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Abstract 
 
This article presents a fixed-mesh approach to model convective-diffusive particle deposition onto 
surfaces. The deposition occurring at the depositing front is modeled as a first order reaction. The 
evolving depositing front is captured implicitly using the level-set method. Within the level-set 
formulation, the particle consumed during the deposition process is accounted for via a volumetric 
sink term in the species conservation equation for the particles. Fluid flow is modeled using the 
incompressible Navier-Stokes equations. The presented approach is implemented within the 
framework of a finite volume method. Validations are made against solutions of the total 
concentration approach for one- and two-dimensional depositions with and without convective 
effect. The presented approach is then employed to investigate deposition on single- and multi-tube 
arrays in a cross-flow configuration.  
 
Keywords: level-set, deposition, first order reaction 
 
1 Introduction 
 
The phenomena of deposition, either benign or malign, are encountered in many engineering 
applications. Examples include but are not limited to thin film production in semiconductor wafer 
manufacturing, coatings for various surface-finishing purposes and fouling in heat exchangers and 
pipelines. For deposition to be enhanced, controlled or prevented, an in-depth understanding of 
deposition process is important. Such an understanding can be derived experimentally. For example, 
detailed physical insights on deposition of asphaltene particles in capillary tubes are obtained from 
lab-scale experimental investigations via quantification of the growing asphaltene deposit layer [1, 
2]. However, for deposition processes involving small time and length scales, e.g. in thin film 
production and perhaps coatings, expansive high-resolution equipments are required to provide data 
with the time and length scales convincingly resolved. For fouling, the time scale can be large. 
Therefore, scaled experimental investigations are time consuming. Occasionally, extreme 
conditions, e.g. high pressure environment, and hazardous chemical materials are encountered. 
Experimental interrogations, if possible, then demand extreme cautiousness. In view of this, 
theoretical investigations, in particular numerical simulations, play an essential complementary role 
in understanding various deposition processes. It provides useful detailed insights and the ability to 
predict these processes. 
 
Central to all deposition processes is the dynamics of the evolving depositing front. Successful 
simulations of deposition processes require an accurate prediction of the moving depositing front. 
Based on the way the depositing front is handled, methods for predicting the movement of the 
depositing front can generally be categorized into two categories. These are the front-tracking and 
the front-capturing methods.  
 
The movement of the depositing front is tracked explicitly in front-tracking methods. For example 
in the moving mesh method [3, 4], the boundary of the mesh is used to represent the depositing 
front. The mesh deforms during the deposition process so that the boundary of the mesh always 
coincides with the moving depositing front. This approach offers superior accuracy both for the 
location of the depositing front and imposition of related boundary conditions. However, when the 
deformation of the mesh is large, remeshing is required to maintain numerical stability. Remeshing 
is not straight forward in the presence of topological changes. Extension of a moving mesh 
approach to three-dimensional problems is complicated and often difficult to implement 
numerically. 
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In front-capturing methods, the depositing front is no longer explicitly tracked but implicitly 
captured via an indicator function. As there is no explicit tracking required, a fixed-mesh can 
readily be used. Front-capturing methods include but are not limited to the total concentration 
approach, the VOF method and the level-set method. The total concentration approach [5, 6] was 
initially developed in the spirit of the enthalpy method [7, 8] for etching problems. The reacted 
concentration of the etchant, analogous to the latent heat content in the enthalpy method, captures 
the etch front implicitly. Recently, the total concentration approach was adapted to model 
deposition process via a new definition of the total concentration [9]. In this approach, the 
depositing front is captured implicitly by the concentration of the deposit. The approach was 
demonstrated for deposition problems in one- and two-dimensions.  
 
The VOF method [10] is often used to capture the interface between two immiscible fluids. In the 
work of [11, 12], the VOF method has been adapted to modeling deposition processes employed in 
semiconductor wafer manufacturing. The VOF method captures the depositing front implicitly via 
convection of the volume fraction of the reference phase by an underlying velocity field. During the 
calculation procedure, the depositing front must be reconstructed. This is one of the challenging 
aspects of employing the VOF method; particularly in three-dimensional problems.  
 
In the level-set method [13], the deposition front is captured by the level-set function. Convection 
of the level-set function by the velocity of the depositing front captures implicitly the motion of the 
depositing front. Early attempts of applying the level-set method for deposition process were made 
for applications in the semiconductor industries [14-16]. In these pioneering works, if desired both 
deposition and etching can be accounted for within a unified framework. Demonstrations were 
made for cases where velocity of the depositing front is given in various explicit forms. The level-
set method has the inherit advantages of automatic handling of topological changes and the ease of 
extension to three-dimensional problems.  
 
