fixed size 128× 128× 128. We only employ a simple alignment because

the human pose is usually fixed when taking CT scans, e.g. stance, so that the

organ will not rotate or deform heavily. For a segmentation prediction, we also

crop and resize the predictive foreground to 128 × 128 × 128 and feed it into VAE

to capture the shape feature.

During the training process, we employ rotation for −10, 0, and 10 degree along

x,y,z axes(27 conditions in total) and random translation for smaller than 5 voxel on
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caseID 03 14 40 09 41 23 60

Real Dice 0.32 0.44 0.47 0.62 0.73 0.85 0.89

Fake Dice 0.57 0.50 0.47 0.65 0.72 0.85 0.83

Ground Truth 
Mask

Prediction 
Mask

Reconstruction 
Mask

Figure 2.4: We visualize the performance of our evaluation system on different qualities of
segmentation results. The real Dice score increases from left to right. The fake Dice score
is highly correlated with the real Dice so that we can get good prediction of real Dice by
applying simple regressor on the fake Dice.

annotation mask as data augmentation. This kind of mild disturbance can enhance

the data distribution but keep the alignment property of our annotation mask.

We tried different dimension of latent space and finally set it to 128. We found

that VAE with latent space of different dimension will have different capability

in quality assessment. The hyper parameter λ in object function of VAE is set to

2−5 to balance the small value of Dice Loss and large KL Divergence. We trained

our network by SGD optimizer. The learning rate for training VAE is fixed to 0.1.

Our framework and other baseline models are built using TensorFlow. All the

experiments are run on NVIDIA Tesla V100 GPU. The first training step is done in

total 20000 iterations and takes about 5 hours.
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2.4.4 Primary Results and Discussion

We split NIH data into four folds and three of them are used for training segmenta-

tion algorithms and VAE; the remaining one fold, together with all training data

from MSD and Synapse datasets forms the validation data to evaluate our evalua-

tion method. First we learn the parameter of VAE using the training label of NIH

dataset. Then we choose BNN as the preparation algorithm mentioned in section

3.3. The training strategy in section 3.3 is applied on it to learn the parameters of

regression. For all the baseline methods, we employ the same training strategy of

jackknifing as in our method and choose the BNN as preparation algorithm for fair

comparison. Finally we predict the quality of segmentation mask on the validation

data for all the segmentation algorithms. Note that all segmentation algorithms

are trained only on the NIH training set.

Table 2.1 compared our method and three baselines by assessing the BNN seg-

mentation result of validation datasets. In general, our method achieves the lowest

error and variance on all datasets. In our experiment, the preparation algorithm

BNN achieves 82.15, 57.10 and 66.36 average Dice score tested on NIH, MSD and

Synapse datasets respectively. The segmentation algorithm trained on NIH will

fail on some cases of other datasets, and our alarm system still works well without

tuning the parameters of VAE and regressor on other datasets. More detailed result

is as shown in Figure 2.3. We can clearly observe that our method provides more

accurate quality assessment result. For uncertainty-based methods, as shown in

Figure 2.1, the uncertainty often distributes on the boundary of predicted masks

but not on the missing parts or false positive parts and the transferability is not
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MSD Dataset Pancreas MSD Dataset Tumor
MAE STD P.C. S.C. MAE STD P.C. S.C.

Direct Regression 7.48 8.64 56.48 44.49 23.20 29.81 45.50 45.36
Jungo et al.[58] 7.24 8.79 54.38 49.29 26.57 29.78 -23.87 -20.23
Kwon et al.[68] 6.94 8.54 62.15 61.20 26.14 29.24 14.61 14.70
VAE-1024(Ours) 6.03 7.63 68.40 59.65 20.21 23.60 60.24 63.30

Table 2.3: Results for evaluating both pancreas and tumor segmentation. The MAE number
for pancreas is better than those in Table 2.1 since there are more training samples in the
MSD dataset. For tumor evaluation, all the methods are not doing well but our method
reveal the strongest correlation between the real quality and the predictive quality. Since
detecting tumor itself is a very hard task, the segmentation prediction for tumor is often
with more variance. The alarm system needs more careful design to deal with that big
variance.

strong since it relies on the segmentation algorithm. For direct regression method,

we use the encoder part of VAE-1024 followed by a 2-layer fully connection. The

training data of direct regression method is the augmentated testing data of F1, F2

on X 1
t , X 2

t respectively as in section 3.3. So the number of training data for direct

regression method is the same as ours but our method shows better capability of

predicting the quality.

Table 2.2 shows the quality assessment results of our method for 4 different

segmentation algorithms. The result of BNN is better because the preparation

algorithm we use for training the regressor is also BNN. Without tuning parameters,

our method remains reliable when the segmentation algorithms to be evaluated

and the dataset to be tested on are changed, which shows strong transferability.

Why it works: In the experiments we use S(F(X); θ̂) as the input of regressor.

However we find the second term of S(F(X); θ̂) is less related with the real Dice (So

in Figure 4.1 we only put the fake Dice there, which is the first term of S(F(X); θ̂)).
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That means VAE can encode masks with bad shape into normal points in the latent

space so that the reconstructions are of normal shape, which makes the fake Dice

low. We visualize some cases in Figure 2.4 for showing this property of VAE. For

bad segmentation predictions, the reconstruction masks from VAE indeed look

more like a pancreas.

2.4.5 Ablation Experiments

We also run ablation experiments for different structures of VAE and for evaluating

foreground without strong shape prior, tumor region.

2.4.5.1 Different VAE Structures:

Table 2.1 also shows results of VAE with latent space of different dimensions.

With bigger latent space, VAE can reconstruct the ground truth masks better

which generally indicates stronger evaluation capability. But for VAE-1024, the

reconstruction is the best but the prediction result is not as good as VAE-128. We

have also tried larger latent space like VAE-10000, and it can reconstruct the ground

truth masks almost perfectly. But it is more like an identity mapping, making it

impossible for the evaluation task.

2.4.5.2 Combine With Texture:

Since our alarm system only uses the information of segmentation masks, the

texture information, which can be important in evaluating the segmentation quality,

is missing. We tested it with a very intuitive setting, , for the direct regression
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method, we concatenate the image and segmentation masks together and use

that as input for training the regression network. The result is shown in Table 2.1

“Direct Regression+Image". We see that with the same number of training data,

the performance is even worse than only taking the segmentation mask as input.

We think it is because the complex structure of image will confuse the regression

network for learning the quality. [117] and [10] developed textured based methods

on OCT and brain MRI data respectively, while in our experiments, it is hard to

generate realistic abdominal CT scans. So how to better combine the texture with

the segmentation mask is another direction worth exploring.

2.4.5.3 Evaluate Object With Large Shape Variance:

We also compare baseline methods and our method on evaluating segmentation of

object with less stable shape tumor. The MSD dataset also provides voxel-wised

label of pancreatic tumor. Instead of only evaluating the tumor prediction (requires

accurate localization of tumor bounding boxes which is a hard task already), we

evaluate both the tumor and pancreas segmentation at the same time so that we

can use the bounding box of pancreas. Since this is a multi-class problem now,

we adapt the VAE to take the one-hot encoding segmentation masks as input and

change the original Dice loss to multi-class Dice loss. Similarly, we adapt the

baseline methods so that they can fit in this multi-class evaluating problem. For

direct regression method, it is trained to regress pancreas Dice score and tumor

Dice score at the same time. For uncertainty-based method, uncertainty for both

pancreas and tumor are calculated. We randomly split the MSD dataset into two
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parts and one is used for training while the other one for validation. For the

training process we still apply the strategy as in section 3.3. We also train a BNN

for pancreas and tumor segmentation as the target algorithm to evaluate and it

reaches 72.52 and 35.34 average Dice score on pancreas and tumor respectively. The

detailed comparison is shown in Table 2.3. For the uncertainty-based method, the

tumor segmentation evaluation is quite bad because the segmentation algorithm

often wrongly segments the tumor confidently, which also proves the limitation of

uncertainty-based method on quality assessment. For the direct regression method,

as there are more training data (60 → 140 before augmentation), the number is

better than that in Table 2.1, which is common for a learning system. Our method

still performs the best although it is not satisfactory, as there are many cases with

0 Dice score on tumor segmentation which are hard to predict the quality only

from the segmentation mask. Note that the correlation between the real quality

and predictive quality of our method is much stronger, which means even with

weak shape prior, our method can still capture some useful information from the

segmentation mask.

2.5 Conclusion

In the paper we presented a VAE based alarm system for segmentation algorithms

which predicts the qualities of the segmentation results without using ground

truth. We claim that the shape feature is useful in predicting the qualities of the

segmentation results. To capture the shape feature, we first train a VAE using

ground truth masks. We utilize the fact that rare events usually achieve larger loss
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value, and successfully detect the out-of-distribution shape according to the loss

value in the testing time. In the second step we collect the segmentation results of

the segmentation algorithm on the training data, and extract the shape feature of

them to learn the parameters of regression. By applying jackknifing training on the

preparation algorithm we can obtain more accurate regression parameters.

Our proposed method outperforms the standard uncertainty-based methods

and direct regression methods, and possesses better transferability to other datasets

and other segmentation algorithms. The reliable quality assessment results prove

both that the shape feature capturing from VAE is meaningful and that the shape

feature is useful for quality assessment in the segmentation task.
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Chapter 3

Joint Shape Representation and
Classification for Detecting PDAC

3.1 Introduction

Pancreatic cancer is a major killer causing hundreds of thousands of deaths globally

every year. It often starts with a small set of localized cells multiplying themselves

out of control and invading other parts of the body. The five-year survival rate

of the patient can reach 20% [96] if the cancer is detected at an early stage, but

quickly drops to 5% if it is discovered late and the cancerous cells have spread to

other organs [123]. Therefore, early diagnosis of pancreatic cancer can mean the

difference between life and death for the patients.

This paper deals with pancreatic ductal adenocarcinoma (PDAC), the major

type of pancreatic cancer accounting for about 85% of the cases [123], and attempts

to detect it by checking abdominal CT scans. The pancreas, even in a healthy

state, is difficult to segment from a CT volume [114], partly because its 3D shape is

irregular [151]. The segmentation, particularly for the cancer lesion area, becomes
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even more challenging when the pancreas is abnormal, e.g., cystic [160]. In recent

years, with the development of deep learning frameworks [66], researchers were

able to construct effective deep encoder-decoder networks [84] for organ segmen-

tation [111] or shape representation [13], boosting the accuracy of conventional

models for a wide range of medical imaging analysis tasks.

The goal of this paper is to discriminate abnormal pancreases from normal

ones1. This is a classification task, but directly training a volumetric classifier

may suffer from over-fitting due to limited training data. Inspired by the fact

that PDAC often changes the pancreas shape, we set shape representation as

an intermediate goal, so as to constrain the learning space and regularize the

model. Our framework contains two stages. First, we train an encoder-decoder

network [149] for voxel-wise pancreas segmentation from CT scans2. Second, we

use a joint shape representation and classification network to predicts if the patient

suffers from PDAC. The weights of the shape representation module are initialized

using an auto-encoder [13][49], and then jointly optimized with the classifier. Joint

optimization improves classification accuracy at the testing stage.

The radiologists in our team collected and annotated a dataset with 436 CT

scans, including 300 normal cases and 136 PDAC cases. Our approach achieves

a sensitivity of 80.2% at a specificity of 90.2%, i.e., finding 4/5 of abnormal cases

with false alarms on only 1/10 of the normal cases. Some detected PDAC cases

contain tiny tumors, which are easily missed by segmentation algorithms and even

1Throughout this paper, an abnormal pancreas is defined as one suffering from PDAC.
2To make our approach generalized, we do not assume the tumors are annotated in the training

set, and so we do not perform tumor segmentation.
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some professional radiologists. According to the radiologists, our approach can

provide auxiliary cues for clinical purposes.

3.2 Detecting PDAC in Abdominal CT Scans

3.2.1 The Overall Framework

A CT-scanned image, X, is a W × H × L matrix, where W, H and D are the width,

height and length of the cube, respectively. Each element in the cube indicates the

Hounsfield unit (HU) at the specified position. Each volume is annotated with a

binary pancreas mask S⋆ which shares the same dimensionality with X. Our goal

is to design a discriminative function p(X) ∈ {0, 1}, with 1 indicating that this

person suffers PDAC and 0 otherwise.

Our idea is to decompose the function into two stages. The first stage is a

segmentation model f(·) for voxel-wise pancreas segmentation, i.e., where S =

f(X). The second stage is a mask classifier c(·) which assigns a binary label to

the mask S. To make use of shape information, c(·) is further decomposed into a

shape encoder g(·) which produces a compact vector v = g(S) to depict the shape

properties of the binary mask S, and a shape classifier h(·) which determines if the

shape vector v corresponds to a pancreas suffering from PDAC.

Therefore, the overall framework, shown in Figure 3.1, can be written as:

p(X) = c ◦ f(X) = h ◦ g ◦ f(X). (3.1)

We can of course design an alternative function, e.g., a 3D classifier which works on
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Figure 3.1: The overall framework of our approach (best viewed in color).

CT image data directly, but our stage-wise model makes use of the prior knowledge

from the radiologists, i.e., PDAC often changes the shape of the pancreas. This

sets up an intermediate goal of optimization and shrinks the search space of our

model, which is especially helpful in preventing over-fitting given limited training

data. In addition, this also enables us to interpret our prediction. We will show in

experiments that, without such prior knowledge, the classifier produces unstable

results and less satisfying prediction accuracy.

3.2.2 Pancreas Segmentation by Encoder-Decoder Networks

Our approach starts with an encoder-decoder network for pancreas segmentation.

There are typically two choices, which differ from each other in the way of process-

ing volumetric data. The first one applies 2D segmentation networks [111][114]

from orthogonal planes, while the other one trains a 3D network directly [90] in a
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patch-based manner. Either method requires cutting volumetric data into 2D slices

or 3D patches at both training and testing stages. As a result, the segmentation

function S = f(X) cannot be optimized together with the subsequent modules,

namely shape representation and classification.

