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Abstract. Programming models for task-based parallelization based on
compile-time directives are very effective at uncovering the parallelism
available in HPC applications. Despite that, the process of correctly an-
notating complex applications is error-prone and may hinder the general
adoption of these models. In this paper, we target the OmpSs-2 program-
ming model and present a novel toolchain able to detect parallelization
errors coming from non-compliant OmpSs-2 applications. Our toolchain
verifies the compliance with the OmpSs-2 programming model using local
task analysis to deal with each task separately, and structural induction
to extend the analysis to the whole program. To improve the effective-
ness of our tools, we also introduce some ad-hoc verification annotations,
which can be used manually or automatically to disable the analysis of
specific code regions. Experiments run on a sample of representative ker-
nels and applications show that our toolchain can be successfully used
to verify the parallelization of complex real-world applications.

Keywords: Synchronization · Software testing and debugging · Parallel
programming.

1 Introduction

In the last twenty years, the conceptual hardware organization of computing
systems has changed significantly. Complex multi-core and heterogeneous archi-
tectures are ubiquitous nowadays and represent a cost-effective way to support
the high degree of parallelism of many High-Performance Computing (HPC) ap-
plications. Several new ideas have been put into the software in terms of parallel
programming supports to adapt to this paradigm shift [16]. In order to implement
parallelization via these supports, applications need to be redesigned or ported to
a different programming language with parallelization constructs. In some cases,
the user is also responsible for how the parallelism is implemented. A direct
consequence of this is that the effort of maintaining the source code increases,
and tasks like debugging or testing become quite tricky. Parallel programming
models based on compiler directives such as OpenMP [2] are an alternative to
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the approaches mentioned above. These models allow the programmer to dis-
close parallelism within programs through source-code annotations, which are
interpreted by the compiler as commands to perform transformations that paral-
lelize the code. The annotation-based approach is very effective as it allows users
to parallelize applications incrementally without sacrificing the programmability
and portability of code. Starting from the sequential version of the application,
the user can add more and more annotations to specify the parallelism of dif-
ferent parts of the application. Despite the high potential of annotation-based
models, the parallelization process remains manual and prone to errors by the
user. Incorrect usage of annotations can lead to performance and correctness
issues and many hours of bug-hunting, thus forcing developers to debug their
programs in conventional (and typically ineffective) ways to try to get to the
root cause of the problem.

In this article, we focus on the OmpSs-2 task-based programming model.
OmpSs is a shared-memory multiprocessing API developed at the Barcelona Su-
percomputing Center (BSC) for C, C++, and Fortran programs. OmpSs takes
from OpenMP its idea of providing a way to, starting from a sequential program,
produce a parallel version through pragma annotations in the source code. Paral-
lelization is achieved by annotating certain code regions as tasks that can execute
independently on the available threads, and synchronization constraints between
them. OmpSs has also been a forerunner for many of the task-based features later
introduced in OpenMP. The second version of OmpSs, called OmpSs-2, features
a fine-grained data-flow execution model for tasks that has been recently pro-
posed for integration into OpenMP [15]. The OmpSs programming model is
interesting because it has clear rules when it comes to specifying tasks and syn-
chronization constraints. For this reason, it is possible to verify that applications
comply with it in a programmatic manner. Applications that are compliant to
the OmpSs programming model are less likely to be affected by parallelization
errors that undermine the performance and correctness of the program. There-
fore, proving that an application complies with the rules of OmpSs eliminates
some of the errors that can be introduced upon parallelizing the code of an
application, thus potentially saving many hours of tedious debugging.

In this work, we illustrate a programmatic approach to checking paralleliza-
tion errors in OmpSs-2 based on local task analysis to verify task-level compli-
ance, and structural induction to verify application-level compliance. We also
propose a novel toolchain that implements this analysis for real-world OmpSs-2
applications. The toolchain is based on a framework that involves three pieces:
compile-time analysis to check the compliance of code before execution, run-time
analysis to verify code that could not be checked at compile-time, and verifica-
tion annotations to mark code that should not be explicitly analyzed by our
toolchain. Our experiments suggest that our toolchain’s hybrid nature is key
to making our programmatic approach viable for checking the compliance of
real-world applications.
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2 Task-based parallelization in OmpSs-2

In this section, we describe the parallelization annotations available in the OmpSs-
2 task-based programming model, and the rules that must be respected to com-
ply with it. Failing to do so is a compliance error, denoted with the ‘E’ prefix,
which may impact both the performance and the correctness of the parallelized
application. We describe these errors in detail in the rest of this section.

