1,510 research outputs found

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet

    Recent advances in unstructured grid generation program VGRID3D

    Get PDF
    A program for the generation of unstructured grids over complex configurations, VGRID3D, is described. The grid elements (triangles on the surfaces and tetrahedra in the field) are generated starting from the surface boundaries towards the interior of the computational domain using the Advancing Front Method

    A Model for Isotropic Crystal Growth from Vapor on a Patterned Substrate

    Full text link
    We developed a consistent mathematical model for isotropic crystal growth on a substrate covered by the mask material with a periodic series of parallel long trenches where the substrate is exposed to the vapor phase. Surface diffusion and the flux of particles from vapor are assumed to be the main mechanisms of growth. A geometrical approach to the motion of crystal surface in two dimensions is adopted and nonlinear evolution equations are solved by a finite-difference method. The model allows the direct computation of the crystal surface shape, as well as the study of the effects due to mask regions of effectively nonzero thickness. As in experiments, lateral overgrowth of crystal onto the mask and enhanced growth in the region near the contact of the crystal and the mask is found, as well as the comparable crystal shapes. The growth rates in vertical and lateral directions are investigated.Comment: 21 pages; submitted to the Journal of Crystal Growt

    A Numerical Framework for Isotropic and Anisotropic Flexible Flapping Wing Aerodynamics and Aeroelasticity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83616/1/AIAA-2010-5082-968.pd

    Transient 3D CFD Simulation of a Stationary Vane, Oil Free, Rotary Compressor

    Get PDF
    The evaluation of a newly designed oil-free rotary compressor is presented based on transient 3D Computational Fluid Dynamics (CFD) simulations. The simulations are performed at low compression ratios and low pressure ratios and low rotational speeds. To place the results into context, the data presented in related literature was processed and summarized. The methods related to the CFD model of the newly designed compressor were developed, summarized and evaluated. The accessed CFD data are in good agreement with the results of the former rolling piston compressor related investigations. The oil free operation prevents the contamination of the working fluid from lubricant. Since the compressor is planned to work in open cycle within the sensitive environment of thermal heat sources contamination free operation has to be accomplished. However, oil-free operation also results in significantly lower performance based on the modelling results

    An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA

    Get PDF
    A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated
    • …
    corecore