Depending on the deposition process, there can be more than one type of particles involved. The 
term “particles” is used loosely in this article to refer to solid particles, ionic species or other to-be-
deposited materials. For example, in modeling deposition of asphaltene onto the walls of petroleum 
wells or pipelines, only asphaltene particles, though of various sizes, need to be accounted for 
[17,18]. However, two types of particles, i.e. accelerator and cupric particles, are considered in a 
typical electrodeposition [19]. This is a more sophisticated deposition process where the accelerator 
particles, the cupric particles and the applied electric current interact to produce the copper deposit 
layer. 
 
The particles involved in a deposition process can be transported onto the substrate surfaces via 
very different mechanisms. For example, charged particles can be accelerated by an applied electric 
field onto a substrate surface in a near vacuum environment. This type of particle transport is in the 
ballistic regime [20]. On the other hand, convective-diffusive particle transport occurs when the 
particles is carried by a flowing fluid. Deposition problems involving diffusive particle transport 
were considered in the works of [19, 21-23] within the framework of a level-set method. The 
diffusion equation describing particle transport must then be solved for the distribution of the 
particle concentration. The velocity of the depositing front is then derived from the particle 
concentration. In the work of [23], the level-set method is coupled with the immersed interface 
method to obtain a more accurate solution of the diffusion equation. More general deposition 
problems require a consideration of convective-diffusive particle transport [24,25]. Other than the 
above Eulerian approach, Lagrangian approach for particle transport is also pursued. Generally, the 
trajectories of a large number of discrete particles are computed with each individual particle treated 
separately [26]. It requires a large number of particles to establish statistically meaningful results. 
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For small scale problem, a non-continuum treatment of particle transport, e.g. the molecular 
dynamic approach [1], is sometimes more desirable. 
 
The deposition process occurring at the depositing front can either be of a physical or chemical 
origin. For example in a physical vapor deposition process, gas particles solidify on surfaces to 
form the deposit layer [27]. In a chemical vapor deposition process, gas particles react or 
decompose on surfaces to produce the deposit layer [28]. The deposition flux at the deposition front 
has to be modeled based on these mechanisms. Varied though the types of mechanisms, the 
condition at the depositing front frequently appears in the form of a generalized third type of 
boundary condition. Examples include asphaltene particle deposition (modeled as first order 
reaction) [17], SiO2 deposition [21] and copper electrodeposition [19, 23, 24]. Therefore, from a 
modeling point of view, the simplest first order reaction would be sufficiently representative of a 
general deposition process. It is worth pointing out that this boundary condition is incorporated as 
an additional volumetric particle sink localized at the depositing front [19, 24]. With this, the 
implementation of the boundary condition explicitly on a moving front is circumvented. To model 
particle deposition in Lagrangian particle transport approach, the concept of critical size and 
sticking probability [29] are often employed with where particles are probabilistically assumed 
deposited once their distance from the wall is less than the critical length. There are of course 
empirical models for specific type of particle deposition processes [30]. Applications of these 
empirical models need appropriate adaptation. 
 
Interestingly and to the best knowledge of the authors, deposition process of a single species of 
particles modeled as a first order reaction under the framework of a level-set method has not been 
investigated. The present article intends to fill in this gap. This article presents a level-set method 
for deposition of a single species of particle onto surfaces. The deposition occurring at the 
depositing front is modeled as a first order reaction. The particles are driven by convective-diffusive 
transport. The results obtained serve to understand the more complicated deposition processes.  
 
The remaining of the article is divided into five sections. The deposition problem is described in 
Section 2. This problem is then formulated within the framework of the level-set method in Section 
3. The solution procedure is given in Section 4. In Section 5, validations and results are presented 
and discussed. Finally, a few concluding remarks are given. 
 
 
2 Problem Descriptions  
 

 
Figure 1: Domain of interest for deposition. 
 
Figure 1 shows a schematic of the domain of interest  . It consists of a fluid region   and a 

deposit region  , i.e.    tt   . These two regions are separated by the depositing front  t . Within the fluid region, there exists a suspension of solid particles. These particles gradually 
deposit onto the depositing front. As a result of the deposition, the depositing front evolves with a 
velocity of iu


 and the deposit region grows.  