In practice, we apply a recent 2D segmentation approach named STN [149]

for pancreas segmentation. It trains three models from the coronal, sagittal and

axial planes, respectively. In our own dataset, STN works very well, providing an

average DSC of over 87% for normal pancreas segmentation, and over 70% for

abnormal pancreas segmentation. We make two comments here. First, the seg-

mentation accuracy of 87% almost reaches the agreement between two individual

annotations by different radiologists. Second, the abnormal pancreases are often

more difficult to segment, as their appearance and geometry properties can be

changed by PDAC. However, as shown later, such imperfections in segmentation

only cause little accuracy drop in abnormality classification.

3.2.3 Joint Shape Representation and Classification

Based on pancreas segmentation S = f(X), it remains to determine the abnormality

of this pancreas. We achieve this by first compressing the segmentation mask into

a low-dimensional vector v = g(S) to compress v, and then applying a classifier

h(·) on top of v.

The shape representation network g(·) involves down-sampling the segmen-

tation mask gradually. Following [13], this is implemented by a series of 3D

convolutional layers. The detailed network configuration is shown in Figure 3.2.
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Figure 3.2: Shape representation and classification network (best viewed in color). Each
rectangle is a layer, with the number at the upper-right corner indicating the number of
channels. Each convolution (conv) layer contains a set of 3 × 3 × 3 kernels, and each down-
sampling (down) layer uses 2× 2× 2 convolution with a stride of 2. Batch normalization and
ReLU activation are used after all these layers. The last layer in shape representation (the
green neurons) is the low-dimensional shape vector, followed by a 2-layer fully-connected
network for classification.

Regarding the dimensionality of the shape vectors (i.e., the number of output neu-

rons), a high-dimensional representation carries more information, but also risks

over-fitting under limited training data. We analyze this parameter in experiments.

Essentially, both segmentation and shape representation networks perform image

down-sampling. The former starts with the raw input image and thus requires

complicated and expensive computations. The latter, however, is much simpler,

with the network much shallower, which processes the entire volume at once. This

makes it possible to be optimized together with the classifier.

In the final step, we implement h(·) as a 2-layer fully-connected network. The

simplicity of h(·) aligns with our motivation, i.e., the vector v carries discriminative

shape information which is easy to classify. Being a differentiable module, it can

the optimized with the shape representation network in a joint manner (details are

elaborated below), which brings consistent accuracy gain.

The training process starts by sampling a segmentation mask S from training

42



data. We first perform slight rotation (0◦ or ±10◦ along three axes individually,

27 possibilities) as data augmentation, and rescale the region within the minimal

bounding box into 128× 128× 128. Note that direct optimization on h ◦ g(·) cannot

guarantee that g(·) learns shape information. In addition, direct optimization can

lead to over-fitting with limited training data, even after data augmentation (see

experiments). Hence, we use a two-step method for gradual optimization.

In the first step, we deal with g(·) by concatenating this module with a decoder

network g̃(·), which performs reverse operations (all convolutions are replaced

by deconvolutions) to restore the compressed vector into the original image. This

framework, named an auto-encoder [13][49], can be trained in a weakly-supervised

manner, i.e., given an input mask S, we can minimize the difference between S and

S̃ = g̃ ◦ g(S) by minimizing the loss function LS
(︁
S, S̃

)︁
. This forces the compressed

vector v to store sufficient information in order to restore S = g̃(·). Auto-encoder

provides a reasonable initialization for g(·) in the next step (joint optimization).

We use a mini-batch size of 1 and train the auto-encoder for 40,000 iterations with

a fix learning rate of 10−6.

The second step optimizes g(·) and h(·) jointly. We use the cross-entropy

loss LC(y, p) = y ln p + η · (1 − y) ln(1 − p) where y is the ground-truth and p =

h ◦ g(S) is the predicted confidence. η performs class-balancing to avoid model

bias. The mini-batch size is still set to be 1, and we perform a total of 40,000

iterations. We start with a learning rate of 0.0005, and divide it by 10 after 20,000

and 30,000 iterations. To maximally preserve stability, we freeze all weights of g(·)

in the first 5,000 iterations, so that the 2-layer network h(·), initialized as scratch, is
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reasonably trained before being optimized together with g(·).

Last but not least, there is an alternative way of jointly optimizing g(·) and

h(·), i.e., applying a discriminative auto-encoder [110], which preserves the shape

restoration loss in the second step and optimizes LS
(︁
S, S̃

)︁
+ λ · LC(y, p). We do not

use this strategy because our ultimate goal is classification – shape representation

is an important cue, but we do not hope the constraints in shape restoration harms

classification accuracy. In experiments, we find that a discriminative auto-encoder

produces less stable classification accuracy.

3.3 Experiments

3.3.1 Dataset and Settings

To the best of our knowledge, there are no publicly available datasets for PDAC

diagnosis. We collect a dataset with the help of the radiologists in our team.

There are 300 normal CT scans and 136 biopsy-proven abnormal (PDAC) cases,

and all of them were scanned by the same machine. The pancreas annotation

was done by four expert in abdominal anatomy and each case was checked by

a experienced board certified Abdominal Radiologist. The spatial resolution of

our data is relatively high, i.e., the physical distance between the neighboring

voxels is 0.5mm in the long axis, and varies from 0.5mm to 1.0mm in the other

two axes. We do not use data scanned from other types of machines (e.g., the NIH

dataset [114]) to avoid dataset bias, i.e., the classifier works by simply checking the

spatial resolution or other meta-information of the scan.
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Dimension SVM 2LN (I) 2LN (J)
Sens. Spec. Sens. Spec. Sens. Spec.

128 73.4 ± 3.1 87.8 ± 2.9 77.5 ± 2.2 87.6 ± 1.5 79.3 ± 1.0 89.9 ± 1.0
256 75.0 ± 1.9 87.6 ± 3.2 78.2 ± 1.6 89.1 ± 1.2 79.0 ± 0.4 90.5 ± 0.8
512 78.1 ± 1.9 89.5 ± 1.0 80.7 ± 1.5 88.3 ± 1.0 79.0 ± 0.8 90.9 ± 0.9
1,024 75.0 ± 0.0 89.0 ± 0.0 78.8 ± 0.7 90.5 ± 0.6 80.2 ± 0.5 90.2 ± 0.2

Table 3.1: The sensitivity (sens., %) and specificity (spec., %) reported by different ap-
proaches and dimensionalities of shape. We denote the models optimized individually
and jointly by (I) and (J), respecitively. All these numbers are the average over 5 individual
runs. 2LN (J) with 1,024-dimensional vectors has the best average performance.

We use 100 normal cases for training the STN [149] and auto-encoder [13] for

pancreas segmentation and shape representation, respectively. The remaining 200

normal and 136 abnormal scans are first segmented using the STN then compressed

by the auto-encoder. These examples are randomly split into 4 folds, each of which

has 50 normal and 34 abnormal cases. We perform cross-validation, i.e., training

a classifier on three folds and testing it on the remaining one. We report the

sensitivity and specificity of different models.

3.3.2 Quantitative Results

Results are summarized in Table 3.1. To compare with the joint training strategy,

we provide two other competitors, namely a support vector machine (SVM) and

the individually-optimized 2-layer network (equivalent to freezing the parameters

in the auto-encoder throughout the entire training process). We observe consistent

accuracy gains brought by the proposed approach over both competitors, in par-

ticular the 2-layer network optimized individually. This stresses the importance

and effectiveness of joint optimization. Regarding other options, we find that the
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classification accuracy of our approach either drops or becomes unstable if we (i)

train the entire network from scratch; (ii) preserve the shape restoration loss with

classification loss; or (iii) do not freeze the weights of the auto-encoder in the early

training sections.

In clinics, an important issue to consider is the tradeoff between sensitivity and

specificity. A higher sensitivity implies that more abnormal cases are detected,

but also brings the price of a lower specificity. Our approach, by simply tuning

the classification threshold, can satisfy different requirements. The ROC curves of

different models are shown in Figure 3.3. Using our best model (1,024-dimensional

shape vector with joint optimization), we can achieve a sensitivity of 95% at a

specificity of 53.8%, or a specificity of 95% at a sensitivity of 67.9%.

3.3.3 Qualitative Analysis

We first investigate the relationship between pancreas segmentation quality and

classification accuracy. Trained on a standalone set of 100 normal cases, STN

reports average DSCs of 86.66% and 71.45% on the 200 testing normal and 136

abnormal cases, respectively. The radiologists randomly checked around 20 cases,

and verified that our segmentation results, especially on the normal pancreases,

have achieved the level of being used for diagnosis. We also use the ground-truth

segmentation masks of these 200 + 136 pancreases in classification. With 1,024-

dimensional shape vectors, the sensitivity and specificity of the SVM classifier are

improved by by 9.0% and 2.0%, and these numbers for the 2-layer network are 5.6%

and 0.6%, respectively. This indicates that the imperfection of abnormal pancreas
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segmentation mainly causes drops in sensitivity. But, built on top of automatic

segmentation, our framework can be applied to a wide range of scenarios where

the manual annotation is not available.

Next, we consider the accuracy of shape representation, or more specifically,

the similarity between the restored segmentation mask and the original one. It is

obvious that a higher dimension in shape representation stores richer information

and thus produces more accurate restoration. However, as shown in Table 3.1, we

do not observe significant gain brought by high dimensionalities. This verifies our

assumption, i.e., the classifier does not require accurate shape reconstruction. This

also explains the advantage of joint optimization, in which the classifier can capture

discriminative information from shape representation, and the shape model can

also adjust itself to help classification.

We visualize several successful and failure examples in Figure 3.3. Our ap-

proach is able to detect some cases with tiny tumors which are easily missed even

by the radiologists3. On the other hand, our approach is likely to fail when the

pancreas segmentation is less accurate, leading to a strange pancreas shape which

is not seen in training data and thus confuses the classifier. One false-negative and

one false-positive cases are shown in Figure 3.3.

Finally, we point out that there is an alternative to our approach, which directly

trains segmentation/detection networks to find the tumors in these PDAC cases.

In comparison, our approach has two advantages. First, we do not require the

3The early diagnosis of PDAC is difficult and can be uncertain from CT scans. In our case, the
radiologists proved these PDAC cases with biopsy checks. They can easily miss some of these cases
if they were not told their abnormality beforehand.
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Figure 3.3: Left: classification results by our approach. Right: the ROC curves. Red and
blue contours mark the labeled pancreas and tumor, and blue regions indicate the predicted
pancreas. TP, TN, FP, FN: for {true,false}-{positive,negative}, respectively.

tumors to be annotated in the training data, which is an extremely challenging

task. Second, our approach can detect some PDAC cases with very small tumors

(which largely changed the shape of the pancreas) that are missed by segmentation.

We train a tumor segmentation network individually, and find that more than

half of the false negative can be recovered by our approach. This suggests that

shape representation serves as an auxiliary cue. However, a clear drawback of our

approach is not being able to find the exact position of the lesion area. In all, our

approach provides an important cue (shape), and it can be integrated with other

cues in the future towards more accurate diagnosis, e.g., when voxel-wise tumor

annotations are available, we can incorporate pancreas/tumor segmentation into
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our joint optimization framework.

3.4 Conclusions

Our approach is motivated by knowledge from surgical morphology, which claims

that the pancreatic ductal adenocarcinoma (PDAC) can be discovered by observing

the shape change of the pancreas. We first use an encoder-decoder network to ob-

tain pancreas segmentation, and design a joint framework for shape representation

and classification. We initialize shape representation using an auto-encoder, and

optimize it with the classifier in a joint manner.

In experiments, our approach achieved a sensitivity of 80.2% with a specificity

of 90.2%. It even detected several challenging cases which are easily missed by the

radiologists. Given a larger amount of training data, we can expect even higher

performance. Our future research directions also involve adding other cues (e.g.,

tumor segmentation) and training the entire framework in a joint manner.
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Chapter 4

FusionNet: Incorporating Shape and
Texture for Abnormality Detection in
3D Abdominal CT Scans

4.1 Introduction

Pancreatic cancer is one of the most dangerous type of cancer. In 2019, about 56770

people will be diagnosed with pancreatic cancer, and pancreatic cancer accounts

for about 3% of all cancers in the US and about 7% of all cancer deaths [1]. The

5-year relative survival rate for all stages of pancreatic cancer is only about 9%,

while it can rise to 34% if the cancer is detected in an early stage. However, even

experienced doctors may miss an early stage cancer because it is small and hard to

observe. So developing an reliable automatic system to assist doctors to diagnosis

can help decrease the missing rate of patients with early stage of cancer.

This paper is aimed at discriminating normal cases from cases with pancreatic

ductal adenocarcinoma (PDAC), the major type of pancreatic cancer accounting
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for about 85% of the cases, by checking into the abdominal 3D CT scans. With

the development of deep learning in recent years [67], researchers have made

significant progress in automatically segmenting organs like pancreas from CT

scans [114, 162, 167], which is already a hard task due to the irregular shape

of pancreas [151]. Even though, segmenting the lesion region is an even more

challenging task due to the large variation in shape, size and location of the

lesion [160]. And the full annotation for the lesion region requires more expertise

and time to obtain. So instead of directly segmenting the lesion region, detecting

the patients with PDAC can already help the diagnosis and, more importantly, is

more feasible when the annotation is limited.

We choose to utilize the segmentation mask and CT image for pancreatic abnor-

mality detection, since the segmentation mask can represent the shape while the CT

image represents the texture, which are both important for abnormality detection.

However we find that the classification results of using only shape and only texture

information are quite complementary, which motivates us to combine them in a

unified system and thereby can improve the classification outcome. In the natural

image domain, how to effectively combine different information has been explored

in several different works. [39] proposes a fusion network incorporating depth

to improve the segmentation. [138] calculates the normal, depth and silhouette

from a single image for better 3D reconstruction. Other works like [140, 159] build

different networks for different views of the same data and present co-training

strategy to enable the models to incorporate different views.

In this paper we develop a two-stage method for this problem. Firstly, a recent
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state-of-the-art segmentation network [150] is used to segment the pancreas and

then tested on all the data to get the prediction mask for pancreas. Secondly,

the CT image is fed into a deep discriminator together with the prediction mask.

