36 research outputs found

    A review: On path planning strategies for navigation of mobile robot

    Get PDF
    This paper presents the rigorous study of mobile robot navigation techniques used so far. The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap. The classical approaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (APF); reactive approaches such as genetic algorithm (GA), fuzzy logic (FL), neural network (NN), firefly algorithm (FA), particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization (BFO), artificial bee colony (ABC), cuckoo search (CS), shuffled frog leaping algorithm (SFLA) and other miscellaneous algorithms (OMA) are considered for study. The navigation over static and dynamic condition is analyzed (for single and multiple robot systems) and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches. It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm. Hence, reactive approaches are more popular and widely used for path planning of mobile robot. The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics

    Q-Learnheuristics: towards data-driven balanced metaheuristics

    Get PDF
    One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions

    Evolutionary framework with reinforcement learning-based mutation adaptation

    Get PDF
    Although several multi-operator and multi-method approaches for solving optimization problems have been proposed, their performances are not consistent for a wide range of optimization problems. Also, the task of ensuring the appropriate selection of algorithms and operators may be inefficient since their designs are undertaken mainly through trial and error. This research proposes an improved optimization framework that uses the benefits of multiple algorithms, namely, a multi-operator differential evolution algorithm and a co-variance matrix adaptation evolution strategy. In the former, reinforcement learning is used to automatically choose the best differential evolution operator. To judge the performance of the proposed framework, three benchmark sets of bound-constrained optimization problems (73 problems) with 10, 30 and 50 dimensions are solved. Further, the proposed algorithm has been tested by solving optimization problems with 100 dimensions taken from CEC2014 and CEC2017 benchmark problems. A real-world application data set has also been solved. Several experiments are designed to analyze the effects of different components of the proposed framework, with the best variant compared with a number of state-of-the-art algorithms. The experimental results show that the proposed algorithm is able to outperform all the others considered.</p

    Improving K-means clustering with enhanced Firefly Algorithms

    Get PDF
    In this research, we propose two variants of the Firefly Algorithm (FA), namely inward intensified exploration FA (IIEFA) and compound intensified exploration FA (CIEFA), for undertaking the obstinate problems of initialization sensitivity and local optima traps of the K-means clustering model. To enhance the capability of both exploitation and exploration, matrix-based search parameters and dispersing mechanisms are incorporated into the two proposed FA models. We first replace the attractiveness coefficient with a randomized control matrix in the IIEFA model to release the FA from the constraints of biological law, as the exploitation capability in the neighbourhood is elevated from a one-dimensional to multi-dimensional search mechanism with enhanced diversity in search scopes, scales, and directions. Besides that, we employ a dispersing mechanism in the second CIEFA model to dispatch fireflies with high similarities to new positions out of the close neighbourhood to perform global exploration. This dispersing mechanism ensures sufficient variance between fireflies in comparison to increase search efficiency. The ALL-IDB2 database, a skin lesion data set, and a total of 15 UCI data sets are employed to evaluate efficiency of the proposed FA models on clustering tasks. The minimum Redundancy Maximum Relevance (mRMR)-based feature selection method is also adopted to reduce feature dimensionality. The empirical results indicate that the proposed FA models demonstrate statistically significant superiority in both distance and performance measures for clustering tasks in comparison with conventional K-means clustering, five classical search methods, and five advanced FA variants

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Investigation and Quantification of FES Exercise – Isometric Electromechanics and Perceptions of Its Usage as an Exercise Modality for Various Populations

    Get PDF
    Functional Electrical Stimulation (FES) is the triggering of muscle contraction by use of an electrical current. It can be used to give paralyzed individuals several health benefits, through allowing artificial movement and exercise. Although many FES devices exist, many aspects require innovation to increase usability and home translation. In addition, the effect of changing electrical parameters on limb biomechanics is not entirely understood; in particular with regards to stimulation duty cycle. This thesis has two distinct components. In the first (public health component), interview studies were conducted to understand several issues related to FES technology enhancement, implementation and home translation. In the second (computational biomechanics component), novel signal processing algorithms were designed that can be used to measure mechanical responses of muscles subjected to electrical stimulation. These experiments were performed by changing duty cycle and measuring its effect on quadriceps-generated knee torque. The studies of this thesis have presented several ideas, toolkits and results which have the potential to guide future FES biomechanics studies and the translatability of systems into regular usage for patients. The public health studies have provided conceptual frameworks upon which FES may be used in the home by patients. In addition, they have elucidated a range of issues that need to be addressed should FES technology reach its true potential as a therapy. The computational biomechanics studies have put forward novel data analysis techniques which may be used for understanding how muscle responds to electrical stimulation, as measured via torque. Furthermore, the effect of changing the electrical stimulation duty cycle on torque was successfully described, adding to an understanding of how electrical stimulation parameter modulation can influence joint biomechanics
    corecore