2.1 Tasks and dependencies

OmpSs-2 allows expressing parallelism through tasks, independent pieces of code
that can be executed by the computing resources at runtime. Whenever the
program flow reaches a section of code declared as a task, the system creates
an instance of that task and delegates its execution to the OmpSs-2 runtime
system. Tasks are created via the task directive. Any directive that defines a
task can also appear within the definition of a task, thus naturally supporting
task nesting. Note that, in OmpSs-2, everything is a task. The user program
runs in the context of an implicit task region, called the initial task. This makes
all user-defined tasks to be nested tasks to that initial region.

OmpSs-2 tasks commonly require to access data to do meaningful computa-
tion. These data references can be declared via the in, out, or inout clauses3.
The set of all data references constitutes the dataset of a task. Each time a new
task is created, its dataset is matched against those of previously-created tasks
to produce execution-order constraints between them. We call these constraints
dependencies. This process creates a task dependency graph at runtime that
guarantees a correct order of execution for the application, i.e., an order which
respects the dependencies between tasks. Tasks aren’t considered for execution
until all their predecessors in the graph, if any, have finished.

Whether the task actually uses data in the declared way is the responsibility
of the programmer. In Listing 1.1 it is an error (E1) to access a from inside T1,
because a is not in the dataset of T1 and thus doesn’t generate any dependency.
If there is another task T2 accessing the same variable, the two tasks can’t
synchronize their accesses. Another error (E2) is declaring an element in the
dataset that is not accessed. For example, if T2 declares to access d when the
variable is not accessed, there may be undesired synchronization between T2
and another task T3 accessing the same variable.

2.2 Dependency domains

The OmpSs-2 model states that dependencies between any two tasks can be
established if those tasks share the same dependency domain. By default, a task
t can only have dependencies with its sibling tasks, i.e., tasks that share with

3 For a thorough explanation of the admitted syntax for data references, see the official
OmpSs-2 specification: https://pm.bsc.es/ftp/ompss-2/doc/spec/.
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1 int a, b;
2 long c[N];
3

4 #pragma oss task in(b) out(c[i:j]) label(T1)
5 {
6 a = 5; // Error E1: No matching dependency for ’a’
7 }
8 #pragma oss task inout(a, b, d) label(T2)
9 {

10 a += b; // OK
11 // Error E2: No matching access for ’d’
12 }
13 #pragma oss task in(d) label(T3)
14 {
15 int x = d; // OK
16 }
17

Listing 1.1. Definition of tasks and dependencies.

1 #pragma oss task in(a) weakout(b) label(T1)
2 {
3 int x = a; // OK
4 #pragma oss task out(b, c) label(T1.1)
5 { ... }
6 // Error E3: No matching ’c’ dependency in T1
7 }
8 #pragma oss task in(b) weakout(d) label(T2)
9 {

10 int y = b; // OK
11 // Error E4: No matching ’d’ dependency in T2.1
12 #pragma oss task out(b) label(T2.1)
13 { ... }
14 }
15

Listing 1.2. Connecting tasks via weak dependencies.

t the same parent task. To connect two tasks that are not siblings, the depen-
dency model in OmpSs-2 supports weak dependencies. These are created via the
weakin, weakout, and weakinout clauses, but are not real dependencies. Their
sole purpose is to inform the runtime that some descendant of a task is access-
ing the data elements specified in the weak variant. To connect the dependency
domains of two arbitrary tasks t1 and t2, we must propagate the dataset of both
t1 and t2 upwards, using the weak prefix, until we find a common ancestor ta
(which can coincide with t1 or t2). By doing this, the runtime will merge the
dependency domain of all tasks from t1 to ta, and from t2 to ta, thus being able
to establish a dependency between t1 and t2.

The mechanism of synchronization via weak dependencies can be unintuitive
at times. In Listing 1.2, failing to weakly pass the reference to c from T1.1
upwards is an error (E3) because the model states that if dependency domains are
not properly connected, accesses to the same object in different domains cannot
be synchronized. Another error (E4) is to declare an object in the weak dataset of
T2, when no descendant task is accessing it. Even if the runtime doesn’t perform
any actions on T2 that require the enforcement of those dependencies, it may
suggest an error elsewhere, e.g., a missing out reference to d in task T2.1.