The discriminator is employed to extract information from both the image and

segmentation mask for abnormality classification. We optimize the architecture of

the discriminator by searching from a functional space, which includes functions

with different fusion strategies. Unlike [169] that needs full annotation for the

lesion, our method only requires annotation masks for the pancreas region on cases

without PDAC in the first stage, and image-level labels indicating abnormality in

the second stage. Other works like [20, 78] make use of the information from either

the prediction mask or CT image for classification. We show in the experiments

that these two kinds of information are complementary to each other and the

combination can improve the classification result by a large margin.

We test our framework on 200 normal and 136 abnormal (with PDAC) CT scans.

We report a 92% sensitivity and 97% specificity, i.e. missing 11 out of 136 abnormal

cases with 6 false alarms out of 200 normal cases. Compared with using only single

branch, our method improves the result by more than 5% in specificity and 10% in

sensitivity.
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Figure 4.1: The pipeline of our framework. In stage 1, a segmentation network is trained
using the normal data. Then the segmentation network is tested on both normal and
abnormal data. The 3D mask and image are cropped and scaled as the input of second
stage. At the right side, we show the examples of fusion model using different α, β. Note
that these three models share the same architecture after layer 3 because α <= 3 in the
examples but they do not share the weights. Each convolution layer uses a set of 3 × 3 × 3
kernels, and each pooling layer uses 2× 2× 2 kernels with a stride of 2. Batch normalization
and ReLU activation are used after all these layers.

4.2 Fusion Network for detecting PDAC

4.2.1 The Overall Framework

The CT scan X ∈ X is a volume of size L × W × H, where L,W,H represents the

length, width and height of the volume respectively. Typically, a CT scan is of size

512 × 512 × H, where H is the number of slices along the axial axis. Each element

in the volume indicates the Hounsfield Unit (HU) at a certain position. Our goal
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is to learn a discriminative function f (X) ∈ {0, 1}, where 1 indicates PDAC and 0

otherwise.

Directly learning the function f (·) is feasible but not optimal. Because the

high dimensionality and rich texture information in the CT image can easily make

the model overfit, especially when the number of training data is limited. [78]

introduces a constraint by segmenting the pancreas first and learn f (g(X)), where

g(·) is a segmentation function to get a binary mask of pancreas S. However this

will result in loss of texture information since g(X) is only a binary mask. In order

to fully exploit both shape and texture information we consider learning

f (g(X), X),

which takes both the segmentation mask and image as input. The major problem

here is how to design the function f (·) so that it can well extract shape information

from g(X) and texture information from X and combine them for the classification

task. Our idea is to define a functional space representing a set of different fusion

strategies and the optimal architecture is obtained by searching that functional

space. Given a normal CT dataset X1 = {(X, Y)}, where the annotation for pan-

creas Y is available, and X2 = {(X, z)} which contains both normal and abnormal

cases with only image-level label z indicating the abnormality, we split our frame-

work into two stages. First we train a segmentation function g(·) on X1 and test it

on X2, then the prediction masks together with CT images on X2 become the input

for the second stage to train a classification function f (·). We will introduce each

stage in detail in the following sections.
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4.2.2 The Segmentation Stage

This stage is necessary in the framework for getting the segmentation mask which

will provide shape information in the second stage. Since the focus in this paper is

how to combine g(X) and X in f (·), and also the two stages are executed separately,

so the form of g(·) is out of range of this study and will be investigated in the future.

In this paper we choose a recent stat-of-the-art segmentation framework [150]

for g. Since g(·) is a 2D-based method so we need to concatenate the output of

different slices to reconstruct the 3D volume like in [141]. We train the segmentation

algorithm on X1 and test it on X2. After that, we crop out the region-of-interest(ROI)

from both CT image and prediction mask, defined as the cube bounding box

covering all foreground voxels in the prediction mask and padded by 20 voxels

in each dimension. Then the cropped regions are resampled to 128 × 128 × 128

volumes. We denote the predictive mask after cropping and resampling as Ŝ =

g(X).

4.2.3 The Classification Stage

The two branches of the input represent different information. The image domain

contains rich texture information, while the binary mask can indicate shape of the

target object. Directly concatenating them in the very first layer is an intuitive way

but may not be optimal. To explore the optimal fusion strategy, we start from a

base model with L = 6 convolution layers similar with 3D VNet [92], followed

by two fully connected layers, as shown in Figure 4.1. Then a functional space

for different architectures is defined as {(α, β)|α ∈ {1, 2, ..., L}, β ∈ {+, ∗,⊕}},
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where α indicates at which layer to fuse and β indicates how to fuse. Here ⊕

represents concatenation. See also in Figure 4.1 for specific examples for different

combination of α, β. We formulate each fusion function in the functional space

fαβ(·) as following.

fαβ(S, X; w) = fα:L(β( f1:α(S; w1
1:α), f1:α(X; w2

1:α)); wα:L).

Here f1:α(·) is the first α convolution layers of the base model while fα:L(·) is

the remaining layers. w = {w1
1:α, w2

1:α, wα:L} is the parameters to learn. The feature

maps of two branches after the first α layers are fused using operation β(·) as

β( f1:α(S; w1
1:α), f1:α(X; w2

1:α)), and then fed into fα:L(·). The idea of this design is to

alleviate the effect of changing the model structure but only focus on finding the

best way to combine two different input.

Once given α, β, we learn w by optimizing a weighted cross-entropy loss

L = −λ log pz − (1 − λ) log(1 − p)1−z,

where p = fαβ(Ŝ, X; w). The output of fαβ(·) is activated by a sigmoid function

so that p ∈ [0, 1]. z ∈ {0, 1} is the label for a CT scan indicating whether this

study suffers from PDAC. We set λ = 0.7 for balancing the class difference during

training.
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4.3 Experiments

In this section we test our two-stage framework on our dataset containing 3D

abdominal CT scans with both patients with and without PDAC. We compare our

method with other method using single source input and also show the result of

different fusion architectures. We report the sensitivity(SEN), specificity(SPEC),

ROC AUC Score(AUC) and F1 Score(F1) to evaluate the classification model.

4.3.1 Dataset and Settings

We collect the dataset with the help of the radiologists. There are 300 normal cases

and 136 biopsy proven PDAC cases. 100 out of 300 normal cases have voxel-wise

annotations for pancreas (denoted as set X1), and the remaining 200 normal cases

as well as the 136 PDAC cases only have image-level labels, i.e., abnormal/normal

(denoted as set X2). In the first stage, we train the segmentation network on X1

and test it on X2. In the second stage, X2 is randomly split into four folds for

cross-validation, where each fold contains 50 normal and 34 abnormal cases and

the fusion network is trained on three of the folds and tested on the remaining one.

For the first stage, we follow the instruction of [150] to train a segmentation

network. For the second stage, we apply grid search on α and β, i.e. we choose for

every pair of (α, β) ∈ {(α, β)|α ∈ {1, 2, ...L}, β ∈ {+, ∗,⊕}}. In our case, L = 6, so

there are 3L = 18 different architectures in total in the search space. After setting

α and β, for training fαβ(·), we use stochastic gradient descent(SGD) with batch

size of 4. The learning rate is set to 0.01 with exponential decay rate 0.9997. We
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Figure 4.2: ROC curves for comparison of different fusion strategies. Left: fused by +.
Mid: fused by ∗. Right: fused by ⊕. The Image, Mask and AE+Mask are the baseline
methods without fusing. The Image+Mask GT is the pseudo upper bound of the fusing.

also perform data augmentation on both the CT image and prediction mask by

slightly rotating 0◦,±10◦ along three axes individually (27 possibilities) to prevent

from overfitting, since the number of training data is very limited. For each pair

of α, β, the model is trained for 10,000 iterations, which takes about 1.5 hours on a

NVIDIA TITAN RTX(24GB) GPU.

4.3.2 Primary Results

We compare our method with [78] which utilizes the feature from pre-trained auto-

encoder for classification (AE+Mask). We also compare with the base model using

either the CT image (Image) or prediction mask (Mask) as input. Our fusion model

has the same network structure with the base model after the fusing point for fair

comparison. The best result is achieved when fusing the two branches in third

layer with multiplication operation. The result is summarized in Table 4.1. The

ROC curves of different models are shown in Figure 4.2. Image+Mask GT indicates
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SEN SPEC AUC F1
AE+Mask [78] 77.94 91.00 89.04 81.54
Mask 82.35 91.50 92.94 84.53
Image 83.09 92.00 95.95 85.28
Naive Fusion 83.09 95.50 97.17 87.60
FusionNet3*(Ours) 92.65 97.00 97.72 94.03
Mask+Image GT 94.12 97.50 99.53 95.17

Table 4.1: Comparison between our method and baseline methods on the sensitivity(SEN),
specificity(SPEC), area under the curve(AUC) and F1 score(F1). FusionNet3* achieves the
best result, indicating the best way to fuse is to multiply two branches in the third layer.

the strategy that if either one of the two methods (Image and Mask) correctly

classifies the case, then we treat this case as correctly classified. This can be the

upper bound of merging because it fuses the result based on the ground-truth label.

The large improvement in the upper bound result shows that the information

provided by the CT image and prediction mask for abnormality detection are

quite complementary to each other, which proves the necessity of combining them

together. Naive Fusion is done by taking the average of output from Mask and

Image and only shows limited improvement. This fact further validates the efficacy

of our proposed FusionNet.

4.3.3 Analysis and Discussion

4.3.3.1 Single Branch Comparison:

From Table 4.1 we can see the comparison among Image, Mask and AE+Mask

which all use only one branch of information. Using only the image works the best,

which indicates the importance of texture for detecting PDAC. For the other two
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Figure 4.3: Comparison on the sensitivity, specificity, AUC and F1 score between different
fusion architectures.

methods using only shape information, directly training a discriminator achieves

better results, showing that the constraint of auto-encoder can harm the classifica-

tion performance.

4.3.3.2 Fusion Comparison:

The result of fusing at different layers with different operations is as shown in Table

4.2 and Figure 4.3. First of all, almost all the fusion models can perform better than

the single branch model, which proves the advantages of fusing shape and texture.

Table 4.2 shows the number of parameters and floating-point operations for each

model to show how the size of model affects the classification result. We can see as

α increases, the size of model increases, but the classification result does not always

improve correspondingly. For the + fusion operation, the performance is better

when fusing at the earlier or later layers of the network. For the ∗ and ⊕ operation,

however, fusing at the middle layer of the network shows better performance. The

best result is obtained when fusing at the third layer with ∗ operation.
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α 1 2 3 4 5 6
F1 88.97 89.63 85.71 90.04 87.73 90.37

β = + # Para 3.99M 3.99M 4.01M 4.10M 4.45M 5.86M
FLOPs 7.99M 7.99M 8.04M 8.21M 8.92M 11.74M

F1 82.68 89.39 94.03 91.45 88.48 88.32
β = ∗ # Para 3.99M 3.99M 4.01M 4.10M 4.45M 5.86M

FLOPs 7.99M 7.99M 8.04M 8.21M 8.92M 11.74M
F1 86.76 86.25 91.11 89.30 90.51 90.44

β = ⊕ # Para 3.99M 4.01M 4.07M 4.32M 5.34M 7.96M
FLOPs 7.99M 8.02M 8.15M 8.66M 10.69M 15.94M

Table 4.2: Comparison between different fusion architectures on the F1 scores, number of
parameters and floating-point operations(FLOPs). As α increases, the two branches fuse at
more latter layer, so the parameters number also increases. However the best performance
is achieved when α = 3.

4.4 Conclusion

In this paper we propose a FusionNet which combines shape and texture informa-

tion from the segmentation mask and CT image for detecting PDAC. Compared

with using only single source of information, using both shape and texture infor-

mation improves the performance by a large margin. We also explore the best

network structure for fusing these two branches together by searching from a func-

tional space, which is to multiply the feature map of two branches in the middle

of the network. We report a 92% sensitivity and a 97% specificity by doing 4-fold

cross-validation on 200 normal patients and 138 patients with PDAC.
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Chapter 5

JSSR: A Joint Synthesis,
Segmentation, and Registration
System for 3D Multi-Modal Image
Alignment of Large-scale Pathological
CT Scans

5.1 Introduction

Image registration attempts to discover a spatial transformation between a pair

of images that registers the points in one of the images to the homologous points

in the other image [137]. Within medical imaging, registration often focuses on

inter-patient/inter-study mono-modal alignment. Another important and (if not

more) frequent focal point is multi-channel imaging, dynamic-contrast computed

tomography (CT), multi-parametric magnetic resonance imaging (MRI), or positron

emission tomography (PET) combined with CT/MRI. In this setting, the needs of
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intra-patient multi-modal registration are paramount, given the unavoidable pa-

tient movements or displacements between subsequent imaging scans. For scenar-

ios where deformable misalignments are present, the abdomen, correspondences

can be highly complex. Because different modalities provide complementary vi-

sual/diagnosis information, proper and precise anatomical alignment benefits

human reader’s radiological observation and is crucial for any downstream com-

puterized analyses. However, finding correspondences between homologous

points is usually not trivial because of the complex appearance changes across

modalities, which may be conditioned on anatomy, pathology, or other complicated

interactions.

Unfortunately, multi-modal registration remains a challenging task, particu-

larly since ground-truth deformations are hard or impossible to obtain. Methods

must instead learn transformations or losses that allow for easier correspondences

between images. Unsupervised registration methods, like [8, 44], often use a local

modality invariant feature to measure similarity. However these low-level features

may not be universally applicable and cannot always capture high level semantic

information. Other approaches use generative models to reduce the domain shift

between modalities, and then apply registration based on direct intensity similarity

[128]. A different strategy learns registrations that maximize the overlap in segmen-

tation labels [8, 51]. This latter approach is promising, as it treats the registration

process similarly to a segmentation task, aligning images based on their semantic

category. Yet, these approaches rely on having supervised segmentation labels in

the first place for every deployment scenario.
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Both the synthesis and segmentation approaches are promising, but they are

each limited when used alone, especially when fully-supervised training data is

not available, no paired multi-modal images and segmentation labels, respectively.

