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Abstract: One of the central issues that must be resolved for a metaheuristic optimization process to
work well is the dilemma of the balance between exploration and exploitation. The metaheuristics
(MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration
framework was proposed for the selection of metaheuristic operators conducive to this balance,
particularly the selection of binarization schemes when a continuous metaheuristic solves binary com-
binatorial problems. In this work the use of this framework is extended to other recent metaheuristics,
demonstrating that the integration of QL in the selection of operators improves the exploration-
exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm
are tested by solving the Set Covering Problem, showing statistical improvements in this balance and
in the quality of the solutions.

Keywords: metaheuristics; balanced metaheuristics; Q-Learning; Whale Optimization Algorithm;
Sine-Cosine Algorithm

1. Introduction

In approximate methods, the guarantee of finding global optimum solutions is sac-
rificed due to the computational complexity of hard optimization problems. Approxi-
mate algorithms can be classified as specific heuristics and MH. Heuristics are techniques
specifically designed to solve a particular problem. On the contrary, MH are defined as
upper-level general methodologies (templates), which can be used as guiding strategies
for the design of underlying heuristics for solving a problem [1]. Then, MH extends
basic heuristic methods by including them in an iterative framework, augmenting their
exploration and exploitation capabilities. Notice that exploration is the process of visiting
new regions of a search space (solutions), whereas exploitation is the process of visiting
those regions within the neighborhood of previously visited solutions. Thus, MH needs to
establish a good ratio between exploration and exploitation to be successful. That means
that designing and applying good MH is to make a proper trade-off between these two
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“forces” [2,3]. Unfortunately, the proper handling of this trade-off is an open question in
the literature [4–9]. A comprehensive review about MH can be found in [1,10].

Optimization problems can be classified depending on the domain of the decision
variables in discrete and continuous problems. In recent years, discrete optimization
problems have become more and more frequent in the industry with problems as Set
Covering Problem (SCP) [11,12], Knapsack Problem [13], Software Project Scheduling
Problem [14,15] and Feature Selection [16]. The No-Free-Lunch Theorem (NFLT) [17]
tells us that there is no universal optimization algorithm for all existing optimization
problems. This means that, despite the existence of algorithms designed to solve discrete
problems, none of them are good for all combinatorial optimization problems and there
will always be a better one for a specific problem. This best algorithm can be one designed
for discrete problems as well as an algorithm designed for continuous problems adapted to
discrete problems. However, there are many MH (most of them are swarm intelligence)
designed to work in the continuous domain, meaning that binarization techniques are
required [18]. Among the most commonly used binarization operators, two-step techniques
are the most common [18] and its performance has been improved by the use of ml-based
techniques [13,19].

Several variations of MH are proposed in the literature to improve MH algorithms.
Among the most relevant trends, hybrid MH represent a class of algorithms that combine MH
with other applicable algorithms. The resulting algorithms take advantage of the strengths
of algorithms composing the hybridization, finding better results while keeping complexity
low. According to the taxonomy defined in [1] for hybrid MH, MH are usually combined
with MH with exact mathematical programming algorithms (resulting in matheuristics [20]),
with simulation (resulting in simheuristics [21]) and with machine learning (ML) (resulting
in learnheuristics [22–24]). This work focuses on proposing a learnheuristic.

Focusing on ML, these techniques have become popular in recent years with many
applications, from industrial to everyday applications [25,26]. Usually, ML techniques
are divided in supervised, unsupervised, semi-supervised and Reinforcement Learning.
Supervised techniques learn from labeled data to infer future samples in the form of
classification or regression [27]. Unsupervised techniques consider unlabeled data to find
clusters or patterns with usual algorithms as k-means [28], dbscan [29] or BIRCH [30]. Semi-
supervised techniques share features of supervised and unsupervised learning, resulting
in a hybrid approach in which labeled data are managed in a supervised manner while
unlabeled data are managed in an unsupervised manner [31]. Reinforcement Learning
techniques are based on the notion of cumulative reward, where the system received
a positive or negative reward after each decision, adjusting the behavior of the system
according to this feedback. Thus, instead of learning from labeled data, as supervised
techniques, the system learns from the experience of making decisions [32].

Based on the existing difficulties in applying binarization techniques in MH algorithms
designed for solving continuous problems, the main contribution in this paper consists
in a novel binarization scheme powered by the QL algorithm, which is a Reinforcement-
Learning technique. The authors apply this binarization scheme in conjunction with two
MH to solve the SCP, resulting in two hybrid MH. As a result, the authors verified that the
hybrid approach including the novel binarization scheme outperforms the regular MH
with a usual fixed binarization approach from the literature.

The reminder of this paper is organized as follows. Section 2 presents the related
work. In Section 3, the classical binarizarion techniques are described. Section 4 describes
the QL based binarization scheme proposed in this paper. Section 5 explains the two
implemented MH. Section 6 presents SCP. Section 7 details the statistical methodology and
the experimental results. Finally, Section 8 concludes the work with some final remarks.
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2. Related Work

This section discusses related work along two lines. First, works in which metaheuris-
tics are improved by applying ML techniques and, second, works in which Q-Learning is
applied together with MH, resulting in hybrid MH.

2.1. Metaheuristics Enhanced by Machine Learning

Regarding ML techniques supporting MH, the work of García et al. [19] reviewed two
lines of research. The first one consists in the integration of ML as a replacement for an
operator (e.g., population management, solution initialization, local search, disturbance of
solutions and parameter tuning, among others). The second one consists in the use of ML
as a selection tool for a set of MH, choosing the most appropriate for solving an specific
instance of a problem.

Regarding the first line, the authors may cite the work of Veček et al. [33], where
they performed a parameter tuning for the chess rating system problem. In the work
of Ries et al. [34], a similar implementation was performed but using fuzzy logic and
Decision Trees. Deng et al. [35] proposed a clustering-based initial solution generation for
the Traveling Salesman Problem. Within this line, the binarization operator was also of
considerable interest. Some examples are observed in [13] by solving the Multidimensional
Knapsack Problem by unsupervised learning techniques, in [36] by using the concept of
percentile and in [37] where they implemented the framework of Apache Spark for large
combinatorial problems.

When considering ML as a selection tool to obtain a MH among a set of these, this task
is divided into three groups. The first one is the algorithm selection that chooses among a
set of techniques and characteristics of each problem in order to obtain better performance
for a set of similar instances [38]. The second one is the hyperheuristic strategies, which
aims at automating the design of the MH to address a set of problems [39]. The third
group is composed of cooperative strategies, which combine algorithms in a sequential and
parallel manner to improve robustness, sharing a part of the solution or its totality [40].

Reinforcement Learning is often used for the intelligent selection of operators [41].
An example of this is the work of Zhang et al. [42] where they proposed an adaptive
evolutionary programming algorithm. For each individual, an optimal mutation operator
was selected based on immediate performance.

2.2. Metaheuristics Enhanced by Q-Learning

Reviewing the literature, it is possible to find various implementations of QL sup-
porting MH to solve a wide range of problems. Among the first works are those made by
Gambardella and Dorigo, where they incorporate QL replacing pheromone behavior in Ant
Colony Optimization [43] to solve Travelling Salesman Problem [44] and its asymmetric
version. In [45], QL is used as an heuristic selector inside an hyperheuristic scheme to
solve the Cutting Stock Problem. The same strategy is used in [46,47] in order to solve the
cross-domain heuristic search challenge [48] and Stochastic mixed-model assembly line
sequencing problem. In [42,49], a hybridization is proposed where QL is an intelligent selec-
tor of mutation operators in Genetic Algorithms. In [50], QL and SARSA are implemented
for League Championship Algorithm to strengthen the search power of each individual in
the algorithm to extract better stock trading rules for various types of trading conditions.
In [51,52], parameters of the Firefly Algorithm [53] and a version Sine Cosine Algorithm
combined with Cuckoo Search are dynamically controlled to improve the search and to
avoid falling into local optima. There are also several implementations in the literature
where QL supports MH, such as Particle Swarm Optimization [54,55], Cuckoo Search [56],
Bat Algorithm [57] and Meta-RaPS [58].

