844 research outputs found

    Poisson integrators

    Full text link
    An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented.Comment: 30 page

    Exponentially accurate Hamiltonian embeddings of symplectic A-stable Runge--Kutta methods for Hamiltonian semilinear evolution equations

    Get PDF
    We prove that a class of A-stable symplectic Runge--Kutta time semidiscretizations (including the Gauss--Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such time-semidiscretizations conserve the modified Hamiltonian up to an exponentially small error. The modified Hamiltonian is O(hp)O(h^p)-close to the original energy where pp is the order of the method and hh the time step-size. Examples of such systems are the semilinear wave equation or the nonlinear Schr\"odinger equation with analytic nonlinearity and periodic boundary conditions. Standard Hamiltonian interpolation results do not apply here because of the occurrence of unbounded operators in the construction of the modified vector field. This loss of regularity in the construction can be taken care of by projecting the PDE to a subspace where the operators occurring in the evolution equation are bounded and by coupling the number of excited modes as well as the number of terms in the expansion of the modified vector field with the step size. This way we obtain exponential estimates of the form O(exp(c/h1/(1+q)))O(\exp(-c/h^{1/(1+q)})) with c>0c>0 and q0q \geq 0; for the semilinear wave equation, q=1q=1, and for the nonlinear Schr\"odinger equation, q=2q=2. We give an example which shows that analyticity of the initial data is necessary to obtain exponential estimates
    corecore