As Fig. 5.1 elaborates, the synthesis, segmentation, and registration tasks are linked

together and define implicit constraints between each other. That motivates us

to develop a joint synthesis, segmentation, and registration (JSSR) system which

satisfies these implicit constraints. JSSR is composed of a generator, a segmentation,

and a registration component that performs all three tasks simultaneously. Given

a fixed image and moving image from different modalities for registration, the

generator can synthesize the moving image to the same modality of the fixed

image, conditioned on the fixed image to better reduce the domain gap. Then

the registration component accepts the synthesized image from the generator and

the fixed image to estimate a deformation field. Lastly, the segmentation module

estimates the segmentation map for the moving image, fixed image and synthesized

image. During the training procedure, we optimize several consistency losses

including (1) the similarity between the fixed image and the warped synthesized

image; (2) the similarity between the segmentation maps of the warped moving

image and the fixed image; (3) an adversarial loss for generating high fidelity

images; and (4) a smoothness loss to regularize the deformation field. To stop

the segmentation module from providing meaningless segmentation maps, we

regularize the segmentation by training it on fully supervised data obtained from a

different source than the target data, e.g., public data. We evaluate our system on a

large-scale clinical liver CT image dataset containing four phases per patient, for
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unpaired image synthesis, multi-modal image registration, and multi-modal image

segmentation tasks. Our system outperforms the state-of-the-art conventional

multi-modal registration methods and significantly improves the baseline model

we used for the fother two tasks, validating the effectiveness of joint learning.

We summarize our main contributions as follows:

• We propose a novel joint learning approach for multi-modal image registra-

tion that incorporates the tasks of synthesis, registration and segmentation.

Each task connects to the other two tasks during training, providing mutually

reinforcing supervisory signals.

• We evaluate and validate the performance improvement of baseline methods

for synthesis and segmentation after joint training by our system, demonstrat-

ing the effectiveness of our joint training setup and revealing the possibility

of obtaining a better overall system by building upon and enhancing the

baseline models.

• Our system consistently and significantly outperforms state-of-the-art con-

ventional multi-modal registration approaches based on a large-scale multi-

phase CT imaging dataset of 1,485 patients (each patient under four different

intravenous contrast phases, i.e., 5,940 3D CT scans with various liver tu-

mors).

• While we use supervised data from single-phase public data to regularize our

segmentation, our method does not use or rely upon any manual segmenta-

tion labels from the target multi-phase target CT imaging dataset. Compared
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Figure 5.1: The relationship between the synthesis, segmentation and registration tasks. In
the ideal setting, spatially transformed examples from each domain, and their segmentation
labels, are fully available. In more realistic settings, only one example is available from
each domain, each under a different spatial transform. Moreover, segmentation labels are
not available. Should segmentation, synthesis, and spatial transform mappings be available,
the constraints in the ideal case can be mapped to analogous constraints in the real case.

to approaches expecting target segmentation labels, JSSR enjoys better scala-

bility and generalizability for varied clinical applications.

5.2 Related Work

5.2.1 Multi-modal Image Registration

Multi-modal image registration has been widely studied and applied in medical

imaging. Existing registration methods can be based on additional information,

e.g., landmarks [109, 126] or a surface [148], or they can operate directly on voxel
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intensity values without any additional constraints introduced by the user or seg-

mentation [88]. For voxel-based methods, there are two typical strategies. One

is to transform each image using self-similarity measurements that are invariant

across modalities. These include local self-similarities [120] or the modality inde-

pendent neighbourhood descriptor [43]. Notably the DEEDS algorithm [44, 45, 41]

employed a discrete dense displacement sampling for deformable registration

using self-similarity context (SSC) [47]. The other common strategy is to map both

modalities into a shared space and measure the mono-modal difference. Prominent

examples include mutual information [86] and normalized mutual information

[124] similarity measures that can be applied directly on cross-modal images. How-

ever, such methods can suffer from low convergence rates and loss of spatial

information. [11] employed a convolutional neural network (CNN) to learn modal-

ity invariant features using a small amount of supervision data. [15] used Haar-like

features from paired multi-modality images to fit a random forest regression model

for bi-directional image synthesis, and [128, 87] applied CycleGANs to reduce

the gap between modalities for better alignment. Recently [3] developed a joint

synthesis and registration framework on natural 2D images.

Recently a variety of deep learning-based registration methods have been pro-

posed. Because ground truth deformation fields are hard to obtain, unsupervised

methods, like [24, 70, 23, 8], are popular. These all rely on a CNN with a spatial

transformation function [56]. These unsupervised methods mainly focus on mono-

modal image registration. Some methods make use of correspondences between

labelled anatomical structures to help the registration process [51]. [8] also showed
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how the segmentation map can help registration. However, in many cases the

segmentation map is not available, which motivates us to combine the registration

and segmentation components together.

5.2.2 Multi-task Learning Methods

As the registration, synthesis, segmentation tasks are all related with each other,

there are already several works that explore combining them together. [128, 87, 136]

used CycleGANs to synthesize multi-modal images into one modality, allowing

the application of mono-modal registration methods. [61] projected multi-modal

images into a shared feature space and registered based on the features. [100] made

use of a generative model to disentangle the appearance space from the shape

space. [69, 145, 99] combined a segmentation model with a registration model to

let them benefit each other, but the focus was on mono-modal registration. [158]

performed supervised multi-phase segmentation based on paired multi-phase

images but did not jointly train the registration and segmentation. [153, 157, 53]

used a generative model to help guide the segmentation model. In contrast, our

work combines all three of the tasks together to tackle multi-modal registration

problem in the most general setting where the deformation ground truth, paired

multi-modal images and segmentation maps are all unavailable.

5.3 Methodology

Given a moving image x ∈ X and fixed image y ∈ Y from different modalities,

but from the same patient, we aim to find a spatial transformation function τ that
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Figure 5.2: The JSSR system. We denote the generator, segmentation, registration module
and spatial transform as Syn, Seg, Reg and ST respectively.
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Figure 5.3: The model structure for each component. We use a 3D PHNN [37] for registra-
tion and 3D VNet [90] for segmentation and the generator.

corrects for any misalignments between the two. We tackle this multi-modal image

registration problem in a fully unsupervised way to meet common applications

settings, where none of the ground truth deformation fields, segmentation maps,
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or paired multi-modal images are available. As Fig. 5.1 depicts, image synthesis,

segmentation and registration can be related together via a set of constraints.

Motivated by this, we develop a system consisting of three parts: a generator G, a

registration module Φ and a segmentation module S. By satisfying the constraints

in Fig. 5.1, we can satisfy the conditions for a correct registration, segmentation

and image synthesis. During optimization, these three tasks will benefit from each

other. Refer to Fig. 7.1 for the overall framework of our system.

5.3.1 Unpaired Image Synthesis

Although good unpaired image synthesis works exist, e.g., [52], they may generate

a variety of different target domain images based on the random sampling. How-

ever, for registration, the synthesized images should have identical anatomical

and other pertinent modality-invariant properties. Thus, a conditional synthesis

is a natural choice. Similar to [55], but without random noise, we use a GAN

with a dual-input generative model G which learns a mapping from x, y to τ−1(y),

G : {x, y} −→ τ−1(y). Here τ is the true deformation from x to y, meaning the

generator attempts to generate a version of x that looks like y, but removing any

spatial transformation between the two. In reality, τ itself must be estimated, which

we will outline in Sec. 5.3.2. A discriminator D is also equipped to detect the fake

images from the generator.

The objective of the conditional GAN is

LGAN(G, D) = Ey log D(y)− Ex,y log D(G(x, y)). (5.1)
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In a classical paired GAN setup, we would use Ey log D(τ−1(y)), but this is not

available, so use unpaired synthesis, based on the assumption that spatial transform

τ does not alter the likelihood of any one sample. We also add another appearance-

based loss to benefit the GAN objective:

Lsyn
L1 (G) = Ex,y||τ−1(y)− G(x, y)||1. (5.2)

The final objective for the synthesis part is

G∗ = arg min
G

max
D

Lsyn
L1 (G) + λsynLGAN(G, D). (5.3)

5.3.2 Multi-Modal Image Registration

For two images x and y, the registration module learns a function Φ : x, y −→ τ

where τ is a spatial transformation function [56], also called the deformation field.

For mono-modal registration, the L1 loss can be used to estimate a deformation

field that directly matches the intensities between the fixed image and warped

image. Here we are registering two images from different modalities. [8] proposed

to use a cross-modal similarity measure like cross-correlation [5]. Instead, if we

assume a generative model is available to transform x into the Y domain, then we

can use a simple mono-modal similarity measure:

Lreg
L1 (Φ) = Ex,y||τ(G(x, y))− y||1, (5.4)
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where τ = Φ(G(x, y), y), and G is the generator that synthesizes images from X to

Y . Another smoothness term is added to prevent non-realistic deformation:

Lsmooth(Φ) = Ex,y ∑
v∈Ω

||∇τv||2, (5.5)

where v represents the voxel location and ∇τv calculates the differences between

neighboring voxels of v. We use the same implementation for the smoothness term

as in [8]. The final objective is:

Φ∗ = arg min
Φ

Lreg
L1 (Φ) + λregLsmooth(Φ). (5.6)

Of course, we cannot optimize this objective without a G. However, to get a

good G, we need a good Φ as discussed in Sec. 5.3.1, which makes this problem a

chicken-and-egg conundrum. One way is to optimize the two objectives from the

synthesis and registration modules together, which leads to

Φ∗, G∗ = arg min
Φ,G

F(Φ, G)

= arg min
Φ,G

max
D

Lreg
L1 (Φ, G) + Lsyn

L1 (Φ, G)

+ λregLsmooth(Φ, G) + λsynLGAN(G, D)

≈ arg min
Φ,G

max
D

2Lreg
L1 (Φ, G)

+ λregLsmooth(Φ, G) + λsynLGAN(G, D).

(5.7)
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However, there is no guarantee that we can get the optimal solution by mini-

mizing F(Φ, G). Actually there is a trivial solution that minimizes F(Φ, G), which

is when G(x, y) = y and Φ(G(x, y), y) = Φ(y, y) = I, i.e., the identity transform.

To mitigate this, we add skip connections from the source domain to keep the

spatial information in the structure of generator, as shown in Fig. 5.3.

5.3.3 Multi-Modal Image Segmentation

We enforce segmentation-based constraints for two reasons. Firstly, as noted in [8],

the additional information of segmentation maps can help guide the registration

process. However, [8] assumes the segmentation maps are available for the target

dataset, which we do not assume. Secondly, as noted by others [69, 145, 99, 153,

157], synthesis and registration can benefit segmentation, which can help develop

better segmentation models on datasets without annotation.

We denote the segmentation model as a function S : x −→ p, where p ∈

P represents the segmentation map domain. Based on the constraint between

synthesis, registration and segmentation tasks, we define the objective as:

Lreg
dice(S, Φ, G) = Ex,y1 − Dice[τ(S(G(x, y))), S(y)], (5.8)

where τ = Φ(G(x, y), y) and Dice(x, y) = 2xTy
xT x+yTy is the widely used measurement

for the similarity between two binary volumes. This loss term connects three

components together and in the experiments afterwards we show this crucial

toward the whole system’s performance.

To make (5.8) work properly, we need the segmentation to be as accurate as
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possible. However only with the consistency loss, the segmentation module is

not able to learn meaningful semantic information. For instance, a segmentation

module that predicts all background can trivially minimize (5.8). To avoid this, we

use fully supervised data, e.g., from public sources, to regularize the segmentation.

Importantly, because (5.8) is only applied on the Y domain, we need only use

supervised data from one modality, e.g., if we are registering dynamic contrast CT

data, we need only fully-supervised segmentation maps from the more ubiquitous

venous-phase CTs found in public data. Thus, the supervision loss is defined as

Lsup
dice(S) = Eysup1 − Dice[S(ysup), psup)], (5.9)

where ysup ∈ Y is in the same modality with y ∈ Y , but the two datasets do not

overlap. psup ∈ Psup is the corresponding annotation. The total loss provided by

the segmentation module is

H(S, Φ, G) = Lreg
dice(S, Φ, G) + Lsup

dice(S). (5.10)

5.3.4 Joint Optimization Strategy

Based on previous sections, the final objective for our whole system is

Φ∗, G∗, S∗ = arg min
Φ,G,S

F(Φ, G) + λsegH(S, Φ, G). (5.11)

In order to provide all the components with a good initial point, we first train

S on the fully-supervised data, {ysup, psup} and also train Φ and G using (5.7) on

the unsupervised data. Finally, we jointly optimize all modules by (5.11). When
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optimizing (5.7) and (5.11), we use the classic alternating strategy for training GAN

models, which alternately fixes Φ, G, S and optimizes for D and then fixes D and

optimizes for the others.

5.4 Experiments

Datasets. We conduct our main experiments on a large-scale dataset of 3D dynamic

contrast multi-phase liver CT scans, extracted from the archives of the Chang Gung

Memorial Hospital (CGMH) in Taiwan. The dataset is composed of 1485 patient

studies and each studies consists of CT volumes of four different intravenous con-

trast phases: venous, arterial, delay, and non-contrast. The studied population is

composed of patients with liver tumors who underwent CT imaging examinations

prior to an interventional biopsy, liver resection, or liver transplant. Our end goal is

to develop a computer-aided diagnosis system to identify the pathological subtype

of any given liver tumor. Whether the analysis is conducted by human readers or

computers, all phases need to be precisely pre-registered to facilitate downstream

analysis, which will observe the dynamic contrast changes within liver tumor

tissues across the sequential order of non-contrast, arterial, venous and delay CTs.

The different phases are obtained from the CT scanner at different time points

after the contrast media injection and will display different information according

to the distribution of contrast media in the human body. The intensity value of

each voxel in the CT image, measured by the Hounsfield Unit (HU), is an integer

ranging from −1000HU to 1000HU, which will also be affected by the density of

contrast media. The volume size of the CT image is 512 × 512 × L, where L can
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vary based on how the image was acquired. The z-resolution is 5mm in our dataset.

Since the venous phase is one of the most informative for diagnosis, and is also

ubiquitous in public data, we choose it as the anchor phase and register images

from other three phases to it. Consequently, we also synthesize the other three

phases images to the venous phase. We divide the dataset into 1350/45/90 patients

for training, validation and testing, respectively, and we manaully annotate the

liver masks on the validation and testing sets for evaluation. Note that there are

in total 1485 × 4 = 5940 3D CT scans (all containing pathological livers) used in our

work. To the best of our knowledge, this is the largest clinically realistic study of this kind

to-date. For the supervised part, we choose a public dataset, i.e., MSD [122], that

contains 131 CT images of venous phase with voxel-wise annotations of the liver

and divide it into 100/31 for training and validation. We evaluate the performance

of all three registration, synthesis and segmentation tasks to measure the impact of

joint training.