Summarizing what has been found in the literature, two models of conceptual interac-
tion between QL and a MH are shown and these two major interest groups are: (1) how
QL can support within the MH; and (2) how QL can support from outside the MH (with a
hyperheuristic approach).
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The interaction model shows that QL can support learning from the behavior of
operators associated with the MH for the problem in the search of solutions, i.e., it is an
additional element to the layer of the MH.

On the other hand, QL can be a component of a higher-level layer called Hyperheuris-
tics (HH), which is given back to operators at a lower level with each iteration of the MH
addressing the problem. The operators from the lower level problem form part of the
problem to be solved at the top layer where any MH learning from QL can take place.

The literature review shows the contribution of ML works to improve the performance
of metaheuristics as well as the contribution of metaheuristics to improve the performance
of ML. However, in an essential topic in the behavior of a MH, such as the exploration-
exploitation balance, there is an area of research that is interesting to work on in order to
find better solutions that are applicable to the industry.

3. Continuous Metaheuristics Working in Binary Domains

The binary techniques for continuous MH consist of transferring the values of con-
tinuous domain of the MH to a binary domain, this is conducted to preserve the quality
movements that possess continuous MH and, thus, generate quality binary solutions.

Although there are MH that work in binary domains without the need to incor-
porate a binary scheme, the continuous MH together with a binary scheme have pre-
sented great performance in diverse combinatorial NP-Hard problems for which they have
called the interest of the scientific community. Some examples include Particle Swarm
Optimization [59], Binary Salp Sawrm Algorithm [60], Binary Dragonfly [61] and Binary
Magnetic Optimization Algorithm [62], among others [63–66].

Among the binary schemes, two large groups can be defined: First, the operators
that do not alter the operation of the other elements of the MH where the two-step tech-
niques stand out, as they are the most used previously [18] and the Angle Modulation
technique [67]. The second group consists of the methods that alter the normal functioning
of MH, which are Quantum Binary [68] and Set-Based Approaches in addition to the
techniques based on clustering [13,19].

3.1. Two-Step Binarization Scheme

Two-step binary schemes are of great relevance for various types of problems [69].
This binarization scheme is composed by two steps, the first one is the transfer function,
which transfers the values generated by the continuous MH to a continuous interval
between 0 and 1, while the second step is the binarization, which consists in transferring the
real number in a binary value. This is best exemplified in Figure 1.

BINARIZATIONTRANSFER
FUNCTION

1.50
1.12
0.28
2.22
0.61
1.38

8.81
1.99

0.75
0.67
0.26
0.82
0.49

0.88
0.95

0.72

1
0
0
1
0

1
1

0

Figure 1. Two-step Binarization Scheme.

3.1.1. Transfer Functions

Transfer functions were introduced by Kennedy et al. in 1997 [70]. Having as main
advantage the delivery of a probability between 0 and 1 at a low computational cost. There
are two types of functions, the S-Shaped [63] and the V-Shaped [71] where each has four
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variations presented for both the S-Shape and for the V-Shape. The variations for the
S-Shape functions, TSi (d

j
w) for i ∈ {1, 2, 3, 4} are defined as follows:

TS1(d
j
w) =

1

1 + e−2dj
w

, (1)

TS2(d
j
w) =

1

1 + e−dj
w

, (2)

TS3(d
j
w) =

1

1 + e
−dj

w
2

, (3)

and
TS4(d

j
w) =

1

1 + e
−dj

w
3

, (4)

where dj
w denotes the discrete value in the individual w ∈ {1, 2, . . . , n} in dimension

j ∈ {1, 2, . . . , l} and n and l are the number of individuals and dimensions, respectively.
The variations for the V-Shape functions, TVi (d

j
w) for i = 1, 2, 3, 4, are defined as follows:
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2
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and
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π

arctan
(π

2
dj

w

)∣∣∣∣. (8)

The results of plotting the tuples (dj
w, TSi (d

j
w)) and (dj

w, TVi (d
j
w)) for i ∈ {1, 2, 3, 4} are

shown in Figure 2.
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3.1.2. Binarization

The second step is binarization, which has the function of discretizing the proba-
bility obtained from the transfer function T(dj

w) calculated according to Section 3.1.1 by
delivering a binary value.

For this step, there are different techniques in the literature such as Standard, Comple-
ment, Static Probability, Elitist and Elitist Roulette. The values for the binarization obtained
by using different methods are defined as follows.

Let X j
new,sd be the binarization value obtained by using the Standard method. Then,

X j
new,sd is defined as the following:

X j
new,sd =

{
1 if rand ≤ T(dj

w)
0 otherwise

, (9)

where rand, for 0 ≤ rand ≤ 1, is a random value generated following a uniform distribution
U(0, 1), T(dj

w) denotes the discrete value in the individual w ∈ {1, 2, . . . , n} in dimension
j ∈ {1, 2, . . . , l} and n and l are the number of individuals and dimensions, respectively.

Let X j
new,c be the binarization value obtained by using the Complement method. Then,

X j
new,c is defined as the following:

X j
new,c =

{
Complement(X j

w) if rand ≤ T(dj
w)

0 otherwise
, (10)

where Complement(X j
w) denotes the complementary binary value of X j

w in the individual
w for dimension j, i.e., if the value of X j

w is 0, the complement corresponds to 1.
Let X j

new,sp be the binarization value obtained by using the Static Probability method.

Then, X j
new,sp is defined as the following:

X j
new,sp =


0 if T(dj

w) ≤ α

X j
w if α < T(dj

w) ≤ 1
2 (1 + α)

1 if T(dj
w) >

1
2 (1 + α)

, (11)

where X j
w denotes the value of the dimension j ∈ {1, 2, . . . , l} in the individual w ∈

{1, 2, . . . , n}, l and n are the number of dimensions and individuals, respectively, and α
corresponds to a parameter determined by the user.

Let X j
new,e be the binarization value obtained by using the Elitist method. Then, X j

new,e
is defined as the following:

X j
new,e =

{
X j

Best if rand < T(dj
w)

0 otherwise
, (12)

where X j
Best denotes the value of the dimension j in the individual best, which has ob-

tained the best fitness so far, and l and n are the number of dimensions and individuals,
respectively.

Let X j
new,er be the binarization value obtained by using the Elitist Roulette method [72].

Then, X j
new,er is defined as follows.

X j
new,er =

 P[X j
new,er = ζ j] =

f (ζ j)

∑δ∈Qg f (δ)
if rand < T(dj

w)

P[X j
new,er = 0] = 1 otherwise

, (13)
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4. Binarization Scheme Selector Proposal

Nowadays, combinatorial problems in the binary domain are becoming increasingly
complex and frequent in the industry. Solving them in reasonable a reasonable time period
with high quality solutions is a priority for both academia and the industry.

This work proposes an intelligent selector of binarization schemes where the existing
binarization methods in the literature are integrated to control the exploration and exploita-
tion balance, thus, avoiding local optimizations. This is because several authors [5,8,73–75]
propose that for a metaheuristic to work well, it must have a good balance between ex-
ploration and exploitation. Exploration or diversification consists of visiting unexplored
regions of the search space to ensure that the search is performed in biased regions [1].
In contrast, exploitation or intensification and promising regions with good solutions are
further explored in hopes of finding better solutions [1].

This new binarization strategy is inspired by the behavior of hyperheuristics and
techniques that have performed well for various types of problems [39,76–78]. This method
consists in using an intelligent operator to determine which type of binarization is most
appropriate at the iteration level, i.e., based on the information of the problem and the
results obtained in previous iterations, the binarization scheme that is most likely to obtain
the best quality results can be used.

4.1. Q-Learning as a Smart Operator

In the present work, QL is implemented as the intelligent operator of the proposal,
which chooses the two-step binarization technique to be used according to a reward system,
with which it learns in a deterministic way. The structure of the implemented proposal is
exemplified in Figure 3.

Q-Learning

S1

INPUT

Elitist

OUTPUT

Two-Step Binarization Technique

S2 S3 S4 V1 V2 V3 V4

Complement Static
ProbabilityStandard Elitist

Roulette

Figure 3. Proposed structure for binarization scheme with Q-Learning.