 

 deposit –(t)   

 fluid +(t)   

 (t)   in̂  
iu
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3 Mathematical Formulation 
 
3.1 Capturing the Depositing Front 
The depositing front is embedded into a level-set function [13], mathematically defined as      
















tx

tx

tx

d

d







 if

 if

 if

,

,0

,

  (1) 

where d  is the shortest distance from the depositing front. Under such a representation, the 
depositing front is given by 0 . Convection of the level-set function under an appropriate 
velocity field captures implicitly the movement of the depositing front. This appropriate velocity 
field extiu ,


 is derived from iu


 (which is only available at the depositing front) by extending it off 

the depositing front with the following property maintained.   txuu iexti  
,,  (2) 

The extension can be constructed in such a way that extiu ,


 is constant along the curve normal to the 

depositing front. This can be easily achieved using the approach suggested by [31] as  

  


xnS
t


,0ˆ 

 (3) 

where   can be any component of extiu ,


. In Eq. (3), the unit normal vector n̂  and the signum 

function  S  are given respectively by 





n̂  (4a) 

 
0 if

0 if

0 if

,1

,0

,1
















S  (4b) 

With extiu ,


 properly constructed, the movement of the depositing front can then be captured as 




xu
t exti


,0, 

 (5) 

To maintain   as a distance function, i.e. 1 , after the convection of   via Eq. (5),   is set to 

the steady-state solution of Eqs. (6) [32]. 

   


xsign
t


,01

 (6a) 

where t is a pseudo time for  and  sign  is given by [33] as 

    222 x
sign  

  (6b) 

and is subjected to the following initial condition.    xx
   0,   (6c) 

 
3.2 Particle Transport 
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Figure 2: Deposition of particles onto  t  in the control volume V .   
 
The deposition process is modeled as a first order reaction with the deposition flux expressed as  txnCkuq iDiD  

,ˆ  (7) 

where D , Dk , C  and in̂  are the density of the deposit, the deposition reaction rate, the particle 

concentration and unit normal vector pointing into the fluid region respectively. If the deposition 
process is instead modeled as a higher order reaction, Eq. (7) needs to be modified. However, the 
formulation outlined below can account for a higher order reaction easily by including some minor 
modifications. Rearrangement of Eq. (7) gives the velocity of the depositing front as 

 tx
nCk

u
D

iD
i  

,
ˆ

  (8) 

Within the control volume (CV) V  (Fig. 2), the rate of particle consumed during the deposition 
process at the depositing front can be evaluated as 

 
 

   
 

 















V D

h

t Dh

t iiD

t iC

dVCk

dCdSk

dSnnCk

dSnqS




0
lim

0

ˆˆ

ˆ

 (9) 

where the Dirac delta function is defined as 

    


 

otherwise

20 if

,0

,
2

/cos1 
  (10) 

Note that Eq. (9) has been converted from a surface integral into a volume integral. Since there is no 
particle within the deposit region, the distribution of    used in the conversion has been shifted 
towards the fluid region following the approach of [34]. With this conversion, Eq. (9) can be 
employed to model the deposition process occurring at the depositing front via a localized 
volumetric particle sink concentrated around  t  in the conservation equation governing the 
particle transport within the domain  . This conservation equation can then be written as 

      


xkCCDCu
t

C 
,  (11) 

where u


 and D  are velocity of the fluid and diffusion coefficient respectively. The diffusion 
coefficient D  can be expressed conveniently using   as  

  





0 if

0 if

,

,0




D
D  (12) 

The last term in Eq. (11), derived in the spirit of Eq. (9), accounts for the particle consumed during 
the deposition process. In the solution of Eq. (11), the following initial and boundary conditions 
apply. 
Initial Condition 

 fluid  +(t) 

 (t)   

dSniˆ  

h  

deposit –(t) 

 V 
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0 if

,

,0
0, 


xC
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 (13a) 

Boundary conditions    xCtxC B
 , , 1x


 and 0t  (13b)    xFntxCD B

  ˆ, , 2x


 and 0t  (13c) 

where 21   and  21 . 
 
During the movement of the depositing front via the convection of   through Eq. (5), some of the 
particles in the immediate adjacence of the depositing front are trapped in the deposit region. If left 
untreated, the amount of trapped particles in the growing deposit region increases with time. To 
alleviate this problem, the trapped particles will be redistributed evenly to all other CVs of the fluid 
region. At the end of each time step, the amount of trapped particles is calculated as      VHCCtrapped 1  (14a) 

where the Heaviside function  H  is defined as 

 






















 if

 if

 if

,1

,sin
2

1

2

,0

H  (14b) 

Then, for all the CVs of the fluid region, the following correction is made to C  such that 

  
VH

C
CC

trapped

  (14c) 

To complete the procedure, the concentration of the particles C  for all the CVs in the deposit 
region is set to 0C . 
 