A toolchain to verify the parallelization of OmpSs-2 applications 5

1 #pragma oss task label(T1)
2 {
3 int x = 0, y = 2;
4 #pragma oss task inout(x) label(T1.1)
5 { ... }
6 #pragma oss task in(x) inout(y) label(T1.2)
7 { ... }
8 #pragma oss taskwait in(x)
9 assert(x == 1); // OK

10 // Error E5: No ’taskwait ’ or ’taskwait in(x, y)’ before the assertion
11 assert(x == y);
12 }
13

Listing 1.3. Synchronization via the taskwait construct.

2.3 Taskwait synchronization

By design in OmpSs-2, to synchronize the code of task t with any of its descen-
dants t′ we need to use the taskwait directive. Taskwait synchronization means
that the runtime waits until the previously-created descendant tasks (including
the non-direct children tasks) complete their execution. The set of sibling tasks
targeted by a taskwait depends on the data references added to the taskwait

directive. If no data references are specified, the taskwait blocks the task waiting
for the completion of all previous descendant tasks.

Appropriately placing taskwaits in task code is a process prone to mistakes
in OmpSs-2 applications. In Listing 1.3, failing to place a taskwait before the
last assert is an error (E5) because the parent task is allowed to execute the
statement without waiting for its children (which access both x and y) to finish.

3 Programmatically checking compliance

Our programmatic approach verifies application-level compliance through task-
level compliance analysis and inductive reasoning on the recursive structure of
OmpSs-2 applications. The former is used to verify the absence of errors in each
task separately; the second is used to verify increasing portions of the program
until we reach the initial entry point. These two techniques rely respectively
on two aspects of the OmpSs-2 model: (1) compliance errors in a task t can
be verified without having to look at the internal code of other tasks, nor at
the datasets of tasks at nesting levels that cannot be directly reached from t;
(2) the code of the program can be represented as a hierarchy of tasks, with
the initial task wrapping the initial entry point. Any task-based programming
model satisfying these properties admits a programmatic approach for checking
compliance like the one described in this section.

3.1 Task-level compliance

Table 1 provides a compact list of the errors that were discussed in Section 2.
To check that a task is free of these errors, OmpSs-2 states that we only look at
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E Description

E1 No matching dependency for an access
E2 No matching access for a dependency
E3 No matching dependency in the parent task
E4 No matching dependency in the child task
E5 No taskwait between an access and previous tasks

Table 1. Compliance errors in OmpSs-2

what happens (i) within the code of the task itself, (ii) in the dataset annotations
of its parent (if any), and (iii) in the dataset annotations of its children (if any).
This fact is exploited in our tools to analyze each task separately. We call local
task analysis (LTA) the kind of processing we carry out to check that a single
task is compliant with the OmpSs-2 model. It is local because such analysis
does not need to reason globally, i.e., at the level of the whole program. To
understand how local task analysis works, let’s consider a task t in the program.
Let tp be its parent task, and tc be a child task. Let d(t,i) be the i-th dataset
element of t, defined as a tuple 〈m, clk, r〉, where m ∈ {read,write} is the access
mode, clk is the time at which the corresponding task was created, and r is the
memory range of that entry. Let a(t,j) be the j-th memory access performed by
t, defined as a tuple 〈m, clk, r〉 with m being once again the access mode, clk
being the time at which the access was performed, and r the memory range of
the access. Let Dt be the set of all dependencies of t. Let At be the sequence
of all accesses of t (also called the access-set of t). Finally, let Wt be the set
of taskwaits dependencies inside task t. Each entry w(t,k) is a tuple 〈m, clk, r〉,
where clk is the time at which the corresponding taskwait was created, and m
and r are defined like their counterparts in d(t,i). In the following, we show a
conceptual description of LTA, focusing on the errors E1, E3, and E5 for the
sake of simplicity. LTA for the remaining cases can be defined likewise.

Condition 1 (E1 detection). Verify if there is at least one access performed
by t that does not have a corresponding dataset entry. Formally speaking, check
if, for each a(t,j) ∈ At, there is no d(t,i) ∈ Dt for which:

– a(t,j).r ⊆ d(t,i).r, and
– d(t,i).m = a(t,j).m

If there is any a(t,j) for which it is true, then t is affected by E1.