4.2. Q-Learning

Within Reinforcement Learning (RL) techniques there are Time Difference (TD) algo-
rithms, which are characterized by exploring the environment and by using this information
to update the current state [32]. The TD algorithms show the difference between the current
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estimation of the value of a state, the discounted value of the next state and the reward.
It focuses on state-to-state transitions and learned values of states.

Prominent among the TD algorithms is QL [79], which provides agents with the ability
to learn to act in the best way through the consequences of their actions taken. There are
different “states” and different possible “actions” where the working “environment” is
the current state in which the agent is in and must select and execute an action which
affects the “environment” by changing its state. Actions are punished or rewarded by
“rewards”, which are judged by the consequence obtained by applying an action in a
particular state. Rewards are delayed, allowing the agent to learn from the system. In order
to solve the problem, the agent tries to learn the best course of actions that will maximize
the accumulated reward. The learning process lies in a set of episodes, where in each
episode the agent selects and executes an action in a particular state. For the new episode,
the agent’s learning is given by Equation (14):

Qnew(st, at) = (1− α) ·Qold(st, at) + α · [rt + γ ·maxQ(st+1, at+1)] (14)

where Qnew(st, at) is called Q-value and represents the cumulative quality or reward of the
action taken at in state st at time t; rt is the reward or punishment received when action at
is taken in state st at time t; Qold is the Q-value for the previous iteration for action at in
state st; maxQ(st+1, at+1) is the maximum Q-value of the action for the next state, i.e., the
best action the agent can take in the next state; α is the learning factor for which its value
must be 0 ≤ α ≤ 1; and γ is the discount factor for which its value must be 0 ≤ γ ≤ 1.
If α is close to 0, the historical information learned becomes more relevant, whereas if α
is close to 1 the information received immediately becomes more relevant. If γ equals
0, only the immediate reward is taken into account, while, as it approaches 1, the future
reward receives greater emphasis relative to the immediate reward. The procedure of this
algorithm is reflected in Algorithm 1.

Algorithm 1 Q-Learning Algorithm.

1: Initialize Qvalues, α, γ
2: while t < Maximum number of iterations do
3: Choose at base on Qvalues
4: Execute action at and get immediate reward or punishment rt
5: Observe the next state st+1
6: Qnew(st, at) = (1− α)Qold(st, at) + α[rt + γmaxQ(st+1, at+1)]
7: t← t+1
8: end while
9: Return Qnew(st, at)

4.3. Rewards

The reward in the RL algorithm is fundamental for a correct performance of these
same algorithms; that is why, in the literature, there are several methods to calculate the
rewards. The type of reward from the chosen metrics determine the value Rt for the general
QL equation, as detailed in Figure 4.
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Q-LearningReward Type

withPenalty1

withOutPenalty1globalBest

rootAdaptation

escalatingMultiplicativeAdaptation

Environment

getMetric

getState

Figure 4. Q-Learning scheme for different rewards.

For the implementation of this work, five forms of rewards were used where two of
them are among the simplest in the literature. The first is the one used in [46,54], where it
is increased by a fixed value for the action that generated an improvement in the overall
fitness of the problem and a decrease in the same fixed value if no improvement was
generated. This fixed value is detailed in Equation (15). The second type of reward is a
variation of the previous one used in the Q-table, where there is no penalty on the Q-table
values, as presented in Equation (16). The last three rewards are collected by Nareyek
in [80], which are detailed in Equations (17)–(19), respectively:

withPenalty1 =

{
+1 if there is a fitness improvement
−1 otherwise

, (15)

withOutPentalty1 =

{
+1 if there is a fitness improvement
0 otherwise

, (16)

globalBest =

 W
BestFitness

if there is a fitness improvement

0 otherwise
, (17)

rootAdaptation =

{ √
BestFitness if there is a fitness improvement

0 otherwise
, (18)

and

escalatingMultiplicativeAdaptation =

{
W · BestFitness if there is a fitness improvement
0 otherwise

, (19)

where W and BestFitness are defined as a constant of value 10 and the best fitness found
so far, respectively.

4.4. Actions At

As mentioned above, the main objective of Q-Learning is to find an optimal policy
within a set of actions. Therefore, it is important to define which actions the agent will
take during its learning process. In the present work, the actions taken by the agents are
the combinations between the transfer functions and the binarization functions extracted
from the Two-Step Technique. Thus, we obtain 40 possible actions to be selected in the
learning process.
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4.5. Obtaining Metrics (getMetric)

The reward or punishment is judged by the consequence obtained by the performance
of the action. Therefore, it is important to define what the comparison metrics will be to
discriminate the consequence. In the present work, the comparison metric is the fitness
obtained in each iteration of the optimization process and it is compared with the best fitness
obtained. If fitness improves, action is rewarded, while if fitness worsens, action is punished.

4.6. State Determination (getState)

As QL carries out its learning process through the state transition, it is important to
define which states to use and how it will transition between them.

In the present work, two states were defined which refer to the phases of a meta-
heuristic: exploration and exploitation. These states were not chosen at random since,
as mentioned above, the objective of this work is to improve the balance of exploration and
exploitation of metaheuristics to obtain better results.

In the literature, different authors [81–85] propose metrics that allow us to quan-
tify the diversity of individuals in population algorithms where Hussain’s Dimensional
Diversity [85] stands out.

Let Div be the diversity of the population at a particular time where Hussain et al. [85]
stands out. In order to the calculate Div, the following equation is used:

Div =
1

l · n
l

∑
d=1

n

∑
i=1
|x̄d − xd

i | (20)

where x̄d denotes the mean of the individuals in the dimension d, xd
i is the the i-th individual

value of the d-th dimension, n is the number of individuals in the population and l is the
dimension size of individuals.

One of the methods to estimate exploration and exploitation is the one proposed
by Morales-Castañeda et al. in [4] who, based on the quantification of the diversity
of a population, proposed a method to estimate exploration and exploitation in terms of
percentages. The percentage of exploration (XPL %) and exploitation (XPT %) are calculated
as follows:

XPL% =
Div

Divmax
· 100 (21)

and

XPT% =
|Div− Divmax|

Divmax
· 100 (22)

where Div is the determination of the diversity state given by Equation (20) and Divmax
denotes the maximum value of the diversity state found in the entire optimization problem.

Equations (21) and (22) are generic, so it is possible to use any other metric that
calculates the diversity of a population.

Thus, the transition of states will be determined by the following method.

next state =
{

Exploration i f XPL% ≥ XPT%
Exploitation i f XPL% < XPT%

(23)

5. Instantiated Metaheuristics

In this section we describe the MH to be used, which include the Sine-Cosine Algorithm [86]
and the Whale Optimization Algorithm [87]. Both have different implementations for solv-
ing combinatorial problems, basing the choice of these MH over others on the no free lunch
theorem [17,88], which leaves all MH with the same probability of success until their performance
in each specific problem has been demonstrated by experimentation.
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5.1. Sine-Cosine Algorithm

To the best of our knowledge, the Sine-Cosine Algorithm (SCA) was first defined
by Mirjalili [89] in 2016. It is based on sine and cosine trigonometric functions. As all
iteration-based optimization techniques, this one starts with a random population. Let r1,
r2, r3 and r4 be the four parameters of the motion equations. Thus, let r1 be the parameter
that determines the direction of the motion relative to the best solution and it is given by
the following:

r1 = a − t
a
T

(24)

where T represents the total number of iterations that will be performed, t is the current
iteration of the optimization process and a is a constant. In the first iterations, the motion
consists in moving away from the best solution (exploration) and, in the last iterations, the
motion consists of moving closer to the best solution (exploitation).