3.3 Fluid Transport 
 
The particles can be carried by a flowing fluid. To model the convection effect, the incompressible 
forms of the continuity and the Navier-Stokes equations are employed for the whole domain  .   xu


,0  (15)        


xuupuu

t

u T 


,
 (16) 

where   and   are the fluid density and viscosity respectively. The deposit is modeled as an 
extremely viscous fluid, i.e. a solid. This is easily achievable in the present formulation with the 
following definition of the viscosity. 

  





0 if

0 if

,

,




  (17) 

For the velocity, the boundary condition can be a combination of (1) inlet velocity, (2) outflow 
boundary and (3) no slip. 
 
 
4 Numerical Method 
 
The conservation equations (Eqs. 11, 15 and 16) can be written in the form of a generic transient 
convection-diffusion equation. This generic equation is solved using the finite volume method [35, 
36] on a staggered mesh arrangement. Scalar variables are defined at the node of the CVs. The 
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staggered velocity components are defined at the surface of the CVs. The combined convection-
diffusion effect is modeled using the Power Law. A fully implicit scheme is used for time 
integration. The velocity-pressure coupling of the Navier-Stokes equations is handled with the 
SIMPLER algorithm. 
 
To capture the evolving depositing front accurately, the level-set method requires higher order 
numerical schemes. The evolution of the level-set function (Eq. 5) and its redistancing (Eq. 6) are 
spatially discretized with WENO5 [37] and integrated using TVD-RK2 [38]. These schemes are 
computationally intensive. To reduce the computational effort, the level-set method is implemented 
in a narrow-band procedure [33] where the level-set function is solved only within a band of certain 
thickness from the interface. This reduces one order of computational effort. 
 
4.1 Solution Algorithm 
 
The overall solution procedure for the presented method can be summarized as follows: 
(1) Specify the initial conditions (i.e. 0t ) of  u


, p ,   and C .  

(2) Advance the time step to tt  . 
(3) Solve Eqs. (15) and (16) for tt

u 


 and 
tt

p  . 

(4) Solve Eq. (11) for tt
C  . 

(5) Calculate ttiu 


 from Eq. (8) and then 
ttextiu ,


 from Eqs. (3) and (4). 

(6) Solve Eq. (5) for 
tt   and perform redistancing using Eq. (6). 

(7) Repeat steps (3) to (6) until the solution converges. 
(8) Perform particle redistribution via Eq. (14). 
(9) Repeat steps (2) to (8) for all time steps. 
 
 
5 Results and Discussions 
 
For the ease of discussions, the following dimensionless parameters are used in the remainder of the 
article. These are the dimensionless particle concentration, Peclet, Damkohler and Reynolds 
numbers defined respectively as 

D

o
o

C
C *  (18) 

D

Lu
Pe o  (19) 

D

Lk
Da D

D   (20) 


 LuoRe  (21) 

where L  and ou  are the characteristic length and velocity respectively. The dimensionless time, 

coordinates and concentration are given respectively by 

L

tu
t o*  (22) 

L

x
x *  (23a) 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 
 

9 
 

L

y
y *  (23b) 

D

C
C *  (24) 

In the case when there is no fluid flow, the characteristic velocity is redefined as LDuo /  and 

therefore the Peclet number reduces to 1Pe . 
 
5.1 Validations 
 
5.1.1 Deposition in a One-Dimensional Semi-Infinite Domain 
 
Figure 3a shows a schematic of a deposition process in a one-dimensional semi-infinite domain. At 

0* t , the particle concentration in the fluid region is uniformly set to *
oC  and the depositing front 

is located at 0* x . As there is not fluid flow involved, diffusion is the sole mechanism of 
transporting the particles. During the deposition process, particles are deposited onto the depositing 

front resulting in the movement of the depositing front. For a given 0* t , the depositing front is 

located at ** x  after an additional deposit layer of thickness *  formed on the existing 
depositing front. Since particles are consumed in the process, the particle concentration decreases. 
The initial and boundary conditions correspond to this problem are 
Initial condition: 

**
oCC   for  *0 x  (25a) 

Boundary conditions: 

0
* 


x

C
 for 0* x  (25b) 

**  CC  for *x  (25c) 
 
Figure 3b shows the effect of DDa  on the thickness of the deposit layer. For these cases, the initial 

particle concentration is set to 5.0* oC . Although not shown here, these are grid independent 

solutions. To enforce the boundary condition of Eq. (25c), solutions were obtained for 5* x  and 

10. These solutions are identical. Therefore, 5* x  is sufficient numerically to represent a semi-

infinite domain. Generally, *  grows faster with a larger DDa . Superimposed in the same figure 
are the solutions from [9] using the total concentration (TC) approach. The present solutions (LS) 
are in good agreement with those of [9]. 
 