Condition 2 (E3 detection). Verify if there is at least one dataset entry of
t (weak or not) that does not have a corresponding dataset entry in its parent
(at least weak). Formally speaking, check if, for each d(t,i) ∈ Dt, there is no
d(tp,ip) ∈ Dtp for which:

– d(t,i).r ⊆ d(tp,ip).r, and
– d(t,i).m = d(tp,ip).m

If there is any d(t,i) for which it is true, then t is affected by E3.
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Condition 3 (E5 detection). Verify if there is at least one access performed
by t such that: (i) the access has a corresponding dataset entry in one of the
previously-created child tasks; (ii) at least one amongst the access and the dataset
entry is a write; (iii) the access is not guarded by a taskwait that blocks until the
termination of the conflicting child task. Formally speaking, check if, for each
a(t,j) ∈ At, there is at least one d(tc,ic) ∈

⋃
tc
Dtc for which:

– a(t,j).r ⊆ d(tc,ic).r, and
– a(t,j).m = write, or d(tc,ic).m = write, or both, and
– a(t,j).clk > d(tc,ic).clk, and
– there is no w(t,k) ∈ Wt for which:
• w(t,k).clk < a(t,j).clk, and
• w(t,k).clk > d(tc,ic).clk, and
• w(t,k).r ∩ d(tc,ic).r 6= ∅, and
• w(t,k).m = write, or d(tc,ic).m = write, or both.

If there is any a(t,j) for which it is true, then t is affected by E5.

Conditions 1 to 3 give us a way to detect the errors in Table 1. However,
to make these conditions operational, we need to convert them into an algo-
rithm, and the mathematical structures on which such conditions rely must be
turned into concrete data structures. Section 4 briefly describes an experimental
implementation of LTA based on compile-time and run-time analysis.

3.2 Application-level compliance

Local task analysis is used in our approach to check that a task is free of compli-
ance errors. However, we need a way to prove that the entire application is also
free of these errors. To do this, we reason inductively on the task-nested structure
of OmpSs-2 applications. The OmpSs-2 model represents a program as a hier-
archy of tasks. It states that no parts of the program can be executed outside of
a task. The recursive nature of tasks can be exploited to prove application-level
compliance using structural induction, which is a generalization of the induc-
tive proof technique over natural numbers. The property that we wish to prove
inductively is OmpSs-2 compliance, defined as follows:

Definition (OmpSs-2 compliance). A task t is OmpSs-2 compliant if and
only if the following condition holds: (1) the task is not affected by any of the
errors in Table 1, and (2) for every task t′ that is a child of t, t′ is also OmpSs-2
compliant.

By using LTA and structural induction on the nested task structure of an
OmpSs-2 application, it is possible to prove its compliance in an incremental
manner. According to the definition of OmpSs-2 compliance, if the initial task
is OmpSs-2 compliant, then the whole application is compliant.
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1 #pragma oss lint in(sendbuf [0: size]) out(recvbuf [0: size])
2 {
3 MPI_Send(sendbuf , size , MPI_BYTE , dst , block_id +10, MPI_COMM_WORLD );
4 MPI_Recv(recvbuf , size , MPI_BYTE , src , block_id +10, MPI_COMM_WORLD ,
5 MPI_STATUS_IGNORE );
6 }
7

8 double A[N/TS][M/TS][TS][TS];
9 #pragma oss lint out (A[i][j])

10 for (long ii = 0; ii < TS; ii++)
11 for (long jj = 0; jj < TS; jj++)
12 A[i][j][ii][jj] = value ;
13

14 for (int i = 0; i < N; ++i) {
15 #pragma oss task verified(i != 0 && i != N-1 && i % M != 0)
16 { ... }
17 }
18

Listing 1.4. Examples of the lint directive and the verified clause.