Let r2 be the parameter which defines the magnitude of the motion and it is given by
the following:

r2 = 2 · π · rand (25)

where 0 ≤ rand ≤ 1 and r2 represent the domain of the sine and cosine functions [0, 2π].
Let r3 be the parameter which integrates the motion randomness and it is given by

the following:
r3 = 2 · rand (26)

where 0 ≤ rand ≤ 1. If r3 > 1, the motion will be more stochastic.
Finally, let r4 be the parameter which determines if the motion will be performed with

the sine or cosine function in the same proportion defined as follows:

r4 = rand (27)

where 0 ≤ rand ≤ 1. Then, the motion equation definition depends on the value of r4.
Let Xt+1

i be the i-th component of the general solution in the iteration t + 1. The value of
Xt+1

i depends on the value of the parameter r4; thus, the following is the case:

Xt+1
i =

{
Xt

i + r1 · sin(r2) · |r3 · XBestt − Xt
i | if r4 < 0.5

Xt
i + r1 · cos(r2) · |r3 · XBestt − Xt

i | if r4 ≥ 0.5
(28)

where Xt
i denotes the i-th component of the general solution in the iteration t and XBestt

denotes the Best i-th component of the general solution in the iteration t. The procedure of
MH is explained in Algorithm 2.

Algorithm 2 Sine-Cosine Algorithm.

1: Initialize a set of search agents (Solutions) (X)
2: while t ≤Maximum number of iterations do
3: Evaluate each of the search agents by objective function
4: Update the best solution obtained so far (XBest)
5: Update r1, r2, r3 and r4
6: Update the position of the search agents using the Equation (28)
7: t← t+1
8: end while
9: Return the best solution obtained (XBest)

5.2. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is inspired by the hunting behavior of
humpback whales, specifically, how they make use of a strategy known as “bubble netting”.
This strategy consists of locating the prey and, by means of moving in spiral turns that are
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similar to a “9”, enclosing in on the prey. This algorithm was invented by Mirjalili and
Lewis in 2015 [90].

The WOA metaheuristic starts with a set of random solutions. At each iteration,
the search agents update their positions with respect to a randomly chosen search agent
or the best solution obtained so far. There is a parameter a that is reduced from 2 to 0 to
provide changes between exploration and exploitation. When the equation vector (29)
has value: | −→A | ≥ 1, a new random search agent is chosen. On the other hand, when
| −→A | < 1, the best solution is selected; the point of this is to be able to update the position
of the search agents.

On the other hand, the value of the parameter p (random number between 0 and 1)
allows the algorithm to switch between a spiral or circular motion. In order to assimilate
this, there are three movements that are crucial when working with the metaheuristic:

1. Searching for prey (p < 0.5 and |A| ≥ 1): The whales search for prey randomly

based on the position of each prey. When the algorithm determines that | −→A |≥ 1,
then we can say that it is exploring and allows WOA to perform a global search.
We represent this first move with the following mathematical model:

−→
X t+1

i =
−−→
Xt

rand −
−→
A · −→D

−→
D = |−→C ·

−−→
Xt

rand −
−→
X t

i |
(29)

where t denotes the current iteration,
−→
A and

−→
C are coefficient vectors and

−−→
Xrand is a

random position vector (i.e., a random whale) chosen from the current population.
The vectors

−→
A and

−→
C can be computed according to the following Equation (30):

−→
A = 2−→a · −→r −−→a
−→
C = 2 · −→r

(30)

where, −→a decreases linearly from 2 to 0 over iterations (both in the exploration and
exploitation phases) and −→r corresponds to a random vector of values between [0, 1].

2. Encircling the prey (p < 0.5 and |A| < 1): Once the whales have found and recog-
nized their prey, they begin to encircle them. Since the position of the optimal design
in the search space is not known in the first instance, the metaheuristic assumes that
the current best solution is the target prey or is close to the optimum. Therefore,
once the best search agent is defined, the other agents will attempt to update their
positions toward the best search agent. Mathematically, it is modeled in Equation (31):

−→
X t+1

i =
−→
X∗t

i −
−→
A · −→D

−→
D = |−→C ·

−→
X∗t

i −
−→
X t

i |
(31)

where
−→
X∗ is the position vector of the best solution obtained so far and

−→
X is the

position vector. The vector
−→
A and

−→
C are calculated in Equation (30). It is worth

mentioning that
−→
X must be updated at each iteration if a better solution exists.

3. Bubble net attack (p ≥ 0.5): For this attack, the “shrinking net mechanism” is pre-
sented and this behavior is achieved by decreasing the value of a in the Equation (30).
Thus, as the whale spirals, it shrinks the bubble net until it finally catches the prey.
This motion is modeled with the following Equation (32):

−→
X t+1

i =
−→
D′ · ebl · cos (2πl) +

−→
X∗t

i
−→
D′ = |

−→
X∗t

i −
−→
X t

i |
(32)
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where
−→
D′ is the distance of the i-th whale from the prey (the best solution obtained so

far), b is a constant for defining the shape of the logarithmic spiral and l is a random
number between [−1, 1].

It is worth mentioning that humpback whales simultaneously swim around the prey
within a shrinking circle and along a spiral trajectory. In order to model this simultaneous
behavior, there is a 50% probability of choosing between the encircling prey mechanism
(2) or the spiral model (3) to update the position of the whales during optimization.
The mathematical model is as follows: .

−→
X t+1

i =

{−→
X∗t

i −
−→
A · −→D If p < 0.5

−→
D′ · ebl · cos (2πl) +

−→
X∗t

i If p ≥ 0.5
(33)

We include the pseudo-code (Algorithm 3) of the metaheuristic [91] for a better
understanding of what was previously stated.

Algorithm 3 Whale Optimization Algorithm.

1: Initialize the whale population Xi (i = 1, 2, . . . , n)
2: Calculate the fitness of each search agent
3: X∗ = The best search agent
4: while t ≤Maximum number of iterations do
5: for each search agent do
6: Update a, A, C, l and p
7: if (p < 0, 5) then
8: if (|A| < 1) then
9: Update the position of the current search agent using of Equation (31).

10: else(|A| ≥ 1)
11: Select a random search agent (XRand)
12: Update the position of the current search agent using Equation (29).
13: end if
14: else(p ≥ 0, 5)
15: update the position of the current search agent using Equation (32).
16: end if
17: end for
18: Check if any search agent goes beyond the search space and we modify it.
19: Calculate the fitness of each search agent
20: Update X∗ if there is a better solution
21: t← t+1
22: end while
23: Return (X∗)

6. Set Covering Problem

SCP is defined as a binary matrix (A), where ai,j ∈ {0, 1} is the value of each cell in
the matrix A and i and j are the size m-rows and n-columns, respectively:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 (34)

Defining the column j satisfies a row i if aij is equal to 1 and this will be the contrary
case if this is 0. In addition, it has an associated cost c ∈ C, where C = {c1, c2, . . . , cn}
together with i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n} are the sets of rows and columns,
respectively.

The problem results in the following objective: to minimize the cost of the subset
S ⊆ J, with the constraint that all rows i ∈ I are covered by at least one column j ∈ J. It is
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taken into consideration that when the column j is in the subset of solution S, this is equal
to 1 and 0 otherwise.

The SCP can be defined as the following.

Minimize Z =
n

∑
j=1

cjxj (35)

Subject to
n

∑
j=1

aijxj ≥ 1 ∀i ∈ I (36)

xj ∈ {0, 1} ∀j ∈ J (37)

7. Experimental Results and Performance Evaluation

In order to determine if the integration of QL as a binary scheme selector improves the
results of the MH, five versions of QL have been implemented with different fixes, which
have been named as indicated in the Table 1.

Table 1. Q-Learning Implementation Name.

Reward Type Name

withPenalty1 (Equation (15)) QL1
withOutPenalty1 (Equation (16)) QL2

globalBest (Equation (17)) QL3
rootAdaptation (Equation (18)) QL4

escalatingMultiplicativeAdaptation (Equation (19)) QL5

The five implementations of QL have been compared in a subset of instances of Set
Covering Problem for each metaheuristic against two recommendations of binary schemes
presented in the literature, which are presented in Table 2.

Both the code and the results obtained can be reviewed in the github repository .

Table 2. Recommended binarization schemes in the literature.

