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Abstract—The control scheme of grid-tied converters
is often implemented in the dq-frame due to simplicity
of design. However, with this transformation, there
exists an inherent cross-coupling term between the d-
and q-channels which is often compensated for by using
a feed-forward term in the current-control loop. It is
shown, by applying the generalized Nyquist criterion
(GNC) to the dq-frame ac impedance of the converter,
that the inclusion of this decoupling term, in fact,
degrades the stability of the controller when increasing
the bandwidth of the synchronous reference frame
phase-locked loop (SRF-PLL). Harware-in-the-loop
(HIL) experiments are also conducted and verify these
results.

Index Terms—small-signal, state-space, eigenvalues,
impedance-based, generalized Nyquist criterion,
inductor current feed-forward.

I. Introduction

In the last few decades, economic and environmental
considerations have driven a significant growth in the use
of renewable energies, mainly wind and photovoltaic, and
this trend is expected to increase in the coming years [1].
However, the use of this type of energy is generally only
possible by means of an adequate power-electronic-based
interface, such as Voltage Source Converters (VSCs),
which enables the control of variables such as voltage and
frequency.

In both stand-alone and grid-connected mode, current
control plays a key role in the operation of the VSC. Due
its ease of implementation and satisfactory performance
[2], one of the most commonly used approaches for
current regulation is its implementation in a rotating
Synchronous Reference frame (SRF), or dq frame, by
using Proportional-Integral (PI) controllers for the d- and
q-channels.

However, as is well known [3], there exists cross-coupling
between the d- and q-channels which produces a power
quality degradation when current control is implemented

in the SRF. Consequently, several decoupling techniques
have been proposed to reduce the cross-coupling
and improve the current transient performance [2–4].
Among the decoupling techniques, the Inductor Current
Feed-Forward (ICFF) is widely used [3].

For grid-connected inverters, an algorithm for detecting
the grid phase-angle is required for the synchronization
[5]. Although a wide variety of synchronization schemes
have been proposed, the Synchronous Reference Frame
Phase-Locked Loop (SRF-PLL) is still widely used with
single- and three-phase VSCs [6].

However, it is known that the synchronization loop
introduces certain dynamics which negatively affect its
stability, and this effect is strongly related to parameters
such as the Short Circuit Ratio (SCR), the delay in the
current control loop due the times of computation and
Pulse-Width Modulation (PWM), the PLL bandwidth,
and among others.

In this sense, the aim of this paper is to show that
the use of the ICFF technique for decoupling the d- and
q-axis of the current control causes a negative effect on
the stability of the system, and that this effect is more
noticeable as the SRF-PLL bandwidth increases. This fact
is proven by the application of two widely used approaches
in small-signal stability analysis of VSC-based systems,
such as the state-space-based approach [7] and the recently
proposed impedance-based approach [8, 9]. On one hand,
the use of state space enables a direct comparison of the
system’s eigenvalues for the two cases: with and without
ICFF. On the other hand, the impedance-based method is
more intuitive and enables a better physical interpretation
of the phenomenon.

One method to study the controller’s small-signal
stability as parameters are changed is to apply the
generalized Nyquist criterion (GNC) for three-phase ac
power systems, which uses the dq-frame impedance of the
system under study [10].
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Fig. 1: One-line diagram of the system.

The remainder of the paper is stuctured as follows:
section II describes the topology of the system under
study. Section III derives the state-space model of
the system to be used in section IV to analyze the
effect of parametric changes on the stability of the
system. Section V derives the impedance-based model
of the system to which GNC is applied in section VI
to analyze the small-signal stability under parametric
changes. Section VII covers the experimental results
using hardware-in-the-loop. Finally, section VIII is the
conclusion.

II. System overview
The system under study comprises a current control

loop of a two-level three-phase VSC connected to the
grid at the point of common coupling (PCC) through an
LCL-filter. The simplified one-line diagram is shown in
Fig. 1.

In this system, only balanced three-phase conditions
have been assumed, i.e., voltages and currents contain only
positive sequences. Therefore, the three-phase system has
been reduced to an equivalent two-phase system expressed
in the αβ or dq-frame. In addition, the dc bus voltage,
vdc, has been assumed as constant and the dynamics
introduced by the switching scheme are disregarded.

In this paper, boldface letters are used to denote
complex space vectors and complex transfer functions [11].
On the other hand, vectors referred to the stationary αβ-
and dq-frame are denoted with the subscripts αβ and dq
respectively, i.e., xαβ = xα+ jxβ and xdq = xd+ jxq.

