3,767 research outputs found

    Synchronous frequency support of photovoltaic power plants with inertia emulation

    Get PDF
    ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Grid stability is one of the main concerns in renewable energies. The lack of inertia and their low capability to provide frequency support has created the need for implementing new control strategies to solve this problem. In current networks, frequency and voltage support are performed through synchronous generators, which provide an inherent grid support due to the inertia presented in their mechanical rotors. Based on the same concept, renewable energies based on power converters have introduced synchronous controllers to emulate the dynamic behavior of synchronous generators and provide voltage and frequency support. However, most synchronous control strategies integrate their controllers as an add-on firmware embedded in each power converter, without presenting a coordinated synchronous performance when several converters operate in a PV power plant. The aggregation of several power converters operating with a coordinated synchronous response would be advantageous in these cases, since they can provide a harmonic response with an automatic power distribution when grid support is required. This paper presents a synchronous control strategy for photovoltaic power plants, which manages several power converters as an aggregated synchronous system.Peer ReviewedPostprint (author's final draft

    Frequency support characteristics of grid-interactive power converters based on the synchronous power controller

    Get PDF
    Grid-interactive converters with primary frequency control and inertia emulation have emerged and are promising for future renewable generation plants because of the contribution in power system stabilization. This paper gives a synchronous active power control solution for gridinteractive converters , as a way to emulate synchronous generators for inerita characteristics and load sharing. As design considerations, the virtual angle stability and transient response are both analyzed, and the detailed implementation structure is also given without entailing any difficulty in practice. The analytical and experimental validation of frequency support characteristics differentiates the work from other publications on generator emulation control. The 10 kW simulation and experimental frequency sweep tests on a regenerative source test bed present good performance of the proposed control in showing inertia and droop characteristics, as well as the controllable transient response.Peer ReviewedPostprint (author's final draft

    PI-based controller for low-power distributed inverters to maximise reactive current injection while avoiding over voltage during voltage sags

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in IET Power Electronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.In the recently deregulated power system scenario, the growing number of distributed generation sources should be considered as an opportunity to improve stability and power quality along the grid. To make progress in this direction, this work proposes a reactive current injection control scheme for distributed inverters under voltage sags. During the sag, the inverter injects, at least, the minimum amount of reactive current required by the grid code. The flexible reactive power injection ensures that one phase current is maintained at its maximum rated value, providing maximum support to the most faulted phase voltage. In addition, active power curtailment occurs only to satisfy the grid code reactive current requirements. As well as, a voltage control loop is implemented to avoid overvoltage in non-faulty phases, which otherwise would probably occur due to the injection of reactive current into an inductive grid. The controller is proposed for low-power rating distributed inverters where conventional voltage support provided by large power plants is not available. The implementation of the controller provides a low computational burden because conventional PI-based control loops may apply. Selected experimental results are reported in order to validate the effectiveness of the proposed control scheme.Peer ReviewedPostprint (updated version

    Performance of direct power controlled grid-connected voltage source converters

    Get PDF
    PhD ThesisIn this thesis the performance of direct power controlled grid-connected voltage source converters (VSCs) is investigated. Of particular interest is the stability of the controller with the third-order LCL filter employed as the grid filter, effect of grid impedance variations and grid voltage distortion, and current limitation during voltage dips. The control scheme implemented is virtual-flux direct power control with space vector modulation (VF-DPC-SVM). By mathematical modelling and stability analysis, it is found that the closed-loop power control system is stable for all values of proportional gain when the current sensors are on the inverter side of the LCL filter. The inverter current together with the estimated grid virtual-flux is used to estimate the active power and the reactive power. The difference between the estimated reactive power and the reactive power on the grid side is compensated for, using a new reactive power error compensation scheme based on the estimated capacitor current. The control system is found to be robust to changes in grid inductance, and remains stable for a range of grid inductance values, and controller proportional gain. It is demonstrated in simulation and experimentally that the total harmonic distortion (THD) of the current injected by the VSC is less than the limit of 5 %, set by standards, for all different values of grid inductance and proportional gain. This is true even in the presence of significant grid voltage distortion. To control the VSC during voltage dips without damaging the semiconductor devices, a new current limiting algorithm is proposed and implemented. The positive-sequence component of the virtual-flux is used for synchronization and power estimation to achieve balanced, undistorted currents during unsymmetrical voltage dips. Experimental results show that the current achieved during unsymmetrical voltage dips is balanced and has a THD of less than 3 %.Commonwealth Scholarship and Fellowship Plan, Copperbelt Universit

    Influence of the ICFF decoupling technique on the stability of the current control loop of a grid-tied VSC

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The control scheme of grid-tied converters is often implemented in the dq-frame due to simplicity of design. However, with this transformation, there exists an inherent cross-coupling term between the d-and q-channels which is often compensated for by using a feed-forward term in the current-control loop. It is shown, by applying the generalized Nyquist criterion (GNC) to the dq-frame ac impedance of the converter, that the inclusion of this decoupling term, in fact, degrades the stability of the controller when increasing the bandwidth of the synchronous reference frame phase-locked loop (SRF-PLL). Harware-in-the-loop (HIL) experiments are also conducted and verify these results.Peer ReviewedPostprint (author's final draft

    Demonstration of sustained and useful converter responses during balanced and unbalanced faults in microgrids

    Get PDF
    In large power grids where converter penetration is presently low and the network impedance is predominantly reactive, the required response from converters during faults is presently specified by phrases such as “maximum reactive output”. However, in marine and aero power systems most faults are unbalanced, the network impedance is resistive, and converter penetration may be high. Therefore a balanced reactive fault current response to an unbalanced fault may lead to over-voltages or over/under frequency events. Instead, this paper presents a method of controlling the converter as a balanced voltage source behind a reactance, thereby emulating the fault response of a synchronous generator (SG) as closely as possible. In this mode there is a risk of converter destruction due to overcurrent. A new way of preventing destruction but still providing fault performance as close to a SG as possible is presented. Demonstrations are presented of simulations and laboratory testing at the 10kVA 400V scale, with balanced and unbalanced faults. Currents can be limited to about 1.5pu while still providing appropriate unbalanced fault response within a resistive network

    Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame:A Survey

    Get PDF

    Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter

    Full text link
    [EN] An accurate small-signal model of three-phase photovoltaic (PV) inverters with a high-order grid filter is derived in this paper. The proposed model takes into account the influence of both the inverter operating point and the PV panel characteristics on the inverter dynamic response. A sensitivity study of the control loops to variations of the dc voltage, PV panel transconductance, supplied power, and grid inductance is performed using the proposed small-signal model. Analytical and experimental results carried out on a 100-kW PV inverter are presented.Figueres Amorós, E.; Garcerá, G.; Sandia Paredes, J.; González Espín, FJ.; Calvo Rubio, J. (2009). Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter. IEEE Transactions on Industrial Electronics. 56(3):706-717. doi:10.1109/TIE.2008.2010175S70671756

    Integrated series transformer in cascade converters for photovoltaic energy systems

    Get PDF
    This paper proposes a novel configuration for photovoltaic applications based on a cascade converter topology. The series connection between modules is achieved through the magnetic core of the integrated series transformer, therefore an inherent isolation is provided without the requirement of a dc-dc conversion stage. Such isolation approach between each module allows operation at high voltage levels without harming the PV panel insulation. The main principles that support this proposal, as well as, simulation results are presented to validate the configuration.Peer ReviewedPostprint (author's final draft
    • …
    corecore