5.4.1 Baseline

We compare with several strong baselines for all three tasks:

• For image synthesis, we choose Pix2Pix [55]. We approximately treat the

multi-phase CT scans from the same patient as paired data, so that we can

better compare to see how incorporating registration can benefit the synthesis

module when there is no paired data.

• For image registration, we first compare with Deeds [44], one of the best
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Dice ↑ HD95 ↓
Arterial Delay Non-Contrast Arterial Delay Non-Contrast

Initial State 90.94 (7.52) 90.52 (8.08) 90.08 (6.74) 7.54 (4.89) 7.86 (5.83) 7.87 (4.37)
Affine [89] 92.01 (6.57) 91.69 (6.80) 91.52 (5.48) 6.81 (4.83) 6.95 (5.32) 6.73 (3.63)
Deeds [44] 94.73 (2.10) 94.70 (1.91) 94.73 (1.90) 4.74 (1.96) 4.76 (1.69) 4.62 (1.05)

VoxelMorph [8] 94.28 (2.53) 94.23 (3.15) 93.93 (2.58) 5.29 (2.33) 5.42 (3.25) 5.40 (2.48)
JSynR-Reg 94.81 (2.35) 94.71 (2.62) 94.57 (2.52) 4.93 (2.14) 5.07 (3.06) 4.87 (2.30)
JSegR-Reg 95.52 (1.76) 95.39 (2.14) 95.37 (1.80) 4.47 (2.21) 4.70 (3.24) 4.45 (1.85)
JSSR-Reg 95.56(1.70) 95.42(2.00) 95.41(1.72) 4.44(2.19) 4.65(3.14) 4.35(1.60)

ASD ↓ Time ↓
Arterial Delay Non-Contrast Arterial Delay Non-Contrast

Initial State 2.12 (1.86) 2.27 (2.19) 2.37 (1.77) -/- -/- -/-
Affine [89] 1.74 (1.58) 1.86 (1.89) 1.87 (1.41) -/7.77 -/7.77 -/7.77
Deeds [44] 1.01 (0.44) 1.01 (0.39) 0.99 (0.36) -/41.51 -/41.51 -/41.51

VoxelMorph [8] 1.10 (0.53) 1.12 (0.87) 1.20 (0.67) 1.71/1.76 1.71/1.76 1.71/1.76
JSynR-Reg 0.95 (0.45) 0.98 (0.72) 0.98 (0.56) 3.14/1.76 3.14/1.76 3.14/1.76
JSegR-Reg 0.80 (0.37) 0.83 (0.59) 0.83 (0.40) 3.14/1.76 3.14/1.76 3.14/1.76
JSSR-Reg 0.79(0.36) 0.83(0.56) 0.82(0.37) 1.71/1.76 1.71/1.76 1.71/1.76

Table 5.1: Evaluation for the registration task on the CGMH liver dataset in terms of Dice
score, HD (mm), ASD (mm), and GPU/CPU running time (s). Standard deviations are in
parentheses.

registration methods to date for abdominal CT [144]. The advantage of

learning-based methods compared with conventional ones is often on the

speed of inference, but we can also show performance improvement. We also

compare with the learning-based VoxelMorph [8] with local cross-correlation

to handle multi-modal image registration.

• For the segmentation task, we compare with VNet [90], which is a popular

framework in medical image segmentation.

5.4.2 Implementation Details

We conduct several preprocessing procedures. First, since the CT images from

different phases, even for the same patient, have different volume sizes, we crop
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the maximum intersection of all four phases based on the physical coordinates to

make their size the same. Second, we apply rigid registration using [89] between

the four phases, using the venous phase as the anchor. Third, we window the

intensity values to −200HU to 200HU and normalize to −1 to 1, and then we resize

the CT volume to 256 × 256 × L to fit into GPU memory. For the public dataset, we

sample along the axial axis to make the resolution also 5mm, and then apply the

same intensity preprocessing.

The structure of each component is shown in Fig. 5.3. We choose 3D V-Net [90]

for the generator and segmentation module and 3D PHNN [37] for the registration.

To optimize the objectives, we use the Adam solver [62] for all the modules, setting

the hyper parameters to λseg = λreg = 1, λsyn = 0.02. We choose different learning

rates for different modules in order to better balance the training:. 0.0001, 0.001,

0.1, and 0.1 for the generator, registration module, segmentation module, and

discriminator, respectively. Another way to balance the training is to adjust the

loss term weights. However, there are loss terms that relate with multiple modules,

which makes it more complex to control each component separately. We train on

the Nvidia Quadro RTX 6000 GPU with 24 GB memory, with instance normalization

and batch size 1. The training process takes about 1.4 GPU days.

5.4.3 Main Results

5.4.3.1 Multi-modal image registration

We summarize the results of registration task in Table ??. We use the manual

annotations of the test set and evaluate the similarity between those of fixed image,
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Figure 5.4: Box-plots for the registration results (DSC). Suffixes indicate the moving phases
(A, D, N for arterial, delay, non-contrast). VM stands for VoxelMorph.

which is always in the venous phase here, and the warped labels of the moving

images chosen from arterial, delay and non-contrast. The similarity is measured

using the Dice score, 95 percent hausdorff distance (HD), and the average surface

distance (ASD). We also report the consumed time on GPU/CPU in sec for each

method. We use the term “Initial State” to refer to the result before applying any

registration and “Affine” to the result after rigid registration. We denote our joint

system as JSSR and JSSR-Reg is only the registration part of JSSR. We also compare
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VNet [90]
Dice ↑ Venous Arterial Delay Non-Contrast

No-Synthesis 90.47 (6.23) 89.47 (7.05) 89.88 (6.38) 89.38 (6.38)
Pix2Pix [55] 90.47 (6.23) 76.50 (17.77) 79.60 (13.13) 67.48 (15.97)
JSynR-Syn 90.47 (6.23) 89.69 (7.09) 90.01 (6.27) 90.15 (6.21)
JSSR-Syn 90.47 (6.23) 89.44 (7.15) 89.76 (6.34) 89.31 (7.57)

JSegR-Seg
Dice ↑ Venous Arterial Delay Non-Contrast

No-Synthesis 91.88 (4.84) 90.91 (5.06) 91.18 (4.68) 91.12 (4.72)
Pix2Pix [55] 91.88 (4.84) 89.59 (5.51) 87.78 (5.78) 89.59 (5.51)
JSynR-Syn 91.88 (4.84) 91.15 (4.93) 91.37 (4.56) 91.36 (4.54)
JSSR-Syn 91.88 (4.84) 91.12 (4.99) 91.30 (4.63) 91.39 (4.53)

JSSR-Seg
Dice ↑ Venous Arterial Delay Non-Contrast

No-Synthesis 92.24 (3.88) 91.25 (4.10) 91.34 (3.76) 91.37 (3.81)
Pix2Pix [55] 92.24 (3.88) 85.30 (7.11) 84.68 (9.29) 79.89 (8.49)
JSynR-Syn 92.24 (3.88) 91.42 (4.06) 91.58 (3.64) 91.67 (3.67)
JSSR-Syn 92.24 (3.88) 91.39 (4.10) 91.51 (3.72) 91.60 (3.69)

Table 5.2: Evaluation for the synthesis and segmentation tasks on the CGMH liver dataset
in terms of average Dice score

two ablations of JSSR. JSynR, which only contains the generator and registration

module, is optimized using (5.7). JSegR has the segmentation and registration

module instead. More details will be discussed in Section 5. As can be seen,

our JSSR method outperforms Deeds by 0.83% by average Dice, while executing

much faster in terms of inference. Also by taking advantage of the joint training,

JSSR achieves significantly higher results than VoxelMorph (exceeded by 1.28%)

with comparable inference time. We can observe gradual improvements from

VoxelMorph to JSynR to JSSR, which demonstrates the successive contributions of

joint training. Fig. 5.4 depicts a box plot of these results.
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5.4.3.2 Multi-modal image segmentation and synthesis

Table ?? presents the synthesis and segmentation evaluations. Following the

practice of [55], we evaluate the synthesis model by applying the segmentation

model on the synthesized image. The intuition is that the better the synthesized

image is, the better the segmentation map can be estimated. We evaluate with

three segmentation models. The VNet baseline is trained on the MSD dataset

with full supervision. JSegR-Seg is the segmentation part of JSegR as described

in Section 5. JSSR-Seg is the segmentation module of our JSSR system. For each

segmentation model, we test it on different synthesis model, thus comparing all

possible synthesis/segmentation combinations. For “No-Synthesis”, we directly

apply the segmentation model on original images. For the three synthesis models,

we test the segmentation model on the original venous image and also on the

“fake” venous images synthesized from arterial, delay, non-contrast phases. From

the No-Synthesis lines we can observe a clear performance drop when directly

applying the segmentation model to arterial, delay and non-contrast phases, since

the supervised data is all from the venous phase. For Pix2Pix, the performance goes

through different levels of reduction among different segmentation algorithms and

is not as high as the Non-Synthesis. That may be caused by artifacts introduced

by the GAN model and the L1 term is providing less constraint since there is no

paired data. Comparing the JSynR-Syn and JSSR-Syn generators, the performance

is improved by creating true paired data via the registration process, but even

so, it is just comparable to No-Synthesis. For JSynR-Syn, the JSynR is not jointly

learned with a segmentation process, so the performance for synthesized images
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does not necessarily go up. For JSSR-Syn, however, it means the constraints

we are using for optimizing the system does not bring enough communication

between the generator and segmentor to improve the former. Even so, we can

improvements from VNet to JSegR-Seg to JSSR-Seg on both the No-Synthesis and

various synthesis options, indicating that the segmentation process can still benefit

from a joint system, which includes the synthesis module. Please refer to Fig. 5.7

for qualitative examples of JSSR registration, synthesis and segmentation results.

5.5 Ablation and Discussion

5.5.1 JSegR vs JSSR

We implement JSegR as another ablation. The purpose is to explore the importance

of the synthesis module for the JSSR system. Since JSegR does not have a generator,

the registration module takes images from different phases directly as input. The

segmentation consistency term in (5.8) is then replaced with

Lreg
dice(S, Φ) = Ex,y1 − Dice[τ(S(x)), S(y)], (5.12)

where τ = Φ(x, y). This framework is similar to [145], which jointly learned

the registration and the segmentation module . In our case, though, x, y are in a

different domain and the annotations are unavailable. This method is expected

to struggle, since x, y are in different phases. However, as shown in Table ??,

the performance drop across phases is not too severe even for the baseline VNet.

Correspondingly, JSegR can achieve a higher result on registration than JSynR and
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Arterial Venous Synthesized Venous Warped Arterial

Arterial Liver Venous Liver Venous Liver (Pred) Arterial Liver
（Warped ）

Figure 5.5: Results on the arterial CT phase.

Non-contrast Venous Synthesized Venous Warped Non-contrast

Non-contrast Liver Venous Liver Venous Liver (Pred) Non-contrast Liver
（Warped ）

Figure 5.6: Results on the non-contrast CT phase.

Figure 5.7: Qualitative examples of JSSR synthesis, segmentation and registration.
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performs close to JSSR, which demonstrates the great importance of incorporating

semantic information into the registration.

5.5.2 Extra constraints

The constraints detailed in Fig. 5.1 are not the only possible constraints. For

instance, constraints can be added to ensure consistency between “register first” vs

“register last” pipelines:

Lreg
L1 (Φ, G) = Ex,y||G(τ(x), y)− τ(G(x, y))||1. (5.13)

However, each constraint introduces additional complexity. Future work should

explore whether (5.13), or other constraints, can boost performance further.

5.6 Conclusion

In this paper, we propose a novel JSSR system for multi-modal image registration.

Our system takes advantages of joint learning based on the intrinsic connections

between the synthesis, segmentation and registration tasks. The optimization can

be conducted end-to-end with several unsupervised consistency loss and each

component benefits from the joint training process. We evaluate the JSSR system

on a large-scale multi-phase clinically realistic CT image dataset without any

segmentation annotations. After joint training, the performance of registration and

segmentation increases by 0.91% and 1.86% respectively on the average Dice score

for all the phases. Our system outperforms the recent VoxelMorph algorithm [8] by

1.28%, and the state-of-the-art conventional multi-modal registration method [44]
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by 0.83%, but has considerably faster inference time.

5.7 Appendix

5.7.1 More Visualization

We visualize more examples in detail here. The denotations follow Figure 7.1. We

can see some potential improvement for JSSR system.

Firstly, the generator part is conditioned on both x and y, which brings both

benefits and shortcomings. In the column y −→ τ(x f ake) we can see the synthesized

image can well capture the intensity change between y and x since the checkerboard

image only shows mild difference between y and τ(x f ake). However, in the x −→

x f ake column, like Figure 5.8 Arterial row and Figure 5.12 Arterial row, the generator

also introduces additional boundary information from y, which will affect the

register.

Secondly, as in Figure 5.11, the segmentor part produces bad segmentation but

the overlap in τ ◦ S(x f ake) −→ S(y) is still large, meaning that the consistency is well

satisfied but will provide wrong supervision to the register. A better consistency

term may help this condition.

This system is now only tested on multi-phase CT images. However, equipped

with a generator and a segmentor, the system can be applied to many application

scenes like the registration from CT to MRI, or the domain adaptation for seg-

mentation between CT and MRI, or it can help the tumor detection by combining

multi-modality information if we extend the segmentor to segment both normal
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𝑦 → 𝑥 𝑥 → 𝑥𝑓𝑎𝑘𝑒 𝑦 → 𝜏(𝑥𝑓𝑎𝑘𝑒) 𝑦 → 𝜏(𝑥)

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.8: An Example for for evaluation of JSSR system. Each picture shows the difference
in checkerboard style between the two inputs indicated on the top (on the left and right of
−→). y ∈Venous and x ∈Arterial, Delay, Uncontrast for each row.

organ and tumor region.
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𝑝𝑥 → 𝑝𝑦 𝑝𝑦 → 𝑆(𝑦) 𝑝𝑥 → 𝑆(𝑥𝑓𝑎𝑘𝑒) 𝜏 ∘ 𝑆(𝑥𝑓𝑎𝑘𝑒) → 𝑆(𝑦) 𝜏(𝑝𝑥) → 𝑝𝑦

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.9: Visualization for the segmentation part of JSSR on the same example of Figure
5.9. In each picture, the pink part belongs to the input on the right of −→ and green part
belongs to the left input and white part is the overlap.

