research

Synchronous frequency support of photovoltaic power plants with inertia emulation

Abstract

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Grid stability is one of the main concerns in renewable energies. The lack of inertia and their low capability to provide frequency support has created the need for implementing new control strategies to solve this problem. In current networks, frequency and voltage support are performed through synchronous generators, which provide an inherent grid support due to the inertia presented in their mechanical rotors. Based on the same concept, renewable energies based on power converters have introduced synchronous controllers to emulate the dynamic behavior of synchronous generators and provide voltage and frequency support. However, most synchronous control strategies integrate their controllers as an add-on firmware embedded in each power converter, without presenting a coordinated synchronous performance when several converters operate in a PV power plant. The aggregation of several power converters operating with a coordinated synchronous response would be advantageous in these cases, since they can provide a harmonic response with an automatic power distribution when grid support is required. This paper presents a synchronous control strategy for photovoltaic power plants, which manages several power converters as an aggregated synchronous system.Peer ReviewedPostprint (author's final draft

    Similar works