Fig. 2 shows a non-linear block diagram of the current
controller. The PLL provides the phase angle needed for
the transformation of signals from αβ to dq and vice versa.

The current controller is implemented in the dq-frame
and consists of a PI controller, whose transfer function
is denoted by Gc (s), together with the ICFF, jω1L,
which is used to decouple the dq axes cross-coupling [2],
and whose effect on the system stability is what this
paper is intended to analyse. Theoretically, to achieve a
total decoupling, L should include the value of the grid
inductance. However, since this value is generally unknown
and strongly changing according of the grid-operation
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Fig. 2: Block diagram of the non-linear system.

conditions, it is assume that L includes at least the total
inductance of the LCL-filter, i.e., L= L1 +L2.

The digital implementation of the current control
introduces a delay, e−sTd , due to the computation time
and PWM scheme. It is common to assume that the time
delay Td is 1.5Ts [13], where Ts is the sampling time
of the current control. In the current controller, ejω1Td

is a correction factor for the small angular displacement
resulting from the transformation of the delay from αβ to
dq [14].

A passively-damped LCL-filter, as shown in Fig. 1,
has been assumed. The converter-side and the grid-side
inductors are represented by L1 and L2, respectively, while
C is the shunt capacitor; R1 and R2 refer to the internal
resistance of L1 and L2, respectively, and R is the damping
resistor in the shunt branch. The converter output voltage
is given by voαβ while vpcc

αβ denotes the PCC voltage. A
functional block diagram of the LCL-filter is shown Fig. 2
where

Y
L1
αβ (s) = 1

L1s+R1

Y
L2
αβ (s) = 1

L2s+R2

ZCαβ (s) = 1
Cs

+R

(1)

III. State-space model of the system

The derivation procedure to obtain the non-linear
state-space model of the system under study is detailed
in [15]. Then, in order to apply linear analysis techniques
based on eigenvalues, this model is linearised around
a operation point, yielding a 12th-order small-signal
state-space model which can be expressed in the classical
form

dx
dt = Ax +Bu (2)



Parameter Symbol VSC

100kVA 4MVA

Nominal ac voltage Vn 400V 690V
dc bus voltage vdc 750V 1150V
Switching frequency fsw 3150Hz 2000Hz
Sampling frequency fs 6300Hz 4000Hz

LCL-filter

L1 0.1909pu 0.1716pu
R1 0.0057pu 0pu
L2 0.0987pu 0.0581pu
R2 0.0016pu 0pu
C 0.0265pu 0.0374pu
R 0.3906pu 0.1470pu

Curren controller kp 1.7578pu 1.2602pu
ki 78.1250pu/s 63.0120pu/s

Time delay Td 0.2381ms 0.3750ms

Short circuit ratio SCR 10 10

TABLE I: Parameters of the VSCs.

where x and u are given by

x =
[
θ xpll xcc

d xcc
q xdd xdq · · ·

· · · iod ioq igd igq vcd vcq

]T
(3)

u =
[
iref
d iref

q vgd vgq

]T
(4)

IV. Effect of Parametric Changes
One of the main design parameters of the SRF-PLL is

its bandwidth, fpll
bw, which will affect the performance of

the controller overall.
Fig. 3 shows the trajectories of the eigenvalues of the

state-space model metioned in the previous section as the
fpll

bw changes for two power ratings: 100 kVA and 4 MVA.
The parameters for each case are shown in Table I. Black
arrows denote the direction of increasing fpll

bw while red
and blue circles denote the operation of the VSC with and
without ICFF, respectively.

The value of fpll
bw for which the system becomes unstable

is indicated for all cases with red and blue arrows. In
the case of the 100 kVA VSC, the maximum stable PLL
bandwidth achieved without ICFF (200 Hz) is about 30%
greater than with ICFF (155 Hz). In the case of the 4 MVA
VSC, the difference is more severe: the PLL bandwidth
reached without ICFF (265 Hz) is about 130% greater
than with ICFF (115 Hz).

V. Impedance-based model of the system
Although the linearised state-space model is a mature

analysis tool and is widely used for the stability analysis of
power systems, it does not provide a clear explanation on
the difference in the stability margins for when the ICFF is
used versus when it is not used. Therefore, in this section,
an impedance-based model of the system, based on the
work presented in [6], is developed in order to provide more
insight on the phenomenon.

With ICFF

Without ICFF

(a) 100 kVA.

With ICFF

Without ICFF

(b) 4 MVA.

Fig. 3: System Eigenvalues for a SRF-PLL bandwidth
sweep: (a) 100 kVA VSC, (b) 4 MVA VSC.