𝑦 → 𝑥 𝑥 → 𝑥𝑓𝑎𝑘𝑒 𝑦 → 𝜏(𝑥𝑓𝑎𝑘𝑒) 𝑦 → 𝜏(𝑥)

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.10: Another example
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𝑝𝑥 → 𝑝𝑦 𝑝𝑦 → 𝑆(𝑦) 𝑝𝑥 → 𝑆(𝑥𝑓𝑎𝑘𝑒) 𝜏 ∘ 𝑆(𝑥𝑓𝑎𝑘𝑒) → 𝑆(𝑦) 𝜏(𝑝𝑥) → 𝑝𝑦

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.11: Same example as Figure 5.10

𝑦 → 𝑥 𝑥 → 𝑥𝑓𝑎𝑘𝑒 𝑦 → 𝜏(𝑥𝑓𝑎𝑘𝑒) 𝑦 → 𝜏(𝑥)

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.12: Another example
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𝑝𝑥 → 𝑝𝑦 𝑝𝑦 → 𝑆(𝑦) 𝑝𝑥 → 𝑆(𝑥𝑓𝑎𝑘𝑒) 𝜏 ∘ 𝑆(𝑥𝑓𝑎𝑘𝑒) → 𝑆(𝑦) 𝜏(𝑝𝑥) → 𝑝𝑦

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.13: Same example as Figure 5.12

𝑦 → 𝑥 𝑥 → 𝑥𝑓𝑎𝑘𝑒 𝑦 → 𝜏(𝑥𝑓𝑎𝑘𝑒) 𝑦 → 𝜏(𝑥)

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.14: Another example
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𝑝𝑥 → 𝑝𝑦 𝑝𝑦 → 𝑆(𝑦) 𝑝𝑥 → 𝑆(𝑥𝑓𝑎𝑘𝑒) 𝜏 ∘ 𝑆(𝑥𝑓𝑎𝑘𝑒) → 𝑆(𝑦) 𝜏(𝑝𝑥) → 𝑝𝑦

𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝐷𝑒𝑙𝑎𝑦

𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

Figure 5.15: Same example as Figure 5.14
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5.7.2 Proof

We made an approximation in the paper that Lsyn
L1 (Φ, G) ≤ kLreg

L1 (Φ, G) for some

constant k when the τ generated by Φ is smooth enough. Here we give the prove.

||τ−1(y)− G(x, y)||1 =
∫︂

Ω
|τ−1(y)i − G(x, y)i|di

=
∫︂

Ω
|yτ(i) − G(x, y)i|di

=
∫︂

Ω
|yj − G(x, y)τ−1(j)|dτ−1(j)

=
∫︂

Ω
|(y)j − τ(G(x, y))j|τ−1′(j)dj

≤ k
∫︂

Ω
|(y)j − τ(G(x, y))j|dj

= k||τ(G(x, y))− y||1

using the smoothness assumption that |τ−1′(j)| ≤ k ∀j, x, y and the identity trans-

form τ(y)i = yτ−1(i). Then we have

Lsyn
L1 (Φ, G) = Ex,y||τ−1(y)− G(x, y)||1 ≤ kEx,y||τ(G(x, y))− y||1 = kLreg

L1 (Φ, G).
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Chapter 6

SAME: Deformable Image
Registration based on Embeddings

6.1 Introduction

Deformable image registration is a fundamental task in medical image analy-

sis [115]. Traditional registration methods solve an optimization problem and

iteratively minimize a preset similarity measure to align a pair of images. Re-

cently, learning-based deformable registration, using deep networks, have been

investigated [9, 50, 154, 93, 74]. Compared with their conventional counterparts,

learning-based methods can incorporate more flexible losses, integrate other com-

puting modules and are much faster in inference. VoxelMorph was a representative

work [9] that learns a parameterized registration function using a convolutional

neural network (CNN). Many recent methods focus on designing more sophisti-

cated networks using pyramid [93] or cascaded structures [50, 154], or connecting

registration to pipelines that include synthesis and segmentation [74]. Ideally, reg-

istration should focus on aligning semantically similar/coherent voxels, e.g., the
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same anatomical locations. This semantic information can come in the form of extra

manual annotations (e.g. organ masks) [9], but requiring prohibitive labor costs

from professionals. Existing unsupervised methods instead optimize similarity

measures describing local intensities as a proxy of the semantic information, such

as the mean squared error (MSE) or normalized cross correlation (NCC). However,

these are less reliable in settings with large deformations, complex anatomical

differences, or cross-modality/cross-phase imagery.

In this paper, we exploit incorporating a novel form of semantic information in

registration. SAM is a recent work as a means to produce pixel-wise embeddings

in radiological images by encoding anatomical semantic information [146]. It

requires no annotations in training. SAM can match corresponding points between

two images, which is exactly the fundamental goal of image registration. The

most simple and straightforward way to register two images with SAM is to

extract SAM embeddings from both fixed and moving images, match each moving

pixel to the closest fixed pixel in SAM space, and calculate the corresponding

coordinate offsets to generate a deformation field. However, this approach is

highly inefficient, as there are millions of pixels in a typical 3D CT scan. Besides,

SAM would not incorporate spatial smoothness constraints [9], which is useful

when the correspondences predicted by SAM contain noises.

We propose SAME to address these issues. SAME is comprised of three con-

secutive steps. (1) SAM-affine, which uses correspondence points generated from

SAM on a sparse grid to compute the affine transformation matrix. Affine registra-

tion [64] has been widely used either alone or as an initialization of deformable
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methods [9, 46]. (2) SAM-coarse, which uses a coarse correspondence grid to

directly produce a coarse-level deformation field. These first two steps are effi-

cient, require no additional training, and can provide a good initialization for the

final step. (3) Lastly, SAM-VM enhances the deep learning-based VoxelMorph

registration method [9], using SAM-based correlation features [26] and a newly for-

mulated SAM similarity loss. SAME is evaluated on a multi-phase chest CT dataset

for inter-subject registration with 35 thoracic organs annotated. Quantitative ex-

perimental results show that SAM-affine significantly outperforms traditional

optimization-based affine registration in both accuracy and speed. The complete

SAME consistently outperforms traditional approaches [116, 6] and VoxelMorph [9]

in both within-contrast-phase and across-contrast-phase tasks by average Dice

scores of 4.7% and 2.7%, respectively. SAME matches DEEDS [46], as the state-

of-the-art in CT registration [144], while being orders of magnitude faster (1.2 sec

vs. 45 sec).

6.2 Method

In this section, we present the details of the proposed SAME for deformable

registration and describe how SAM is integrated in each of the three steps.

6.2.1 SAM

SAM is recently proposed by [146], as a novel pixel-level contrastive learning frame-

work with a coarse-to-fine network and a hard-and-diverse negative sampling

strategy. In an unsupervised manner, it predicts a global and a local embedding
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vector with semantic meanings per pixel in a CT volume—the same anatomical

location in different images expressing similar embeddings. SAM is readily used to

find correspondences between images, providing a means to solve the registration

problem from a new perspective. Let X f , Xm ∈ RD×H×W be the fixed and moving

images to be registered. For each image, we extract the global and local SAM

embedding volumes and concatenate them in the channel dimension, resulting

in S f , Sm ∈ RC×D×H×W (C is the concatenated channel dimension). Given a point

p f = (x, y, z) in X f , we take its embedding vector S f (:, z, y, x) and convolve it with

Sm to get a similarity heatmap volume. The point with the highest similarity score

becomes the matched point in the moving image. Results show that matching for a

single point only consumes 0.2 sec on a common chest CT scan [146].

6.2.2 SAM-affine and SAM-coarse

Matched SAM correspondences can be directly employed to estimate an affine

transformation matrix [64, 46, 9]. First, we select a set of points on X f for matching.

Intuitively, evenly distributed points on the image may lead to a better estimation.

Therefore, we use the points on a regular grid on X f , see Fig. 6.1. It would be

more precise to run point matching on every pixel (instead of a coarse grid) and

directly generate a fine deformation field, but that would consume 0.5h for a CT

with 200 slices. To balance accuracy and speed, we use a grid with stride 8. Since

SAM is only designed for points inside the body, we segment the body mask of X f

using intensity thresholding and morphological post processing, and then remove

grid points outside the mask. When doing point matching, we downsample Sm
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Figure 6.1: SAME framework. The moving image is warped by three consecutive steps:
SAM-affine, SAM-coarse, SAM-VM, gradually approaching the fixed image. Variables X, S,
and P denote the image, SAM embedding, and point coordinates, respectively. Subscripts
m, f stand for moving or fixed, respectively. Superscripts a, c and v indicate the variable is
generated after each of the three steps (affine, coarse deform, or VoxelMorph).

with spatial stride of 4 to reduce computation. After the corresponding points

in Xm are located, we need to filter out low-quality matches. We examine their

similarity scores and discard those lower than a threshold θ. After that, we can get

k matched points in X f , Xm, which can be represented by 3× k matrices: P f and Pm,

respectively. We pad them with 1s to create homogeneous versions of the matched

points coordinates, P̃ f , P̃m ∈ R4×k, and estimate the affine matrix Â ∈ R4×4 by a

simple least squares fitting:

Â =A ∥AP̃m − P̃ f ∥2
F. (6.1)
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Next, we transform Xm with Â to obtain Xa
m and extract new SAM embeddings

Sa
m from it. Then, points in P f are matched again on Xa

m to get Pa
m. Pa

m and P f actu-

ally represent a mapping from Xa
m to X f on k sparse points. We can compute their

difference ∆ = P f − Pa
m, and map each point in ∆ back to the original coordinates

of the image to get τc ∈ R3×D×H×W . Note, there are only k deformation in ∆ that

are not necessarily uniformly spaced. Thus values in τc are filled in using linear

interpolation. This gives us the final coarsely estimated deformation map, which

is applied to warp (Xa
m, Sa

m) to (Xc
m, Sc

m). Although coarsely estimated (on only k

points), τc can effectively reduce the difference between the moving and the fixed

images. Compared to a global affine alignment, this provides local warps that can

serve as a better initialization for a final learning-based deformable registration

step. One question is that whether we could omit SAM-affine and compute τc

directly. We observed that before affine registration, the two images may have

significant offsets, so τc is potentially large in magnitude, which will magnify the

noises in the matched points. Thus, we first perform affine registration to reduce

the magnitude of deformations.

6.2.3 SAM-VM

The objective of the final step is to predict a fine deformation map τ ∈ R3×D×H×W ,

which is a spatial transformation function that can warp the moving image to

best match the fixed one. Following the framework of VoxelMorph [9], we learn a

function Φ : (X f , Xc
m) → τ with a CNN. The original VoxelMorph uses pure pixel

intensity-based features and similarity losses. We improve them by leveraging
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the semantic information contained in SAM embeddings using SAM correlation

features and a SAM loss (see Fig. 6.1).

The loss function in VoxelMorph and follow-up works includes two parts,

an image similarity loss and a smoothness loss. We use the local normalized

cross-correlation (NCC) loss [9] for the former, while the latter is defined as

Lsmooth(τ) =
1
|Ω| ∑

u∈Ω
||∇τu||2, (6.2)

where Ω is the set of all pixels within the body mask. However, the NCC loss

only compares local image intensities, which may not be robust under CT contrast

injection, pathological changes, and large or complex deformations in the two

images. On the other hand, the SAM embeddings can uncover semantic similarities

between two pixels. Thus, we add a proposed SAM loss:

LSAM(S f , Sv
m) =

1
|Ω| ∑

u∈Ω
⟨S f (u), Sv

m(u)⟩, (6.3)

where the superscript v indicates the feature map has been warped by τ predicted

by SAM-VM. The final loss is

L = LNCC(X f , Xv
m) + λLSAM(S f , Sv

m) + γLsmooth(τ). (6.4)

While the SAM loss is an effective means to more semantically align images, the

features extracted in standard VoxelMorph still lack semantic information, which

may be needed to better guide predictions. The correlation feature was originally

proposed in FlowNet [26] to manage this problem for optical flow. It was also used

in [42] for registration. Briefly, it computes the similarity of pixel u on X f and pixel
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Table 6.1: Comparison of different registration methods. We show the average Dice score
(%) of two tasks: CE-to-CE and CE-to-NC registration. VM: VoxelMorph. Best and second
best performance is shown in bold and gray box, respectively.

Methods CE-to-CE CE-to-NC Inference
time (s)

std of |Jϕ|

Elastix-affine [64] 28.44 27.96 3.38 -
MIND-affine [43] 28.24 27.91 7.86 -
SAM-affine (SA) 33.80 33.77 0.48 -
SAM-coarse (SC) 44.67 43.68 0.78 -
SA + SC 46.76 45.67 1.05 0.40
SA + VM [9] 48.79 47.35 0.78 0.38
SA + SAM-VM 51.99 49.90 0.84 0.36
SA + SC + VM 54.12 50.64 1.13 0.68
SA + SC + SAM-VM (ours) 54.42 50.96 1.16 0.66
SyN [6] 49.75 47.95 74.34 -
FFD [116] 49.36 48.22 93.51 0.51
DEEDS [46] 52.72 51.15 45.35 0.40

*Paired t-tests show SAME significantly outperforms all other methods (p < 10−4), except for DEEDS in the CE-to-NC

setting. SAM-VM significantly outperforms VM (p < 10−7).

**The average surface distance (ASD) in CE-to-CE: FFD 4.6mm, SA+VM 4.1mm, DEEDS 4.0mm, SA+SAM-VM 3.9mm, SA +

SC + SAM-VM 3.8mm.

u + d on Xm, where d is a small displacement. This similarity is computed for

each pixel and for n possible displacement values to generate an n-channel feature

map, which is then concatenated to the original feature map at some point in the

network. When using SAM, the semantic similarity of two pixels can be simply

computed as the inner product of two SAM vectors, F(u) = ⟨S f (u), Sc
m(u + d)⟩.

