6 research outputs found

    Analyzing Input and Output Representations for Speech-Driven Gesture Generation

    Full text link
    This paper presents a novel framework for automatic speech-driven gesture generation, applicable to human-agent interaction including both virtual agents and robots. Specifically, we extend recent deep-learning-based, data-driven methods for speech-driven gesture generation by incorporating representation learning. Our model takes speech as input and produces gestures as output, in the form of a sequence of 3D coordinates. Our approach consists of two steps. First, we learn a lower-dimensional representation of human motion using a denoising autoencoder neural network, consisting of a motion encoder MotionE and a motion decoder MotionD. The learned representation preserves the most important aspects of the human pose variation while removing less relevant variation. Second, we train a novel encoder network SpeechE to map from speech to a corresponding motion representation with reduced dimensionality. At test time, the speech encoder and the motion decoder networks are combined: SpeechE predicts motion representations based on a given speech signal and MotionD then decodes these representations to produce motion sequences. We evaluate different representation sizes in order to find the most effective dimensionality for the representation. We also evaluate the effects of using different speech features as input to the model. We find that mel-frequency cepstral coefficients (MFCCs), alone or combined with prosodic features, perform the best. The results of a subsequent user study confirm the benefits of the representation learning.Comment: Accepted at IVA '19. Shorter version published at AAMAS '19. The code is available at https://github.com/GestureGeneration/Speech_driven_gesture_generation_with_autoencode

    Capture, Learning, and Synthesis of 3D Speaking Styles

    Full text link
    Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input - even speech in languages other than English - and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.Comment: To appear in CVPR 201

    A large, crowdsourced evaluation of gesture generation systems on common data : the GENEA Challenge 2020

    Get PDF
    Co-speech gestures, gestures that accompany speech, play an important role in human communication. Automatic co-speech gesture generation is thus a key enabling technology for embodied conversational agents (ECAs), since humans expect ECAs to be capable of multi-modal communication. Research into gesture generation is rapidly gravitating towards data-driven methods. Unfortunately, individual research efforts in the field are difficult to compare: there are no established benchmarks, and each study tends to use its own dataset, motion visualisation, and evaluation methodology. To address this situation, we launched the GENEA Challenge, a gesture-generation challenge wherein participating teams built automatic gesture-generation systems on a common dataset, and the resulting systems were evaluated in parallel in a large, crowdsourced user study using the same motion-rendering pipeline. Since differences in evaluation outcomes between systems now are solely attributable to differences between the motion-generation methods, this enables benchmarking recent approaches against one another in order to get a better impression of the state of the art in the field. This paper reports on the purpose, design, results, and implications of our challenge.Part of Proceedings: ISBN 978-145038017-1QC 20210607</p

    SynFace—Speech-Driven Facial Animation for Virtual Speech-Reading Support

    No full text
    This paper describes SynFace, a supportive technology that aims at enhancing audio-based spoken communication in adverse acoustic conditions by providing the missing visual information in the form of an animated talking head. Firstly, we describe the system architecture, consisting of a 3D animated face model controlled from the speech input by a specifically optimised phonetic recogniser. Secondly, we report on speech intelligibility experiments with focus on multilinguality and robustness to audio quality. The system, already available for Swedish, English, and Flemish, was optimised for German and for Swedish wide-band speech quality available in TV, radio, and Internet communication. Lastly, the paper covers experiments with nonverbal motions driven from the speech signal. It is shown that turn-taking gestures can be used to affect the flow of human-human dialogues. We have focused specifically on two categories of cues that may be extracted from the acoustic signal: prominence/emphasis and interactional cues (turn-taking/back-channelling)
    corecore