3.3 Capabilities of the programmatic approach

In Section 2, we introduced the notion of compliance error and explained that
it might affect the parallelization of an application in an undesired way. Gener-
ally speaking, we call parallelization error any error that was introduced upon
parallelizing the original sequential program, and that affects the parallelized
program’s behavior in an unintended way. In this article, we are concerned with
two main types of parallelization errors: performance and correctness errors.
Performance errors can create additional synchronization constraints that defer
the execution of a task unnecessarily. Correctness errors are typically caused
by an unintended lack of synchronization between tasks that alters the original
sequential program’ semantics. Parallelization errors can be hard to spot and
to debug. Usually, they don’t manifest predictably, as it depends on the rela-
tive timing between the interfering tasks. Nevertheless, it can be shown that the
absence of compliance errors is a sufficient condition for the absence of specific
parallelization errors [7], such as those described in this article. However, it is
worth observing that not all compliance errors produce parallelization errors.
There are cases in which the application doesn’t comply with the model, but
the synchronization between tasks doesn’t produce correctness or performance
errors at run-time. Viceversa, not all parallelization errors that may negatively
affect the application are compliance errors that can be detected with this ap-
proach. Some parallelization errors are semantics errors, i.e., errors that require
a knowledge of the semantics of the application to be detected programmatically.
These errors are out of the scope of this work. Lastly, limitations coming from
concrete LTA implementations (such as those mentioned in Section 4) may too
affect the accuracy of the analysis.
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4 An OmpSs-2 verification toolchain

This section describes our novel toolchain for checking the compliance of OmpSs-2
applications4. It is made of three key elements: (1) a static source-code analyzer
that works at compile-time (also called the compile-time tool); (2) a dynamic
binary-code analyzer that works at run-time (aka the run-time tool); (3) a set of
pragma directives and clauses (also called verification annotations) that can be
used as an interface between the user, the compile-time tool, and the run-time
tool. The reason behind this hybrid architecture is to overcome some limitations
of both compile-time and run-time analysis that might undermine the effective-
ness of the programmatic approach described in Section 3.

4.1 Manual user pass

Initially, users can annotate portions of code that must be ignored by our
toolchain. To this extent, we have introduced support for ad-hoc verification
annotations into the Mercurium source-to-source compiler [8]. They instruct the
compile-time and run-time tools to pause the analysis inside the wrapped code
region. The verification annotations we introduced in OmpSs-2 are: (1) the lint

directive, followed by optional in, out, or inout data-references; and (2) the
verified clause, optional in the task construct.

The lint directive can be used to ignore code inside tasks. To extend its
applicability, users can also declare which accesses to shared-memory (if any)
performed within the ignored region are relevant for LTA. For the compile-time
tool, the directive is especially useful to mark calls to inaccessible code. In the
first example of Listing 1.4, the MPI Send and MPI Recv functions are not avail-
able for analysis, but their semantics is clear: they respectively read/write N
bytes from/to memory. For the run-time tool, marking code is useful to pre-
vent tracing memory accesses that, albeit executed inside tasks, don’t relate to
the application business logic. This scenario includes, amongst many, accesses
performed in libraries to shared-memory variables that are not visible to the
application, as well as accesses to shared-memory objects that are synchronized
independently of OmpSs-2 (e.g., spinlocks). In the MPI example, the implemen-
tation of MPI Send and MPI Recv may perform accesses to some internal variables
used for synchronization purposes, hence not relevant for LTA. The verified

clause works at the level of whole tasks. It is used to tell both tools that the task
is OmpSs-2 compliant, and that no LTA is needed. It accepts an optional boolean
expression to decide, at run-time, whether that particular task instance has to
be verified. This expression can be used to conditionally evaluate task instances

4 Compared to the reference description in Section 2, our tools support additional
OmpSs-2 features: commutative and concurrent dependencies (treated like inout),
explicit release of dependencies, final and if clauses. Primitives for task reduc-
tions, atomic operations, and critical regions are currently unsupported. Additional
information, included the instructions on how to install and use the toolchain, can
be found here: https://github.com/bsc-pm/ompss-2-linter.
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that are more likely to be subject to programming errors (e.g., tasks related
to boundary loop iterations). It can also be used to implement task-level sam-
pling and reduce the overall memory tracing overhead of the application (e.g.,
instrument a fraction of all task instances at run-time). In the third example of
Listing 1.4, we only instrument a subset of the tasks that represent distinct loop
iterations: the first task, the last task, and one every M of the remaining ones.