1
pcc
qv  



je  Im() pll( )cG s

1
s

pcc
v

pcc
dqv

Fig. 4: Block diagram of the SRF-PLL.

The impedance-based model is developed in two steps:
1) linearising each blocks respectively, and 2) assembling
these linearised building blocks by applying control-block
reduction techniques.

A. Synchronous reference frame phase-locked loop

Fig. 4 depicts the block diagram of the SRF-PLL, where
the Park transformation is used for phase detection and
the output q-axis voltage is regulated by a PI controller,
Gpll
c (s) = kpll

p +kpll
i /s, for phase tracking [6].

The small-signal closed loop response the SRF-PLL is
given by [6]

∆θ =Gpll
cl (s)Im

(
vpcc
dq

)
(5)

where

Gpll
cl (s) =

kpll
p s+kpll

i

s2 +kpll
p s+kpll

i

(6)



B. Effect of SRF-PLL on current control loop
Because of the transformation of voltage and current

signals from αβ to dq and vice versa, any perturbation
coming from the grid will be transferred to the current
control loop through the SRF-PLL as a perturbation in
the phase-angle, θ, as shown the green lines in Fig. 2.

Phase-angle disturbances have a twofold effect on the
current control: on one hand, they will modify the
measured current, igαβ, due the transformation to dq-frame;
on the other hand, they will modify the voltage reference,
vref
dq , coming from the current control because of the

transformation to αβ-frame.
Since phase-angle perturbations are fully transmitted to

the measured current, they would exist a third path if
ICFF is used, as shown by the red lines in Fig. 2. This
possibility has not been taken in account [6].

1) Effect on the measured current: The measured
current, igαβ, is transformed to the dq-frame using the Park
transformation as follows:

igdq = e-jθigαβ (7)

In (7), iref
dq is a function of iref

αβ and θ and is linearised as
follows:

δigdq =
∂igdq
∂igαβ

∣∣∣∣∣
0

∆igαβ +
∂igdq
∂θ

∣∣∣∣∣
0

∆θ

= e-jθ0∆igαβ︸ ︷︷ ︸
∆ig
dq

−je-jθ0 igαβ0︸ ︷︷ ︸
ig
dq0

∆θ (8)

where the subscript “0” denotes the operating point of the
linearisation. Eq. (8) shows that, in small-signal, the total
current variation, δigdq, results from the linear combination
of the current variation itself, ∆igdq, and the phase-angle
variation, ∆θ. Therefore,

δigdq = ∆igdq−∆ipll
dq (9)

where
∆ipll

dq = jigdq0∆θ (10)

By replacing ∆θ of (5) in (10)

∆ipll
dq = Ypll

dq (s)Im
(

vpll
dq

)
(11)

where
Ypll
dq (s) = jigdq0Gpll

cl (s) (12)

2) Effect on the voltage reference: As shown in Fig. 2
the voltage reference, vref

dq , coming from the current control
is transformed to αβ-frame by using the inverse Park
transformation as follows:

vref
αβ = ejθvref

dq (13)

Proceeding as in (8), linearisation of (13) results in

δvref
dq = ∆vref

dq + ∆vpll
dq (14)

where
∆vpll

dq = Gpll
dq (s)Im

(
vpll
dq

)
(15)
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Fig. 5: Block diagram of the linearised system.

and
Gpll
dq (s) = jvref

dq0G
pll
cl (s) (16)

C. LCL-filter and grid
The transformation of a relation yαβ =Gαβ (s)uαβ gives

a frequency translation of s→ s+ jω1 when transformed
to the dq-frame [11]. Therefore, the transfer functions of
the LCL-filter and the grid can be transformed from the
αβ- to the dq-frame as follows:

YL1
dq = Y

L1
αβ (s+ jω1)

YL2
dq = Y

L2
αβ (s+ jω1)

ZC
dq = ZCαβ (s+ jω1)

Zg
dq = Zgαβ (s+ jω1)

(17)

D. Delay of the current control
Due the frequency translation, the delay e−Tds in

the αβ-frame is transformed such that e−Td(s+jω1) =
e−jω1Tde−Tds. The factor ejω1Td of the current control
cancels out the small angular displacement, −ω1Td. If
a first-order Padé approximation is used in order to
rationalize the factor e−Tds, the delay can be expressed
as

e−Tds ≈Gd (s) = 2−Tds
2 +Tds

(18)