Cite Binarization Transfer Function Name

[92] Elitist (Equation (12)) V4 (Equation (8)) BCL1
[59] Complement (Equation (10)) V4 (Equation (8)) MIR2

7.1. Statistical Test

Given the increasing use of MH applied to different combinatorial problems, there is
a natural interest in comparing which one performs better because, sometimes, it is not
so obvious as to which one is better. In this sense, statistical techniques provide a real
alternative to compare results.

In order to determine the difference between the results obtained by different algorithms,
it is necessary to use a statistical technique to establish whether the difference exists [92,93]. The
most appropriate test to compare our algorithms is the Wilcoxon–Mann–Whitney test. This
test is specifically used when two samples are independent and we cannot assume normality
of at least one of them. The hypotheses used for this test are as follows:

H0 : µA ≥ µB
H1 : µA < µB

where µA and µB denotes the average value provided by Algorithms A and B, respectively.
We assume that if a p-value < 0.05 is obtained, H0 will be rejected and H1 will be accepted.
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7.2. Experimental Results

In order to demonstrate the results obtained by WOA and SCA, Tables 3 and 4 are
arranged. In the contents of both tables, the best values obtained from each row are
highlighted. Experiments solving the SCP with Beasley’s OR-Library instances totaled 45
instances. For both metaheuristics (WOA and SCA), instances were run with a population
consisting 40 individuals and 1000 iterations were performed per run. With this, the
stopping condition is at 40,000 evaluations of the objective function, as used in [92]. The
implementation was developed in Python 3.8.5 and processed using the free Google
Colaboratory service [94]. The parameter settings for the SARSA and QL algorithms are as
follows: γ = 0.4 and α = 0.1. These tables are composed of the following: the first column
corresponds to the name of the instance, the second column is the optimum known to date,
the next four columns (Best, Avg, Sec and RPD) present the best value and the averages
obtained from the 31 independent runs, the average time of its executions and, finally, the
Relative Percentage Deviation defined in Equation (38). These three columns mentioned
above are repeated for all versions (BCL1, MIR2, QL1, QL2, QL3, QL4 and QL5). Finally,
the last row is the sum of each column. We can denote that the adaptations and versions
of QL are produce effects on the chosen metaheuristics, obtaining better results than their
counterparts without QL.

RPD =
100 · (Best−Opt)

Opt
. (38)

In Figures 5–8, a comparison of the best results obtained in 31 independent runs of
the chosen schemes is presented, showing less dispersion in the results for the versions
with QL, which supports the robustness of the proposal compared to fixed binarization
schemes, since, in addition to obtaining better results, these vary in smaller magnitude in
independent runs.

BCL1 MIR2 QL1 QL2 QL3 QL4 QL5
instance scp53

200

250

300

350

400

fit
ne

ss

Fitness Distribution Obtained SCA

Figure 5. SCA Violin chart of instance 53.
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Figure 6. SCA Violin chart of instance c5.
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Figure 7. WOA Violin chart of instance 53.

Figures 9–16, show the exploration and exploitation balance obtained by the algorithm.
The x-axis represents the total number of iterations, the y-axis shows the percentage of
exploration and exploitation, measured by Equations (20)–(22).

By observing the behavior of the exploration and exploitation percentages in the
figures, it can be clearly observed that there are two different behaviors. In the case of
Figures 10 and 12, there is a clear beginning of exploration in the first iterations, while
the exploitation increases until maintaining high values during the rest of the iterations.
This behavior is the one recommended by [4], while for the case of Figures 14 and 16, the
exploration percentage remains at high values during all iterations and similar behavior is
observed when random searches occur. For the versions with QL, the expected exploration
and exploitation behavior is observed, where exploration predominates at the beginning
and gradually changes to exploitation. However, in this one, variations in the percentages
are observed given by the dynamic change of the binarization scheme in each iteration,
which in turn has been reflected in better quality results.
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Table 3. SCA Results.