4.2 Compile-time pass

The compile-time tool aims at two main goals. The first goal is to anticipate
errors that are independent of the input of the application and may later appear
at run-time. To this extent, we have extended Mercurium and its built-in infras-
tructure for static analysis with an LTA implementation, evaluating task-level
compliance for every task definition in the source code. Notice that compile-time
LTA cannot always derive the full program state at every point in the code. Ad-
ditionally, it cannot analyze code that is unavailable at compile-time (e.g., code
coming from other compilation units, or code that is dynamically loaded). When
lacking information, it doesn’t state anything about OmpSs-2 compliance and
leaves task-level analysis to the run-time tool. The run-time tool circumvents
these limitations, but only for specific input and while introducing overhead
during the execution of the application. For this reason, to ease the burden of
the run-time tool, the second goal of the compile-time tool is to mark those
sections of code that have been verified by the compiler and therefore do not
need to be instrumented at run-time. In the second example of Listing 1.4, a
nested loop structure is used to perform a linear array walk. The compile-time
tool can detect this scenario and can mark it with a verification annotation. The
TS2 accesses performed within the loop are ignored by the run-time tool, but
an equivalent representation of these accesses is placed in the annotation so as
to be considered at run-time.

The algorithm to place verification annotations around portions of code,
or whole task definitions, performs a bottom-up/inside-out traversal over the
Parallel Control Flow Graph (PCFG) [17]. It uses induction variables and scalar
evolution analysis in an attempt to wrap adjacent statements incrementally until
a terminating condition is encountered (e.g., a call to a function whose code is
not reachable). The compile-time tool also makes use of the manually-placed
verification annotations to try to extend their scopes to more extensive code
regions. At the end of this pass, any detected error is reported to the user before
execution. The parts of the code that could be verified statically are marked using
verification annotations, while the others are left for run-time instrumentation.

4.3 Run-time pass

The run-time tool is invoked to complement the compile-time analysis and to
provide complete coverage of the code, but only for a given input. Run-time
analysis can observe the actual program execution state at any moment in time,
so it doesn’t need to be conservative. However, it has other limitations. It cannot
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always distinguish memory accesses that are relevant for LTA (e.g., accesses
to shared-memory variables visible to the application) from non-relevant ones
(e.g., access to shared-memory variables private to a library and synchronized
separately). Additionally, the instrumentation introduced at run-time for the
sake of tracing can alter the timing of some events, thus leading to observe
artificial and slower application executions.

In order to circumvent such accuracy and overhead issues, run-time analysis
exploits verification annotations placed by the user or by the compile-time tool,
and only runs LTA for code that lacks such annotations. The tool operates at two
different levels of abstraction: (1) the abstraction provided by the OmpSs-2 pro-
gramming model to deal with tasks and dependencies, as explained in Section 2;
(2) the abstraction provided by the target Instruction Set Architecture (ISA)
to recognize accesses to memory, which in our case is AMD645. Our run-time
instrumentation tool is based on Intel Pin [12] and is composed of three main
components: the Pin Virtual Machine (VM) to perform dynamic binary instru-
mentation, and two modules that perform memory access tracing on the binary
executable. The frontend module (or trace generator) is devoted to intercept-
ing the accesses performed by the application at run-time, as well as generating
the actual traces. The backend module (or trace processor) is responsible for
the processing of traces and the generation of the final report for the user. At
the end of this pass, the tool generates a report of the encountered errors for
that specific application execution, thus complementing the report produced at
compile-time.

5 Experimental assessment

In this section we provide an experimental evaluation of the analysis overhead6

of our toolchain on a set of nine different benchmarks, made of five execution ker-
nels (matmul, dot-product, multisaxpy, mergesort, and cholesky) and four proxy
application (nqueens, nbody, heat, and HPCCG). These benchmarks are repre-
sentative of real-world scientific applications and use popular HPC libraries for
advanced mathematical operation (such as Intel MKL) as well as well-known
APIs for coarse-grained parallelism (i.e., MPI). Our objective is to demonstrate
that our toolchain can be effectively used to evaluate the task-based paralleliza-
tion of these applications.

All the experiments have been conducted on the MareNostrum4 supercom-
puter. Each compute node is equipped with two 24-core Intel Xeon Platinum
8160 CPUs, totaling 48 cores per node, and 96 GB of main memory. The in-
terconnection network is based on 100 Gbit/s Intel OmniPath HFI technol-
ogy. The MPI benchmarks (nbody, heat, and HPCCG) are run on four different
nodes, while the other benchmarks are run on a single node. Figure 1 shows the

5 Although our tool targets the AMD64 instruction set, this does not limit the scope
of our work as it can be easily ported to other ISA and processor models.