Fig. 5 shows a block diagram of the small-signal model
where the signals and the blocks are expressed in the
dq-frame. By applying control-block reduction techniques,
the small signal model of Fig. 5 can be equivalently
depicted as shown in Fig. (5), where de admittances are
given by

Ycl
dq =

Yo
dq

1 + (Gc− jω1L)GdYp
dq

Ypllt
dq =−

GdYp
dq

(
GcYpll

dq +Gpll
dq

)
1 + (Gc− jω1L)GdYp

dq

Yde
dq =

jω1LGdYp
dqY

pll
dq

1 + (Gc− jω1L)GdYp
dq

(19)
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Fig. 6: Impedance-based model of the system.

where
Yp
dq =

YL1
dq YL2

dq ZC
dq

1 +
(

YL1
dq +YL2

dq

)
ZC
dq

Yo
dq =

(
1 +YL1

dq ZC
dq

)
YL2
dq

1 +
(

YL1
dq +YL2

dq

)
ZC
dq

(20)

In (19), Ycl
dq is the admittance without considering

the effects of the SRF-PLL and the ICFF, Ypllt
dq is the

admittance due the effect of the SRF-PLL on iref
dq ig and

vref
dq , and Yde

dq is the admittance due the effect of the ICFF
only.

The total admittance of the system, Yt
dq, is given by

Yt
dq = Ycl

dq +Ypllt
dq +Yde

dq (21)

that is equal to

Yt
dq =

Yo
dq−GdYp

dq

(
GcYpll

dq +Gpll
dq

)
+ jω1LGdYp

dqY
pll
dq

1 + (Gc− jω1L)GdYp
dq

(22)
when ICFF is used and

Yt
dq =

Yo
dq−GdYp

dq

(
GcYpll

dq +Gpll
dq

)
1 +GcGdYp

dq

(23)

when not.
Therefore, when ICFF is used, the total admittance of

the system is modified, which results in a decrease in its
stability margins.

VI. Generalized Nyquist Criterion
According to the multivarible linear system theory [16],

the stability of a MIMO system can be predicted based
on the Generalized Nyquist Criterion (GNC). In simple
terms, the GNC states that a MIMO system, L(s), will be
stable if the Nyquist plot of the determinant of I + L(jω)
does not encircle the origin when ω changes from −∞ to
+∞.

Applied to the system in Fig. 6, the GNC takes the form
of ∣∣∣I + Yt

dqZgdq (jω)
∣∣∣ (24)

where Yt
dq and Zgdq are the 2×2 matrix representation of

Yt
dq and Zg

dq, and I is the identity matrix.
Fig. 7 shows a zoomed view of the Nyquist diagram

of the system with and without ICFF for the 100kVA
VSC, where it is observed that the additional admittance
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g
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With ICFF

Without ICFF

Fig. 7: Nyquist plots of
∣∣∣I + Yt

dqZgdq (jω)
∣∣∣ for the 100 kVA

VSC.

resulting from the decoupling term when ICFF is
activated, Yde

dq, decreases the stability margin of the
system, therefore reducing the relative stability compared
to when the ICFF is not activated. In the figure, the
system is stable if the ICFF is not used and unstable if
it used.

VII. Experimental Results
Hardware-in-the-loop (HIL) simulations were conducted

in order to validate the theoretical results obtained. The
VSC was implemented on the Typhoon HIL platform
model 600 (8/16 analog inputs/outputs). The control
loop was discretized and carried out by means of the
commercial DSP F28335 of Texas Instruments, where the
calculation step is 1 µs.

The waveforms of the PCC voltage are shown in Fig. 8.
At the start of both cases, the controller operates without
the ICFF component and the system response is seen to
be stable. After a moment, the ICFF is activated and
it is observed that the waveforms become significantly
distorted, thus indicating a decrease in the stability margin
of the system. The change is more noticeable for the 4
MVA VSC case, as shown in Fig. 8b.

VIII. Conclusion
This paper assesses the effect of using a decoupling

technique on small-signal stability. First, a small-signal
model is developed to observe the effect of the variation
of parameters on the eigenvalues of the system under
study. Then, the Nyquist diagrams based on the ac
impedance are plotted to observe the reduction in the gain-
and phase-margin when the ICFF is activated. Thus, it
is shown that changing parameters in a manner which
would ordinarily improve the controller’s performance,
such as increasing the PLL bandwidth, in fact reduces the
effectiveness of the controller when ICFF is activated. HIL
experiments confirm the results obtained from the model
and simulation.



(a) 100 kVA.

(b) 4 MVA.

Fig. 8: PCC voltage before and after activating the ICFF.
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