Inst. Opt. BCL MIR QL1 QL2 QL3 QL4 QL5

Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD

41 429 557 580.0 292.0 29.84 545 734.48 2883.0 27.04 533 538.0 2397.0 24.24 530 537.83 2414.0 23.54 534 537.5 2411.0 24.48 533 536.83 2455.0 24.24 530 535.17 2466.0 23.54
42 512 573 605.78 300.0 11.91 550 725.1 863.0 7.42 548 552.89 1929.0 7.03 537 551.11 1860.0 4.88 547 552.67 1866.0 6.84 552 556.89 2012.0 7.81 537 552.37 1928.0 4.88
43 516 557 598.83 306.0 7.95 559 766.84 994.0 8.33 548 552.67 1839.0 6.2 543 554.44 1886.0 5.23 540 555.0 1793.0 4.65 535 550.22 1864.0 3.68 536 547.05 1907.0 3.88
44 494 533 557.06 304.0 7.89 547 688.48 1127.0 10.73 519 531.22 2104.0 5.06 530 533.78 2045.0 7.29 518 531.33 2046.0 4.86 512 532.56 2111.0 3.64 511 532.84 2056.0 3.44
45 512 563 591.5 294.0 9.96 565 751.35 1030.0 10.35 540 549.22 1904.0 5.47 537 551.67 2065.0 4.88 544 552.56 2057.0 6.25 541 552.67 1959.0 5.66 542 549.79 2126.0 5.86
46 560 594 635.22 270.0 6.07 591 840.42 793.0 5.54 578 587.33 1923.0 3.21 577 589.89 1890.0 3.04 577 588.22 1890.0 3.04 584 592.56 1873.0 4.29 568 589.3 1819.0 1.43
47 430 449 483.44 312.0 4.42 456 586.97 1829.0 6.05 440 448.11 2308.0 2.33 442 448.25 2242.0 2.79 447 450.5 2383.0 3.95 447 452.88 2185.0 3.95 439 451.95 2236.0 2.09
48 492 515 565.67 322.0 4.67 518 727.23 1052.0 5.28 507 514.6 1990.0 3.05 512 516.0 2011.0 4.07 509 513.0 2086.0 3.46 508 515.83 1836.0 3.25 507 515.04 1948.0 3.05
49 641 713 759.75 319.0 11.23 698 964.68 918.0 8.89 689 695.67 2054.0 7.49 696 700.83 1882.0 8.58 692 696.83 1877.0 7.96 688 694.83 1907.0 7.33 684 698.48 1850.0 6.71
410 514 557 580.0 292.0 8.37 545 734.48 2883.0 6.03 533 538.0 2397.0 3.7 530 537.83 2414.0 3.11 534 537.5 2411.0 3.89 533 536.83 2455.0 3.7 530 535.17 2466.0 3.11
51 253 289 303.33 297.0 14.23 282 396.55 1561.0 11.46 276 281.0 2586.0 9.09 279 282.17 2022.0 10.28 277 282.5 2274.0 9.49 278 282.33 2099.0 9.88 274 282.39 2064.0 8.3
52 302 346 366.92 297.0 14.57 335 486.87 1210.0 10.93 333 334.5 1618.0 10.26 334 336.0 1578.0 10.6 332 336.5 1577.0 9.93 328 334.5 1582.0 8.61 329 336.28 1604.0 8.94
53 226 246 258.17 265.0 8.85 238 331.74 1067.0 5.31 233 235.5 1822.0 3.1 231 235.67 2010.0 2.21 235 236.17 1830.0 3.98 236 236.83 2015.0 4.42 230 236.13 1857.0 1.77
54 242 257 276.5 297.0 6.2 253 338.84 1183.0 4.55 255 256.0 1860.0 5.37 253 255.67 1870.0 4.55 253 255.17 2166.0 4.55 252 256.17 1943.0 4.13 251 254.96 1915.0 3.72
55 211 227 237.92 324.0 7.58 226 289.03 2449.0 7.11 216 221.0 2329.0 2.37 218 221.0 2218.0 3.32 218 222.33 2338.0 3.32 221 222.0 2388.0 4.74 217 221.09 2240.0 2.84
56 213 244 258.58 307.0 14.55 234 324.77 1725.0 9.86 223 230.67 2023.0 4.69 221 230.17 2076.0 3.76 231 232.8 2380.0 8.45 228 233.2 2089.0 7.04 224 231.2 2060.0 5.16
57 293 323 342.75 306.0 10.24 313 427.1 1318.0 6.83 317 319.6 1878.0 8.19 310 314.4 2081.0 5.8 313 317.33 2085.0 6.83 317 321.17 1905.0 8.19 314 317.84 1918.0 7.17
58 288 320 333.3 302.0 11.11 302 444.35 773.0 4.86 298 299.33 1873.0 3.47 300 301.8 1952.0 4.17 298 301.83 1718.0 3.47 298 300.0 1769.0 3.47 297 301.39 1754.0 3.12
59 279 312 326.92 335.0 11.83 298 414.26 1156.0 6.81 290 293.67 1779.0 3.94 291 294.4 1757.0 4.3 289 293.5 1796.0 3.58 292 293.67 1781.0 4.66 286 293.17 1818.0 2.51
510 265 289 303.33 297.0 9.06 282 396.55 1561.0 6.42 276 281.0 2586.0 4.15 279 282.17 2022.0 5.28 277 282.5 2274.0 4.53 278 282.33 2099.0 4.91 274 282.39 2064.0 3.4
61 138 152 165.2 283.0 10.14 348 369.8 189.0 152.17 141 145.77 1407.0 2.17 144 148.16 372.0 4.35 144 148.42 377.0 4.35 146 148.29 389.0 5.8 146 148.65 385.0 5.8
62 146 170 196.17 226.0 16.44 161 484.97 202.0 10.27 157 159.83 313.0 7.53 158 159.83 310.0 8.22 157 159.17 307.0 7.53 155 158.0 407.0 6.16 154 158.26 361.0 5.48
63 145 156 179.75 257.0 7.59 151 436.71 212.0 4.14 149 151.33 290.0 2.76 150 151.67 324.0 3.45 151 151.83 312.0 4.14 150 151.67 310.0 3.45 149 151.65 305.0 2.76
64 131 139 155.25 216.0 6.11 137 303.0 193.0 4.58 135 136.33 423.0 3.05 136 136.17 474.0 3.82 134 135.67 414.0 2.29 135 136.2 590.0 3.05 134 136.52 416.0 2.29
65 161 193 215.25 251.0 19.88 185 450.06 255.0 14.91 177 183.17 521.0 9.94 178 183.67 416.0 10.56 182 183.67 354.0 13.04 179 183.17 377.0 11.18 175 182.96 403.0 8.7
a1 253 286 302.8 411.0 13.04 272 596.8 899.0 7.51 262 267.13 6795.0 3.56 266 269.42 1862.0 5.14 263 268.81 1950.0 3.95 263 268.9 2025.0 3.95 265 269.68 1876.0 4.74
a2 252 289 304.2 489.0 14.68 281 577.52 463.0 11.51 271 273.83 2045.0 7.54 272 273.67 2567.0 7.94 273 275.0 2223.0 8.33 271 272.83 2315.0 7.54 270 274.33 2096.0 7.14
a3 232 266 283.44 423.0 14.66 250 555.52 390.0 7.76 245 248.6 2085.0 5.6 246 249.0 2010.0 6.03 249 252.0 2067.0 7.33 251 251.33 1998.0 8.19 242 248.74 2264.0 4.31
a4 234 271 289.3 458.0 15.81 256 544.71 519.0 9.4 250 253.0 1845.0 6.84 248 253.6 1823.0 5.98 249 252.2 1832.0 6.41 250 252.2 1832.0 6.84 247 253.5 1995.0 5.56
a5 236 266 286.86 462.0 12.71 253 513.9 796.0 7.2 249 250.67 1973.0 5.51 248 252.83 1962.0 5.08 245 250.33 2005.0 3.81 247 251.5 1995.0 4.66 248 251.22 1934.0 5.08
b1 69 81 108.6 400.0 17.39 527 585.0 364.0 663.77 70 71.74 1652.0 1.45 71 72.68 484.0 2.9 72 72.9 456.0 4.35 72 72.87 439.0 4.35 72 73.03 420.0 4.35
b2 76 93 110.33 449.0 22.37 81 529.32 383.0 6.58 78 80.33 430.0 2.63 80 82.0 490.0 5.26 80 81.5 484.0 5.26 78 80.67 468.0 2.63 78 81.39 414.0 2.63
b3 80 90 117.08 426.0 12.5 84 687.06 371.0 5.0 82 83.33 517.0 2.5 83 83.83 432.0 3.75 82 83.67 443.0 2.5 82 84.0 580.0 2.5 81 83.35 497.0 1.25
b4 79 96 116.42 445.0 21.52 84 582.87 445.0 6.33 83 84.0 524.0 5.06 83 84.83 433.0 5.06 82 84.33 457.0 3.8 83 84.83 473.0 5.06 84 85.26 469.0 6.33
b5 72 83 104.09 451.0 15.28 75 573.1 356.0 4.17 74 75.0 469.0 2.78 75 75.33 385.0 4.17 74 74.83 436.0 2.78 74 75.0 475.0 2.78 74 74.78 419.0 2.78
c1 227 269 302.8 751.0 18.5 254 536.6 2061.0 11.89 240 245.55 10072.0 5.73 241 251.32 2096.0 6.17 244 251.03 2120.0 7.49 239 251.0 2044.0 5.29 244 250.94 2257.0 7.49
c2 219 264 284.0 794.0 20.55 243 715.52 1153.0 10.96 235 242.5 1935.0 7.31 241 244.17 1867.0 10.05 241 243.33 1857.0 10.05 236 241.8 3034.0 7.76 236 242.17 1872.0 7.76
c3 243 273 306.25 727.0 12.35 265 745.74 1659.0 9.05 261 263.17 2145.0 7.41 259 263.17 2352.0 6.58 260 262.8 1703.0 7.0 259 262.83 2088.0 6.58 256 263.87 1635.0 5.35
c4 219 251 280.67 735.0 14.61 235 669.42 1326.0 7.31 236 237.0 2187.0 7.76 233 235.83 1830.0 6.39 236 237.83 1824.0 7.76 234 236.67 2455.0 6.85 234 237.13 2049.0 6.85
c5 215 239 271.17 693.0 11.16 232 569.45 1992.0 7.91 228 232.33 2266.0 6.05 233 234.33 2507.0 8.37 232 233.83 2181.0 7.91 227 231.83 2197.0 5.58 226 233.62 2276.0 5.12
d1 60 89 93.2 625.0 48.33 67 701.4 692.0 11.67 62 64.42 2312.0 3.33 64 66.0 673.0 6.67 64 66.0 659.0 6.67 64 65.81 686.0 6.67 63 66.06 643.0 5.0
d2 66 81 105.83 625.0 22.73 69 802.45 698.0 4.55 69 70.33 729.0 4.55 69 69.5 716.0 4.55 69 69.8 680.0 4.55 69 70.0 630.0 4.55 68 70.13 682.0 3.03
d3 72 81 109.75 671.0 12.5 79 845.29 739.0 9.72 78 78.67 690.0 8.33 78 79.0 797.0 8.33 78 79.0 678.0 8.33 78 79.33 705.0 8.33 78 79.09 673.0 8.33
d4 62 68 91.42 639.0 9.68 64 675.35 840.0 3.23 63 64.0 620.0 1.61 63 64.5 632.0 1.61 63 63.83 628.0 1.61 64 64.4 744.0 3.23 63 64.3 612.0 1.61
d5 61 77 101.0 630.0 26.23 67 767.1 592.0 9.84 65 66.6 669.0 6.56 66 67.0 615.0 8.2 64 66.17 733.0 4.92 65 65.83 745.0 6.56 64 66.35 629.0 4.92

284.16 307.68 412.78 13.94 290.16 581.97 1025.87 26.03 269.16 273.08 1913.62 5.55 269.67 273.92 1527.2 6.01 277 273.86 1520.84 6.08 269.6 273.89 1562.84 5.94 267.36 273.58 1503.96 5.1
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Table 4. WOA Results.