We empirically find that using 27 displacement values d ∈ {−2, 0, 2}3 yields good

results. Injecting the SAM correlation features provides improved cues to the

network when predicting deformations, thus brings further boosts in accuracy.
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6.3 Experiments

6.3.1 Dataset and task.

To evaluate SAME, we collected a chest CT dataset containing 94 subjects, each

with a contrast-enhanced (CE) and a non-contrast (NC) scan. We randomly split

the patients to 74, 10, and 10 for training, validation, and testing. Each image has

manually labeled masks of 35 organs (including lung, heart, airway, esophagus,

aorta, bones, muscles, arteries and veins) [36]. For the validation and test sets,

we construct 90 image pairs for inter-subject registration and calculate an atlas-

based segmentation accuracy on the 35 organs. Performances of two tasks are

evaluated: intra-phase registration (CE-to-CE) and cross-phase registration (CE-to-

NC). Every image is resampled to an isotropic resolution of 2mm and cropped to

208 × 144 × 192 by clipping black borders. The image intensity is normalized to

(−1, 1) using a window of (−800, 400) HU.

6.3.2 Implementation details.

Our method was developed using PyTorch 1.5. It was run on a Ubuntu server

with 12 CPU cores of 3.60GHz. It requires one NVIDIA Quadro RTX 6000 GPU

to train and test. We trained a SAM model using the training set of the chest

CT dataset. Its structure is identical with the one in [146], which outputs a 128D

global embedding and a 128D local one for each pixel. This model is fixed and

applied in all three steps of SAME. In SAM-affine and SAM-coarse, the similarity

threshold θ is set to 0.7 to select high-confidence matches. In SAM-VM, we use
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a 3D progressive holistically-nested network (P-HNN) [38] as the backbone and

concatenate the correlation feature before the third convolutional block. We also

tried 3D U-Net [22] but observed no significant accuracy gains. The loss weights in

Eq. 6.4 are empirically set to λ = 1, γ = 0.5. We train SAM-VM using the Adam

optimizer with a learning rate of 0.001 for 10 epochs. Each training batch contains 2

image pairs with random contrast phases (CE or NC). We evaluate the registration

results using average Dice score over 35 organ masks. The organ masks are not

used during training.

6.3.3 Quantitative results.

From Table 6.1 we can see that SAM-affine outperforms the traditional affine

registration method in Elastix [64] by 5-6%, meanwhile being 6 times faster. It is

also better than affine registration with the MIND [43] robust descriptor. This is

because SAM can match corresponding anatomical locations between two images

accurately and efficiently. Compared with other methods that iteratively optimizes

the affine parameters, SAM-affine directly calculates affine matrix by least squared

fitting. SAM-coarse surpasses SAM-affine by 10% since it allows for locally de-

formable warping with more degrees of freedom. Cascading these two steps

further boosts the accuracy. VoxelMorph pre-aligned by SAM-affine outperforms

SAM-affine + SAM-coarse moderately since the latter can only perform a coarse

deformable transformation. However, note that the former is a learning-based

dense registration method, while the latter does not require any extra training. It

only utilizes the matching result of a pretrained SAM model on grid points. The
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Table 6.2: Ablation study for different settings on incorporating SAM to VoxelMorph (VM).
The average Dice score (%) is reported. All methods are initialized by SAM-affine without
SAM-coarse.

Methods SAM loss SAM correlation feature CE-to-CE CE-to-NC
VM [9] × × 48.79 47.35

✓ × 50.43 48.24
SAM-VM × ✓ 51.37 48.99

✓ ✓ 51.99 49.90

2% small gap demonstrates the capability of our proposed SAM-coarse.

SAM-affine + SAM-coarse can provide a good initialization to the learning-

based VM in the third step, allowing it to better perform. From the 4 rows in the

middle block of Table 6.1, we also observe consistent improvement by replacing

the original VoxelMorph [9] with SAM-VM. The SAM embeddings contain more

semantic information than the raw pixel intensities, which is incorporated to SAM-

VM by the SAM-based correlation feature and SAM loss. An ablation study of

SAM-VM is shown in Table 7.3, where the best result is achieved when both the

correlation feature and SAM loss are used. On one hand, explicitly inputting the

correlation feature calculated by SAM provides extra guidance for determining the

deformation fields. On the other hand, the SAM loss provides a more semantically

informed supervisory signal.

In the bottom block of Table 6.1, we evaluate several widely-used non-rigid

registration methods including FFD [116], SyN [6], and DEEDS [46]. FFD was

implemented using Elastix [10], where parameters matched the best performing

FFD method in EMPIRE10 Challenge [94]. The only modification was an extra

bending energy term with weight 0.01 to regularize the smoothness. For SyN
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Figure 6.2: Comparison of registration methods on all organ groups. Eso: esophagus.

(a) (c)(b) (d) (e) (f)

Figure 6.3: Visualization of registration results from different methods. From left to right is
(a) the moving image, (b) warped moving image of ANTs, (c) DEEDS, (d) SAM-affine +
VoxelMorph, (e) SAME, and (f) the fixed image.

(implemented in ANTS) and DEEDS (implemented by the original author), param-

eters were set according to those used in [144]. For affine transform, the default
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implementation in each package was used. The proposed SAME (combination

of three steps) achieves markedly better results than SyN and FFD. Compared

with the best traditional method (DEEDS), it performs better in the within-phase

setting and comparably in the cross-phase setting, meanwhile is 38 times faster.

Cross-phase registration is more difficult because the brightness and appearance of

contrast-enhanced and non-contrast CTs can be very different (see Xm and X f in

Fig. 6.1), and DEEDS has explicitly designed the modality independent features in

its registration. SAME takes a different approach that uses the modality invariant

SAM embeddings to align images.

We have computed the standard deviation of Jacobian determinants to measure

the smoothness of the deformation field. In Table 6.1, it is observed that SAME

achieves the best Dice with a certain degree of sacrifice in smoothness. This is

mainly because SAME cascades two deformable methods, SAM-coarse (SC) and

SAM-VM. The smoothness of SAM-VM alone is slightly better than the original

VM (0.36 vs. 0.38), but SC itself brings more non-smoothness (0.40). SC generates a

deformation field by directly differentiating two sets of coordinates without any

constraint. This approach gives SC more flexibility to model large deformation but

may also produce less smoothed results. We will study on adding constraints to

improve the smoothness of SC in the future. On the other hand, if SC is not used,

SA + SAM-VM can also achieve competing accuracy (52.0% Dice score) with good

smoothness (0.36), where the overall performance is still comparable to DEEDS

(52.7%, 0.40) while significantly better than FFD (49.4%, 0.51), and SA+VM (50.8%,

0.38).
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Organ-specific results are shown in Fig. 6.2. For the sake of conciseness, we

divide the 35 organs in our dataset into 9 groups and calculate the median and

inter-quartile range of Dice score within each group. The affine in Fig. 6.2 is from

Elastix [64], whereas the VoxelMorph refers to SAM-affine + VM [9] in Table 6.1.

The results of SAME surpass DEEDS on 8 out of 9 groups except heart in the within-

phase condition. In the cross-phase setting, SAME outperforms DEEDS on the

artery, bone, airway and lung organs. In other organs, like esophagus and muscle,

SAME shows results with smaller variance and comparable median performance

with DEEDS. Organ groups such as artery, esophagus, vein, and muscle display

lower Dice scores for all methods because they are typically small and can be

confused with surrounding tissues. Qualitative examples are illustrated in Fig. 6.3.

Manual organ masks of the fixed images are overlaid to show whether the warped

moving images align well with the fixed image. Arrows pointed to regions where

SAME works better than other methods.

6.4 Conclusion

In this paper, we propose SAME, a fast and accurate framework for unsupervised

medical image registration. We expect SAM-affine and SAM-coarse to be promising

alternatives of traditional optimization-based methods for registration initialization.

The SAM correlation feature and SAM loss may also be combined with other

learning-based algorithms [74, 154] for further accuracy improvement.
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Chapter 7

Hybrid Feature Engineering for False
Positive Reduction in Pancreatic
Lesion Detection

7.1 Introduction

Pancreatic cancer is a low-incident but highly lethal disease. Patients with pancre-

atic cancer suffer from low survival rate with less than 5% surviving five years and

the average life expectancy is less than six months after diagnosed with metastatic

pancreatic cancer [123]. However, even expert radiologists struggle to distinguish

the real tiny cancer, which causes the missing of best treatment period. To deal

with this, automatically detecting the cancer in an early stage is urgently needed.

Recently, deep convolutional neural networks (CNNs) have shown great promise

in detecting pancreatic cancer due to their strong ability to learn features automati-

cally in a data-driven manner [142, 161, ?, 163]. Nevertheless, it is still challenging

to achieve a satisfying pancreatic lesion detection result, since there is a trade-off
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between sensitivity and specificity. False positive reduction (FPR) has been widely

used in many lesion detection system in order to maintain a high sensitivity as

well as a high specificity. Significant efforts have been dedicated to reducing the

number of false positives for pulmonary nodule detection [130, 27, 119, 127]. False

positive reduction for pancreatic tumors, however, is under-explored in previous

research for at least two reasons. First, the annotated data is extremely scarce

on pancreatic cancers compared to other diseases, especially for those containing

really small cancers, which impedes the progress of detecting pancreatic tumors.

More importantly, small pancreatic tumors cannot be easily identified as they share

similar textures with surrounding tissues, while the contrast is larger in other pul-

monary nodule cases (e.g., for pulmonary nodules the surrounding environment

is mostly air). Pancreatic tumors smaller than 2cm are often inconspicuous on

computerized tomography (CT) scans even with radiologists’ expertise [4]. This

suggests that false positives of pancreatic tumors tend to carry similar appearance

to true positives (e.g., false positives correspond to the focal fat infiltration in the

pancreas), which makes this task more challenging.

Consequently, there is a large room for improvement in false positive reduction

for pancreatic tumors. On one hand, for feature extraction, most existing CNN-

based false positive reduction methods focus on how to design powerful networks

to extract features from candidate patches, such as by exploiting different levels of

contexts [27, 57] and multi-view cues [119]. However, as pointed out by a recent

work [35], the features learned by CNNs tend to bias towards texture. We claim

that such biased feature representation is less discriminative in the FPR stage
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since the major discrepancy towards appearance has been filtered out more or

less by the first stage detection, where a deep neural network is typically used

to provide initial detection results. Also in [130, 21, 81, 83], there is an evidence

that other features like shape can provide complementary information for more

accurate classification. On the other hand, for feature fusion, although there

are previous studies to fuse CNNs features with hand-crafted features [130, 125]

by concatenating them to different level of CNN outputs, we argue that it is

suboptimal since CNNs features and hand-crafted features are different, where for

hand-crafted features each dimension can represent different information while

for CNNs features information is mixed up in a high dimensional space. Thus,

a robust feature engineering is highly required for exploiting the information in

these different feature spaces to facilitate false positive reduction.

To address above issues, we propose a Hybrid Feature Engineering framework

(HFE) to tackle challenges in the false positive reduction for pancreatic lesion

detection. We first extract features that represent different information, i.e. texture,

shape and uncertainty, including both hand-crafted and CNNs features to construct

a hybrid feature pool. Then a combination of features from the pool is picked

using a sequential feature selection technique. Finally we train a random forest to

distinguish false positives from true positives. The random forest is chosen for its

strong interpretability and capability in dealing with hand-crafted data. To better

apply feature selection and tree-based classification to the learning based features,

we apply principal component analysis (PCA) on CNNs features before adding it

into the feature pool. Our preliminary study shows that the picked combination
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Figure 7.1: The framework of our proposed Hybrid Feature Engineering framework.

of features boost the performance of FPR, and PCA on CNNs features can help

both feature selection and random forest based method. We report 80% accuracy

in classifying 475 tumor candidates generated from 281 3D CT scans and reduce

the false positive rate by a relatively 60.3% from 0.63/scan to 0.25/scan with an

only 3.6% sensitivity drop.

7.2 Method

In this section, we describe details of the proposed false positive reduction method,

including (i) the initial detection algorithm to provide lesion candidates, and hybrid

feature engineering for (ii) comprehensive feature extraction by both hand-crafted

and learning based processes and (iii) feature selection and classifier learning for

false positive reduction.
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7.2.1 Pancreatic Lesion Detection

Given that pancreatic lesion detection is a challenging task, we need the sensitivity

of the detection stage to be as high as possible so that the false positive reduction

after that makes more sense. Our focus of this paper is to better reject false positives

while keeping the sensitivity comparable as before. In this stage we choose a state-

of-art segmentation framework for pancreatic cancer detection [142] to generate

the initial lesion candidates, which reported 97% sensitivity on a large CT dataset

containing subjects with or without pancreatic tumors.

Formally, let X ∈ X be the CT scan volume, F be the segmentation algorithm

and Y be the voxel-wise annotation of class N = {background, pancreas, lesion}.

We learn the parameters of F under the supervision of Y, following [142]. After

training, the estimation Ŷ is obtained by testing F on X for a separate split. Then

we extract patches centered on the connected components of lesion prediction of

Ŷ from X, Y and Ŷ correspondingly and assign each patch with a binary label

indicating whether Ŷ and Y overlaps in this patch area on the lesion class. We

denote the patch data and the binary label as Xp, Yp, Ŷp
, l, respectively.

7.2.2 Comprehensive Feature Extraction

For each candidate patch obtained in section 2.1, we extract its features from three

different perspectives, namely quality assessment (QA), shape and texture. The

QA feature is usually targeted at anomaly detection. In FPR we treat the properties

within tumor region as target distribution so that the false positives, which do not
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correspond to tumor region become anomalies. Shape and texture can represent

orthogonal properties of pancreatic lesions so that they provide complementary

cues when combined together.

7.2.2.1 Quality Assessment Feature

It is shown in [58] that the entropy based uncertainty helps assess the quality

of segmentation. Here we use it to distinguish between false positives and true

positives, since segmentation with bad quality are more likely to be a false positive.

We calculate the uncertainty in a way by accumulating the entropy on the voxel

that is predicted as lesion in Ŷp
. Specifically, we have

fentropy = − 1
|Ω| ∑

i∈Ω
∑

c∈N
P(Ŷp

i = c) log P(Ŷp
i = c),

where Ω = {i| arg maxc∈N P(Ŷp
i = c) = lesion}.

