858 research outputs found

    A toolchain to verify the parallelization of OmpSs-2 applications

    Get PDF
    Programming models for task-based parallelization based on compile-time directives are very effective at uncovering the parallelism available in HPC applications. Despite that, the process of correctly annotating complex applications is error-prone and may hinder the general adoption of these models. In this paper, we target the OmpSs-2 programming model and present a novel toolchain able to detect parallelization errors coming from non-compliant OmpSs-2 applications. Our toolchain verifies the compliance with the OmpSs-2 programming model using local task analysis to deal with each task separately, and structural induction to extend the analysis to the whole program. To improve the effectiveness of our tools, we also introduce some ad-hoc verification annotations, which can be used manually or automatically to disable the analysis of specific code regions. Experiments run on a sample of representative kernels and applications show that our toolchain can be successfully used to verify the parallelization of complex real-world applications.This project is supported by the European Union’s Horizon 2021 research and innovation programme under grant agreement No 754304 (DEEP-EST), by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871669 (AMPERE) and the Project HPCEUROPA3 (INFRAIA-2016-1-730897), by the Ministry of Economy of Spain through the Severo Ochoa Center of Excellence Program (SEV-2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), and by the Generalitat de Catalunya (2017-SGR-1481).Peer ReviewedPostprint (author's final draft

    Static Validation of Barriers and Worksharing Constructs in OpenMP Applications

    Get PDF
    International audienceThe OpenMP specification requires that all threads in a team execute the same sequence of worksharing and barrier regions. An improper use of such directive may lead to deadlocks. In this paper we propose a static analysis to ensure this property is verified. The well-defined semantic of OpenMP programs makes compiler analysis more effective. We propose a new compile-time method to identify in OpenMP codes the potential improper uses of barriers and work-sharing constructs, and the execution paths that are responsible for these issues. We implemented our method in a GCC compiler plugin and show the small im-pact of our analysis on performance for NAS-OMP benchmarks and a test case for a production industrial code

    From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    Full text link
    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.Comment: 18 pages, 4 figures, accepted for publication in Scientific Programmin
    • …
    corecore