Inst. Opt. BCL MIR QL1 QL2 QL3 QL4 QL5

Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD Best Avg Sec RPD

41 429 543 582.82 186.0 26.57 664 751.74 2869.0 54.78 521 529.17 3063.0 21.45 530 532.4 3094.0 23.54 524 530.0 3084.0 22.14 530 532.5 3230.0 23.54 526 531.64 3088.0 22.61
42 512 554 581.72 195.0 8.2 699 762.29 668.0 36.52 543 548.67 2503.0 6.05 538 546.44 2454.0 5.08 543 548.0 2453.0 6.05 534 544.44 2577.0 4.3 524 547.0 2508.0 2.34
43 516 565 597.22 207.0 9.5 717 798.68 898.0 38.95 539 546.89 2518.0 4.46 537 543.78 2620.0 4.07 533 540.33 2476.0 3.29 535 540.78 2626.0 3.68 536 544.11 2610.0 3.88
44 494 541 559.89 192.0 9.51 635 694.42 1084.0 28.54 513 522.89 2729.0 3.85 519 526.33 2788.0 5.06 516 524.11 2654.0 4.45 513 524.22 2804.0 3.85 517 525.55 2854.0 4.66
45 512 565 591.0 203.0 10.35 700 773.87 894.0 36.72 535 541.43 2690.0 4.49 537 541.89 2728.0 4.88 540 545.78 2801.0 5.47 537 544.78 2801.0 4.88 531 545.0 2577.0 3.71
46 560 593 626.22 205.0 5.89 745 874.68 670.0 33.04 579 584.44 2602.0 3.39 573 580.33 2635.0 2.32 577 583.11 2520.0 3.04 577 584.78 2410.0 3.04 573 582.35 2526.0 2.32
47 430 455 482.17 194.0 5.81 540 613.32 1733.0 25.58 444 446.29 2831.0 3.26 440 445.29 2916.0 2.33 444 447.14 2825.0 3.26 438 444.67 2835.0 1.86 438 445.0 2737.0 1.86
48 492 536 566.67 190.0 8.94 732 779.1 886.0 48.78 505 509.5 2724.0 2.64 505 507.83 2596.0 2.64 506 510.17 2516.0 2.85 505 509.0 2411.0 2.64 504 508.91 2507.0 2.44
49 641 717 751.42 205.0 11.86 946 1013.35 720.0 47.58 680 689.0 2633.0 6.08 686 690.8 2552.0 7.02 680 684.25 2775.0 6.08 680 690.0 2460.0 6.08 672 689.04 2631.0 4.84
410 514 543 582.82 186.0 5.64 664 751.74 2869.0 29.18 521 529.17 3063.0 1.36 530 532.4 3094.0 3.11 524 530.0 3084.0 1.95 530 532.5 3230.0 3.11 526 531.64 3088.0 2.33
51 253 288 298.33 209.0 13.83 369 416.77 1423.0 45.85 276 277.0 2766.0 9.09 277 278.33 2825.0 9.49 276 279.33 2798.0 9.09 274 278.0 2731.0 8.3 273 277.48 2738.0 7.91
52 302 346 368.33 219.0 14.57 456 521.03 1075.0 50.99 329 332.83 2248.0 8.94 326 332.17 2366.0 7.95 330 332.83 2454.0 9.27 327 331.33 2340.0 8.28 325 331.96 2347.0 7.62
53 226 240 251.42 201.0 6.19 323 351.81 878.0 42.92 232 233.67 2380.0 2.65 232 233.5 2385.0 2.65 233 234.5 2453.0 3.1 231 233.67 2459.0 2.21 231 233.96 2458.0 2.21
54 242 267 275.67 208.0 10.33 330 362.45 947.0 36.36 251 252.67 2588.0 3.72 250 252.5 2824.0 3.31 246 250.0 2503.0 1.65 250 251.5 2712.0 3.31 249 252.35 2536.0 2.89
55 211 223 236.92 173.0 5.69 274 294.9 2347.0 29.86 217 218.33 2933.0 2.84 216 218.83 2788.0 2.37 218 219.33 2712.0 3.32 217 218.33 2955.0 2.84 215 218.22 2816.0 1.9
56 213 237 255.08 196.0 11.27 311 343.97 1626.0 46.01 224 228.33 2528.0 5.16 227 229.0 2725.0 6.57 225 227.0 2630.0 5.63 228 229.5 2681.0 7.04 223 228.04 2652.0 4.69
57 293 330 337.75 182.0 12.63 403 450.94 1207.0 37.54 306 311.83 2541.0 4.44 311 313.2 2481.0 6.14 307 310.2 2479.0 4.78 303 311.0 2530.0 3.41 307 311.81 2569.0 4.78
58 288 306 328.43 201.0 6.25 408 445.03 705.0 41.67 298 298.5 2346.0 3.47 298 299.33 2444.0 3.47 297 298.0 2413.0 3.12 295 297.83 2592.0 2.43 294 297.87 2440.0 2.08
59 279 307 322.82 197.0 10.04 403 443.06 951.0 44.44 287 289.8 2445.0 2.87 284 287.4 2557.0 1.79 284 289.17 2326.0 1.79 287 290.5 2480.0 2.87 284 289.57 2440.0 1.79
510 265 288 298.33 209.0 8.68 369 416.77 1423.0 39.25 276 277.0 2766.0 4.15 277 278.33 2825.0 4.53 276 279.33 2798.0 4.15 274 278.0 2731.0 3.4 273 277.48 2738.0 3.02
61 138 161 170.4 177.0 16.67 336 368.0 188.0 143.48 143 147.23 1558.0 3.62 144 146.68 747.0 4.35 144 146.74 809.0 4.35 142 146.39 781.0 2.9 143 146.61 795.0 3.62
62 146 164 193.55 181.0 12.33 415 506.68 177.0 184.25 155 156.17 698.0 6.16 154 155.83 634.0 5.48 152 156.0 694.0 4.11 156 157.33 712.0 6.85 154 156.65 655.0 5.48
63 145 172 194.5 194.0 18.62 390 474.71 157.0 168.97 149 150.33 722.0 2.76 149 150.4 677.0 2.76 148 149.17 646.0 2.07 149 150.33 659.0 2.76 147 149.96 661.0 1.38
64 131 136 151.0 221.0 3.82 262 318.9 156.0 100.0 134 134.83 787.0 2.29 132 134.17 874.0 0.76 134 134.67 785.0 2.29 131 134.5 807.0 0.0 133 135.04 827.0 1.53
65 161 188 209.17 215.0 16.77 379 514.0 170.0 135.4 178 181.83 807.0 10.56 180 181.5 757.0 11.8 176 179.5 857.0 9.32 177 179.17 725.0 9.94 175 180.0 733.0 8.7
a1 253 284 300.8 351.0 12.25 583 626.6 343.0 130.43 261 268.38 6741.0 3.16 263 266.84 3320.0 3.95 264 266.97 3309.0 4.35 264 266.87 3422.0 4.35 264 267.22 3308.0 4.35
a2 252 284 306.12 329.0 12.7 553 615.9 285.0 119.44 271 271.67 3349.0 7.54 266 269.83 3765.0 5.56 265 270.4 3505.0 5.16 269 271.0 3516.0 6.75 266 270.83 3430.0 5.56
a3 232 276 284.75 343.0 18.97 505 568.9 299.0 117.67 242 246.5 3323.0 4.31 244 245.6 3274.0 5.17 242 246.0 3198.0 4.31 243 245.5 3527.0 4.74 240 246.17 3172.0 3.45
a4 234 282 308.67 328.0 20.51 518 568.48 308.0 121.37 245 249.0 3125.0 4.7 251 251.8 3061.0 7.26 246 246.6 3152.0 5.13 249 250.0 3003.0 6.41 244 249.04 3174.0 4.27
a5 236 262 283.88 395.0 11.02 531 570.32 288.0 125.0 246 247.5 3430.0 4.24 242 247.33 3301.0 2.54 241 248.17 3489.0 2.12 246 248.17 3555.0 4.24 243 248.74 3245.0 2.97
b1 69 90 104.2 316.0 30.43 549 592.4 312.0 695.65 71 71.55 1581.0 2.9 70 71.68 859.0 1.45 70 71.87 866.0 1.45 69 71.68 903.0 0.0 71 71.65 955.0 2.9
b2 76 94 118.25 359.0 23.68 487 587.03 297.0 540.79 79 80.0 985.0 3.95 78 79.5 883.0 2.63 78 79.17 907.0 2.63 78 79.5 1003.0 2.63 78 79.87 915.0 2.63
b3 80 110 134.17 360.0 37.5 662 766.94 323.0 727.5 82 82.67 1120.0 2.5 82 82.17 996.0 2.5 82 82.67 962.0 2.5 82 82.0 1049.0 2.5 81 82.26 934.0 1.25
b4 79 101 123.92 338.0 27.85 617 683.74 309.0 681.01 83 83.83 996.0 5.06 83 83.83 907.0 5.06 83 83.5 932.0 5.06 83 84.0 909.0 5.06 83 83.87 986.0 5.06
b5 72 82 116.42 334.0 13.89 521 603.65 304.0 623.61 73 73.83 1010.0 1.39 73 74.33 1046.0 1.39 74 74.5 913.0 2.78 73 74.33 929.0 1.39 73 74.18 962.0 1.39
c1 227 266 280.4 538.0 17.18 707 732.6 447.0 211.45 243 248.27 9112.0 7.05 243 247.81 4407.0 7.05 241 247.48 4305.0 6.17 241 247.29 4314.0 6.17 243 247.75 4535.0 7.05
c2 219 264 280.5 586.0 20.55 703 799.94 455.0 221.0 236 239.83 4657.0 7.76 234 238.83 4784.0 6.85 238 240.17 4071.0 8.68 238 239.6 4784.0 8.68 232 239.81 4285.0 5.94
c3 243 287 322.2 562.0 18.11 798 930.16 445.0 228.4 255 259.67 3760.0 4.94 258 260.83 3878.0 6.17 261 261.8 3996.0 7.41 258 261.33 3851.0 6.17 256 260.61 4010.0 5.35
c4 219 261 283.58 504.0 19.18 721 788.58 431.0 229.22 232 233.83 4007.0 5.94 232 233.83 3846.0 5.94 228 234.17 4033.0 4.11 230 233.5 3929.0 5.02 229 233.09 3927.0 4.57
c5 215 262 288.83 550.0 21.86 692 765.71 460.0 221.86 227 231.0 4063.0 5.58 229 231.33 4320.0 6.51 229 231.0 3952.0 6.51 223 228.67 4363.0 3.72 226 231.0 4326.0 5.12
d1 60 99 135.4 548.0 65.0 781 869.4 472.0 1201.67 62 64.61 2206.0 3.33 63 64.97 1297.0 5.0 64 65.06 1295.0 6.67 64 64.79 1233.0 6.67 64 65.13 1263.0 6.67
d2 66 84 119.58 553.0 27.27 902 988.87 475.0 1266.67 69 69.0 1481.0 4.55 68 69.0 1355.0 3.03 67 68.75 1310.0 1.52 68 68.83 1341.0 3.03 68 69.04 1325.0 3.03
d3 72 93 139.58 600.0 29.17 907 1082.39 501.0 1159.72 77 78.33 1344.0 6.94 76 77.33 1430.0 5.56 76 77.33 1421.0 5.56 76 77.33 1469.0 5.56 77 77.7 1463.0 6.94
d4 62 78 128.5 541.0 25.81 760 880.65 486.0 1125.81 63 63.67 1281.0 1.61 62 63.4 1336.0 0.0 63 63.8 1386.0 1.61 63 63.67 1403.0 1.61 62 63.43 1389.0 0.0
d5 61 87 115.4 520.0 42.62 777 877.1 483.0 1173.77 64 65.17 1297.0 4.92 63 64.33 1368.0 3.28 63 65.0 1363.0 3.28 65 65.67 1374.0 6.56 63 65.3 1354.0 3.28