6 A comprehensive evaluation of the accuracy of our toolchain will be provided in a
subsequent study.
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Fig. 1. Slowdown (y-axis) and absolute execution time (numbers on top of bars, in
seconds) for the selected benchmarks.

slowdown (y-axis) and the absolute execution time (numbers on top of bars, in
seconds) for running the selected benchmarks through the run-time tool. Each
bar represents a different benchmark and a different set of experiments. The
lint suffix represents the case of running the benchmark without the aid of

the compile-time tool, but using the lint directive to manually annotate calls
to third-party libraries. The autolint suffix represents the case of running the
benchmark with the aid of the compile-time tool, which places additional lint
directives (if possible) around regions of verified code. The absence of a suf-
fix means that the benchmark is run without the aid of the compile-time tool
or lint directives. For each bar, we also report a breakdown of the slowdown,
split into three different contributions: (a) the instrumentation cost to run the
application using Pin (the base label in the legend); (b) the instrumentation
cost to actually instrument memory instructions, without processing them (the
instr label); (c) the full instrumentation + processing cost (the full label in
the legend).

As we can see from the figure, the slowdown for the pure runtime instrumen-
tation case (no suffix) can be quite high for some benchmarks (e.g., dot-product
or mergesort). In the case of cholesky, the overhead is considerably high due to
the heavy use it makes of Intel’s MKL library. It is reported with a truncated
bar and no number on top because it exceeded the maximum time allocation
for a single job (two days). We conducted an extended analysis of these cases
and detected the major source of overhead to be the insertion of accesses in
an ad-hoc interval tree, used to aggregate contiguous accesses coming from the
same instruction over time and compare them with task dependencies. Although
we intend to develop a more efficient implementation for this data structure, we
are still bound to pay the instrumentation cost depicted in the base and instr

cases. Nevertheless, we think that the observed slowdown doesn’t limit the ef-
fectiveness of our tools. Except for cholesky, we note that the absolute execution
time of all the instrumented benchmarks is in the order of minutes, thus not
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undermining the toolchain’s usability. Moreover, using larger input sizes is often
unnecessary. In many task-based HPC applications (which are well-represented
by the benchmarks we use), a change in the input size typically has a consider-
able impact on how many tasks are executed, rather than which types of tasks.
Even when it substantially modifies the control flow at run-time (e.g., by acti-
vating different tasks, or code paths inside tasks), these variations could have
been stimulated already with smaller input sizes.

In all those cases in which it is necessary to test an application with large
or production-level inputs, we can exploit the lint and verified annotations
to focus the analysis only on the specific code activated by those inputs. This
approach makes our toolchain more effective because it allows us to spare the
tracing overhead on the parts that could be tested with smaller inputs. In our
experiments, the improvements in terms of the slowdown in the lint case were
often significant. By appropriately marking calls to external libraries with verifi-
cation annotations, the run-time instrumentation tool only intercepts a number
of accesses that are proportional to the number of data-references specified in the
in, out, or inout parameters of the pragma itself. This aspect is critical for the
case of cholesky, as each task only performs a single call to a function in the MKL
library, but those calls internally perform a huge number of accesses to memory
that are the main source of overhead. Improvements can also be observed for the
case of MPI benchmarks, which use the Intel MPI library, although the impact
tends to be smaller than that observed in the previous benchmarks. For example,
while heat is communication-intensive and so protecting calls to MPI is highly
effective, nbody and HPCCG are computation-intensive. Therefore, the use of
pragmas doesn’t improve the execution overhead by much.

The autolint case brings the most evident benefits, as it can be seen for
matmul, dot-product, and multisaxpy. In this case, the compile-time tool can
automatically wrap whole for-loop cycles into pragmas, or even mark whole
tasks within loops as verified. In all these cases, the performance improve-
ments are drastic because the instrumentation tool can disable tracing during
most of the application’s execution time. We note that these improvements are
not uncommon for real-world scenarios, as many kernels have a regular loop
structure, which can be easily analyzed using techniques like those mentioned
in Section 4.2. The case of nqueens is peculiar because it internally uses recur-
sion. In this case, the compile-tool is unable to recognize this execution pattern
and ends up marking each memory-accessing statement independently. The net
effect of this is a deterioration of the run-time overhead, compared to when the
compile-time tool is disabled. Similar considerations can be made for the MPI
benchmarks and especially for HPCCG, where the main kernel performing an
MKL-like dgemm operation couldn’t be annotated at all because a sparse ma-
trix representation is internally used. As for cholesky, we observe that each task
only performs a single call to an MKL library function. Thus, the compile-time
tool can successfully promote the manual lint directives to verified clauses
at the level of tasks. However, this brings little additional benefits compared to
the lint case.