We combine another feature proposed in [75], where a variational auto-encoder

(VAE) is learned to reconstruct the ground-truth segmentation and then the recon-

struction error of the predictive segmentation is used to evaluate the segmentation

quality. Specifically,

fvae = DSC(Ŷp
, VAE(Ŷp

i )),

where DSC represents dice coefficient score.
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7.2.2.2 Shape Feature

The shape feature is important in the organ segmentation since human organs

usually has template 3D shapes. In [21] and [129], hand-crafted features on shape

are used in FPR of liver tumor and pulmonary nodules respectively. We extract 15

hand-crafted shape features as fshapeHC using the radiomics library [132].

Apart from hand-crafted feature, we also extract learning based shape feature by

training a neural network Gs to classify the false positives. We learn the parameter

of Gs by minimizing the cross entropy loss, i.e.,

G∗
s = arg min

Gs

1
|Y pˆ | ∑

y∈Ŷ p
−ly log [Gs(y)]− (1 − ly) log [1 − Gs(y)],

where Ŷ p
contains all the predicted patch in section 2.1. In order to fit the input

size of neural network, we resample the input patches into the same dimension

first. As in [81] we force the neural network to learn the shape feature by feeding it

with a binary mask to make a decision. After converging, we extract the feature

from the output of second last fully connected layer and apply Principal Com-

ponent Analysis (PCA) on it. The PCA is to make the feature of neural network

independent on each dimension as well as apply dimension reduction. We show

that this benefits when applying feature selection and tree-based classification on

it. We denote this learning based feature after PCA as fshapeDL.
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7.2.2.3 Texture Feature

The texture is usually the crucial feature in many computer vision task. However in

traditional FPR, the candidates are usually obtained by a learned neural network,

which can bias to texture properties [35], which makes the texture feature less

discriminative in the FPR stage. To compare the effect with other types of feature,

we also extract texture based features. For hand-crafted texture features, we

extract gray level co-occurrence matrix (GLCM) features and first order statistics

using [132] and form a 29 dimension feature ftextureHC.

Similarly we extract learning based texture feature ftextureDL by training a neural

network Gt of the same structure with Gs. The difference is that we only input Xp

instead of Ŷp
to let it bias to the texture properties. The feature is extracted from

the same fully connected layer and applied PCA afterwards.

7.2.3 Feature Selection and Classifier Learning

We first apply sequential feature selection [31] on the hybrid feature pool. Specifi-

cally, starting from an empty set, we pick one feature at one time from the remaining

feature pool that minimize a validation loss, until the number of picked features

becomes m. At each loop we train a random forest to learn false positive label l

for each candidate based on the picked features and test it on a validation set to

calculate error. After feature selection, we finally train a new random forest under

the same parameter setting as during feature selection
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Table 7.1: Results for pancreatic lesion detection on testing set before and after FPR. SEN
per correspondence means sensitivity in terms of total number of lesions

SEN per SEN per SPE per FPs per
case(%) correspondence(%) case(%) scan

Init. Detection 93.3 85.3 82.5 0.63
Init. Detection+FPR 89.7 77.3 91.2 0.25

Pancreas

Annotation Segmentation Result Annotation Segmentation Result

Correctly rejected with confidence 85.80% Correctly kept with confidence 69.60%

Wrongly kept with confidence 50.38% Wrongly rejected with confidence 96.09%
Pancreatic Duct Pancreatic Lesion

Figure 7.2: Visualization of FPR examples. Tumor candidates are within the red box. Our
method can distinguish false positives even with small size.

7.3 Experiments

In this section, we evaluate the proposed Hybrid Feature Engineering (HFE) on a

large scale 3D CT dataset. We compare different combinations of feature sets with

our feature selection result and also different classifiers to prove the effectiveness

of our proposed HFE.
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7.3.0.1 Datasets

The experiments are conducted on a large scale 3D CT dataset containing 2285

subjects. The CT volume is of size 512x512xL,where the resolution for sagittal

and coronal axis is 0.6-0.9mm and for axial is 0.5mm. In the dataset there are

1734 biopsy-proven abnormal cases, containing at least one of the three types of

pancreatic lesion, namely pancreatic ductal adenocarcinoma (PDAC), pancreatic

cystic lesions (Cyst) and pancreatic neuroendocrine tumors (PNET). This dataset is

collected under the help of radiologists and voxel-wise annotation for the lesion

is available. The size of lesion ranges from 5mm to 120mm in diameter. The

variance of size causes extra difficulty in lesion detection, since detecting smaller

lesion usually means more false positives, and that motivates us to develop this

specialized FPR stage.

7.3.0.2 Experimental Settings

We first split the dataset into two separate parts X1,X2, where X1 contains 1062

abnormal cases and 400 normal cases and X2 contains 672 abnormal cases and 151

normal cases (823 in total). The first part X1 is used to train a detection model

that provides the initial candidates as mentioned in section 2.1. We then test that

model on X2 and conduct the FPR experiments on it. In our experiments, the

segmentaion model generate 1359 candidates in total on X2, where 823 of them

are true positives, i.e., have overlap with the lesion annotation, and 536 are false

positives. Initial detection result is as shown in Tab.7.1. We treat the FPR as a

binary classification problem (1 for keeping the candidate and 0 for rejecting it). We
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Table 7.2: Results for FPR using different feature sets. N is the number of used feature

Feature N ACC(%) SEN(%) SPE(%) AUC(%) F-score(%)
textureHC 29 76.89 81.51 69.71 81.89 81.10
textureDL 12 73.50 79.14 64.73 79.15 78.42
shapeHC 15 75.99 76.71 74.87 82.06 79.53
shapeDL 12 75.44 78.37 70.88 84.44 79.52

QA 2 76.71 81.18 69.77 84.42 80.91
All 70 76.63 79.62 71.98 83.01 80.56

All+FS (Ours) 10 80.20 83.07 75.75 85.88 83.62

further equally partition X2 into training, validation and testing set,which contains

434, 450, 475 candidates respectively. The model for generating learning based

features and random forest for classifying false positives are trained on the training

set. The random forest consists of 20 decision trees with maximum depth 3 and

minimum leaf size 30. The validation loss during feature selection is calculated

on the validation set. Detailed structure of models used in FPR can be found in

appendix. The final result is reported on the testing set. For the learning based

feature, the original dimension is 64, we extract the first 12 principle components,

which explain 80% of the data. We evaluate different methods using standard

metrics including accuracy (ACC), sensitivity (SEN), specificity (SPE) and F1-score.

We also report the area under the receiver operating characteristic (ROC) curve,

AUC to measure the performance. To eliminate randomness, each experiment is

repeated for 50 times and report the average result.

7.3.0.3 Results and Discussion

We summarize the results in this section,including the performance using different

feature sets (Tab.7.2), different number of selected features (Fig. 7.4), ablations of
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Table 7.3: Comparison results for FPR with different settings PCA and Feature Selection(FS).
N for number of used features

FS PCA N ACC(%) SEN(%) SPE(%) AUC(%) F-score(%)
× × 174 76.19 81.58 67.81 83.14 80.65
× ✓ 70 76.63 79.62 71.98 83.01 80.56
✓ × 10 78.13 81.56 72.82 85.30 81.94
✓ ✓ 10 80.20 83.07 75.75 85.88 83.62

PCA and feature selection (Tab.7.3).

In Tab.7.2, we compare our method with simply input one group of feature

defined in section 2.2 or input all the features. The result shows that the both

shape feature and QA feature perform better than learning based texture feature,

which proves the idea that the texture based features are less discriminative in

the FPR stage. The QA feature achieves the highest performance with only 2

features, showing that quality assessment task can provide crucial cues in FPR. In

our experiments, using all the features do not yield to better result since the limited

number of training data will lead to overfitting can cause performance drop on the

test set. Our best result is achieved after feature selection. We select 10 features

from the hybrid feature pool as described in section 2.3 and observe that those

10 features are made up by features from all the feature set we have mentioned,

which proves the importance of building up the hybrid feature pool. Details of

those 10 selected features can be found in the appendix.

To illustrate the effect of feature selection and PCA, in Fig.7.4 we vary the

number of selected features and report the result on both validation and testing set.

We can see that on the validation set, as the number of picked features increases, the
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Figure 7.3: Visualization of how the number of picked features affect the result. X-axis is
for the number of selected features.

result tends to get better. That is because we are using the error on the validation

set to guide the selection. However on the test set, we observe more vibration

on the result, indicating that the feature selection method may have chance to

overfit the validation set. But when comparing selecting feature with and without

PCA, the result after PCA is consistently better than before PCA. In Tab.7.3 we

conduct throughout ablation to show how the feature selection (FS) and PCA affect

the results. The feature selection procedure boosts the performance significantly

(2% w/o PCA and 3.6% w/PCA) and applying PCA both decreases the feature

dimension and makes learning based feature orthogonal so that it will further

benefit the feature selection.

We visualize several typical conditions as in Fig.7.2. The statistic shows that

around 70% of false positives in our experiments are smaller than 1cm in diameter

and our method can correctly reject 52% of them while keeping 93% of the true

positives. Our method is not able to handle cases where FPs are outside the

pancreas or mixed with pancreatic duct prediction, since such information is still

not exploited in the feature engineering framework, which could be a promising
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direction for the future work.

7.4 Conclusion

We propose a Hybrid Feature Engineering method for false positive reduction in

pancreatic lesion detection. We show that CNNs features can be better merged with

hand-crafted features with PCA and random forest classifier. In our experiments,

hand-crafted shape feature combined with learning based texture feature and QA

feature achieves the best result. With this optimal combination, we finally reduce

the false positive rate from 0.62/scan to 0.25/scan, while sensitivity only changes

from 93.3% to 89.7% on a large CT dataset containing 281 volumes. Given that FPR

in pancreatic lesion detection is still under-explored in most current research, the

proposed method already achieves promising result in the first attempt.

Acknowledgements This work was supported by the Lustgarten Foundation

for Pancreatic Cancer Research

7.5 Appendix

7.5.1 Feature List

We include all the features used in our HFE system in Tab.7.4 and the selected

features after feature selection in Tab.7.5.
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Table 7.4: All features used in HFE system

HC Shape Features (HCS) HC Texture Features (HCT)
Radius Autocorrelation JointAverage

Elongation ClusterProminence JointEnergy
Flatness ClusterShade JointEntropy

LeastAxisLength ClusterTendency MCC
MajorAxisLength Contrast MaximumProbability

Maximum2DDiameterColumn Correlation SumAverage
Maximum2DDiameterRow DifferenceAverage SumSquares
Maximum2DDiameterSlice DifferenceEntropy SumEntropy
Maximum2DDiameterRow DifferenceVariance Kurtosis

Maximum3DDiameter InverseDifference MeanAbsoluteDeviation
MeshVolume IDM Range

MinorAxisLength IDMN Skewness
Sphericity IDN Uniformity

SurfaceArea IMC1
SurfaceVolumeRatio IMC2

VoxelVolume InverseVariance
QA Features (QA) DL Shape Features (DLS) DL Texture Features (DLT)

ENTROPY Shape-PC-1 to Texture-PC-1 to
VAE Shape-PC-12 Texture-PC-12

Table 7.5: Feature selection(FS) result by the sequential feature selection method. Note that
without applying PCA, the deep learning features are 64 dimension instead of 12 when
applying PCA.

FS w/ PCA Feature Group FS w/o PCA Feature Group
SurfaceVolumeRatio HCS Shape-DL-40 DLS

ENTROPY QA ENTROPY QA
Shape-PC-12 DLS Shape-DL-23 DLS
Texture-PC-8 DLT Shape-DL-32 DLS

Range HCT Texture-DL-26 DLT
VAE QA Shape-DL-39 DLS

Texture-PC-11 DLT Shape-DL-64 DLS
SumEntropy HCT Sphericity HCS

MaximumProbability HCT Shape-DL-25 DLS
IDN HCT JointAverage HCT
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Figure 7.4: The model structure used for extracting learning based shape and texture
features and QA-VAE feature. Both model are trained with SGD optimizer and learning
rate 0.01. Random rotation and scaling are applied for data augmentation.

7.5.2 Model Structure

We include the model structure used for extracting deep shape feature, deep texture

feature and QA VAE feature in Fig.7.4
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Chapter 8

Conclusion

8.1 Summary

In this dissertation, we focus on topics on knowledge fusion and the applications

in fundamental tasks in medical image analysis. In chapter 2, we study the shape

prior knowledge of organ segmentation with a variational auto-encoder and apply

it for automatic quality assessment. Then we focus on detecting pancreatic can-

cer. In chapter 3, we propose to obtain the shape representation with a learned

auto-encoder from the predictive pancreas segmentation and then use it for clas-

sifying abnormal patients. Further in chapter 4, we design a fusion framework

which combines information from both shape and texture extracted from predic-

tive segmentation and CT scans. Next we aim at improving multi-modal image

registration. Considering the relationship between image segmentation, synthesis

and registration, in chapter 5, we propose a joint multi-task framework in order

to benefit each individual task by incorporating additional knowledge via joint

learning. In chapter 6, we improve current deep image registration methods by
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introducing high-level semantic representation of images into both feature level

and loss function of basic model. Finally in chapter 7, we design a pipeline for false

positive removal in pancreatic lesion detection. It first extracts features from differ-

ent perspectives including shape, texture, uncertainty, quality. Then the features

are selected and used to train a classification model.

8.2 Future Work

Although with the development of deep learning, the performance on the public

benchmarks shows consistently improvement, there still exist challenges in order

to really benefit the efficiency and accuracy when deploying AI system into clinical

procedures. Firstly, poor robustness of model limits the performance in the scenario

of large-scale testing, where the data comes from various sources. A reliable quality

assessment system and the ability to adapt to different source of data is necessary.

Secondly, the ability to reasoning is crucial for both doctors and AI system in

the diagnosis procedure. The interpretation of the result from AI system will

help doctors understand the condition of patients and give more accurate clinical

decisions. Thirdly, current algorithms are usually designed for a specific organ or

lesion. It is worth exploring whether transferring knowledge from multiple tasks

benefits the model robustness.
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