286.91 310.86 308.91 17.01 572.09 643.15 765.42 276.64 267.02 270.36 2585.27 4.94 267.38 270.29 2373.76 4.9 266.84 277 2331.33 4.75 266.71 270.2 2381.24 4.77 265.24 270.31 2344.2 4.27
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Figure 8. WOA Violin chart of instance c5.

Figure 9. SCA—Exploration and Exploitation Graphic of instance 53 version QL5.

Figure 10. SCA—Exploration and Exploitation Graphic of instance 53 version BCL1.



Mathematics 2021, 9, 1839 20 of 26

Figure 11. SCA—Exploration and Exploitation Graphic of instance c5 version QL5.

Figure 12. SCA—Exploration and Exploitation Graphic of instance c5 version BCL1.

Figure 13. WOA—Exploration and Exploitation Graphic of 58 version QL5.
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Figure 14. WOA—Exploration and Exploitation Graphic of 58 version MIR2.

Figure 15. WOA—Exploration and Exploitation Graphic of instance d4 version QL5.

Figure 16. WOA—Exploration and Exploitation Graphic of instance d4 version MIR2.

These variations in exploration and exploitation percentages open the discussion about
the implications of changing real-time binarization schemes, quantifying these percentage
variations and the question of how to assess the quality of these changes.
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8. Conclusions

Today, Machine Learning techniques are increasingly used in most areas of research,
as data capture has been steadily increasing in recent years. MH have not been the
exception, where these ML techniques have supported MH from various approaches in
order to improve their performance. This is one of the main motivations for this proposal,
since MH generate a large amount of data that is not always used for their operation. In
the brief review of QL implementations, it is shown how this technique improves the
performance of MH, managing to identify two methods of implementation: (1) as a selector
of low-level heuristics in the context of hyperheuristics; (2) as a selector of a certain operator
among a set of operators, as is the example of the choice of a mutation operator among
different mutation operators. On the other hand, it is noted that the size of the Q-Table tends
to take small sizes, since the sets of operators to be selected are usually small compared to
other techniques of Machine Learning that address large amounts of input variables. The
use of enhancements and combinations of QL with other Temporal Difference techniques
such as SARSA (State-Action-Reward-State-Action) is also identified.

The algorithms presented in this work have shown that the choice of binarization
schemes affects the balance of exploration and exploitation turning them into balanced
metaheuristics [95], used in [96–98]. The balance achieved by our method shows an
improvement in the quality of solutions, obtaining statistically significant better results.

Under the results obtained, it can be concluded that the versions that have incorpo-
rated QL in the selection of binarization schemes obtained variations in the percentages
of exploration and exploitation, which are reflected in improvements in the quality of
the solutions and in the techniques that do not present these disturbances in their static
versions. These perturbations can be associated with better quality movements that will
present a greater probability of finding better values when presenting variations in the
percentages of exploration and exploitation, meaning that the solutions will have a greater
rate of movement in the search space.

On the other hand, when observing the comparison between the average execution
times (“Sec” column in Tables 3 and 4), a great increase in time is observed for the versions
that incorporate the binarization scheme selector, which are approximately around 447% in
WOA and 223% for SCA; this is justifiable since the incorporation of QL to the iterative
process of the MH, means a greater demand of calculation, since in each iteration the
decision of which binarization scheme to use must be taken. However, this difference in
time when comparing against a single binarization scheme, among the 40 combinations
that were already explained in Section 3, produces an unequal comparison. Moreover,
by not having a selector of binarization schemes, the 40 combinations of binarization
schemes presented in this work should be tested, but since this would involve too much
computation time, recommendations presented in the literature are usually used; however,
they do not ensure to be the best binarization scheme for the problem and techniques
implemented. Consequently, our proposal of a binarization scheme selector is of greater
relevance since the high computational costs for the choice of binarization schemes are
often not affordable; thus, under this scenario our proposal excels when compared with
fixed binarization schemes.

In terms of future work, the option of evaluating other MH with exploration and
exploitation behaviors similar to those presented will be contemplated, as well as other
more established MH such as Differential Evolution (DE) and Particle Swarm Optimization
(PSO) in order to verify that the incorporation of QL generates the same effect on them. We
also consider the evaluation of other Temporal Difference techniques to compete with QL,
the inclusion of other existing transfer functions in the literature, such as O-Shapes, and
the evaluation of other methods of rewarding in addition to the five we have evaluated in
the present work.
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