14 S. Economo et al.

Overall, our experimental evaluation suggests that the absolute execution
cost of running the selected applications against the toolchain is affordable. Fur-
thermore, the synergistic exploitation of compile-time analysis and verification
annotations can drastically reduce this cost.

6 Related work

The strategies for verifying the parallelization of applications can be classified in
static tools, which analyze the code at compile-time, and dynamic tools, which
analyze the code at run-time. As for the fork-join part of OpenMP, there are
static solutions focused on the polyhedral model to detect errors in OpenMP par-
allel loops [5], or on symbolic analysis and Satisfiability Modulo Theories (SMT)
to detect data races and deadlocks [13]. A more general solution is provided by
Lin [11], who described a control flow graph and a region tree to statically detect
non-concurrent blocks of code and race conditions in OpenMP2.5 programs with
the Sun Studio 9 Fortran compiler. Techniques to detect synchronization issues
in task-based OpenMP programs also exist and are focused on race conditions
that may produce non-deterministic output and run-time failures [17]. In concur-
rent models based on tasking such as Ada, there have been efforts to introduce
model checking techniques at compile-time [1]. However, although these tech-
niques are very mature, their usefulness depends on contracts that are written
by programmers, hence are liable to have errors. For the dynamic detection of
parallelization errors, most of the literature is focused on tools that check for
data and determinacy races, using the Happens-Before (HB) relation to detect if
two memory accesses are concurrent [18, 10]. Archer [3] adapts ThreadSanitizer,
which can detect data races in unstructured parallel programs, to the case of ba-
sic OpenMP tasking with no dependencies. It employs a static phase to discard
all sequential code, and a dynamic phase to check for data races in the remain-
ing concurrent parts. Sword [4] is a tool that is capable of detecting all and
only data races in OpenMP programs comprised of nested fork-join parallelism
(i.e., parallel constructs). TaskSanitizer [14] is a tool that detects determinacy
races in task-parallel OpenMP programs by computing the HB relation on tasks.
ROMP is another tool targeting OpenMP with tasking [9]. It uses an approach
close to Sword to build the HB relation for nested fork-join parallelism parts,
and one similar to TaskSanitizer for the HB relation of tasks with dependen-
cies. StarSscheck [6] is a run-time tool to detect parallelization errors commonly
occurring in StarSs applications (task dependencies without nesting).

Our approach significantly differs from the ones adopted by the above works.
First of all, we don’t explicitly check for correctness errors. Our tools look for
compliance errors, which may affect both correctness and performance. The de-
tection of such errors is based on a programmatic approach that is compatible
with the OmpSs-2 programming model, but that can be ported to all task-based
programming models satisfying the properties in Section 3. To this extent, our
analysis is also different. Being always local to a task, it only compares accesses
and data references of a task with other data references. In comparison, algo-
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rithms built around the HB relation directly compare accesses from a task with
accesses from another task, thus having to perform a number of comparisons
that, in principle, can be quite higher than LTA. Lastly, to improve the overall
accuracy and overhead of detection, our toolchain combines the best of static
and dynamic techniques with the proposal of verification annotations, which are
used as an abstract interface between the user, the compile-time tool, and the
run-time tool.

7 Conclusions and future work

We have presented a toolchain to detect parallelization errors in applications
using OmpSs-2, a task-based parallel programming model. Our toolchain is com-
posed of a compile-time tool that analyzes source code, and a run-time tool that
analyzes binary code. The outcome of our toolchain is a report which informs the
user about compliance errors of OmpSs-2 applications. Our tools only perform
local task analysis of code, i.e., independently for each task. Because of the way
the OmpSs-2 programming model is defined, we can evaluate the compliance
with the model for each task and then infer it for the whole program. We have
also introduced verification annotations to mark specific code regions as verified.
Our compile-time and run-time analysis tools can safely ignore the code inside
these regions. At the same time, they can also be informed about any relevant
access performed within verified code regions. Thanks to these annotations, we
can improve both the performance and accuracy of the analysis. Experiments
run on a series of benchmarks varying from simple execution kernels to real-
world applications suggest that our tools can effectively analyze a wide range of
applications with acceptable overhead. Future work is aimed at improving our
analysis to detect inefficient parallelization constructs and suggesting the use of
more efficient ones.
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