  

in̂

C

*x  

deposit 

(i) 0* t  

fluid  *
oC  

(initial 
concentration) 
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(a)  

 
(b) 

Figure 3: One-dimensional deposition, (a) domain of interest and (b) effect of DDa  with 5.0* C . 
 
 
5.1.2 Deposition in a Two-Dimensional Square Enclosure 
 
Figure 4a shows a two-dimensional square enclosure containing a uniform suspension of particles. 
Driven solely by diffusion, these particles deposit gradually on the four walls. Due to symmetry, the 
lower left quarter of the enclosure is modeled with the following initial and boundary conditions.  
Initial condition: 

**
oCC   for 10 *  x  and 10 *  y  (26a) 

Boundary conditions: 

0
* 


x

C
 for 1 ,0* x  (26b) 

0
* 


y

C
 for 1 ,0* y  (26c) 

For this validation exercise, 5.0* oC . Figures 4b and 4c show the solutions for the case of 

1DDa  and 10 respectively. The presented grid independent solution is obtained using a mesh of 

160160 CVs with 3* 100.5 t . Superimposed onto these figures are the solutions obtained 
using the TC approach. The present predictions are in good agreement with those of the TC 
approach.  

(ii) 0* t  

*
 

in̂

C

fluid 

 deposit 

*x  

*
oC  

*C  (current 
concentration) 

(initial 
concentration) 
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During the deposition process, the particles in the regions near the corners of the enclosure are 
deposited to both the horizontal and vertical segments of the depositing front. More particles in 
these regions are consumed generally. Therefore, the concentration of the particle is generally lower 
in these regions. For the case of 1DDa , deposition is slow compared to diffusion. Diffusion is 
able to replenish the particles consumed at the depositing front near the corners of the enclosure. A 
more uniform particle distribution along the depositing front can then be achieved. As a result, the 
deposit layers on the walls grow more uniformly. However, for the case of 10DDa , deposition is 
much faster than diffusion. The particles consumed in the regions near the corners of the enclosure 
cannot be replenished in time by the sole mechanism of diffusion. The regions near the corners of 
the enclosure have comparatively much lower particle concentration. In fact the depositing front 
near the corners of the enclosure does not move much after the initial stage of the deposition 
process, forming a crevice-like feature near the corners of the enclosures.   
 

   
(a) 

 
(b) 

*
oC  

*x  

deposit 

fluid  

*y  

 2 

 2 
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(c) 

Figure 4: Deposition in a two-dimensional square enclosure with 5.0* oC , (a) domain of interest, 

(b) 1DDa  and (c) 10DDa . 
 
 
5.1.3 Deposition in Two-Dimensional Channel with Flowing Fluid 
 
A fluid carrying particles in the form of suspension flows into a two-dimensional channel as shown 
in Fig. 5a. The dimensionless length and height of the channel are 3 and 1 units. Initially, there is no 
deposit in the channel. As the fluid flows, the particles deposit onto the walls of the channel, 
forming deposit layers. Since the deposit is impermeable, it changes the flow field. The flow field 
and the concentration field are therefore coupled together. Making use of the symmetry of the 
problem, solution was computed only for the lower half of the domain. In the definition of Re and 
Pe, the characteristic length and characteristic velocity are the height of the channel and the inlet 
velocity respectively. The following initial and boundary conditions apply. 
 
Initial conditions: 

0 *  u , 0* C  for 30 *  x  and 5.00 *  y  (27a) 
Boundary conditions: 

At the inlet ( 0* x ) 

1 * u , 0 * v , 
        otherwise,

5.025.0,

0

**
* 


 yC

C o  (27b) 

At the outlet ( 3* x ) 

0
*

* 

x

u
, 0 * v , 0

*

* 


x

C
 (27c) 

At the wall ( 0* y ) 

0 *  u , 0
*

* 


y

C
  (27d) 

At the symmetric plane ( 5.0* y ) 
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0
*

* 

y

u
, 0* v , 0

*

* 


y

C
 (27e) 

The evolution of the depositing front for the case of 1Re , 1.0* oC  15Pe  and 10DDa  

predicted by the present approach is shown in Fig. 5b. This is the grid independent solution 

obtained on a mesh of 40240 CVs with 3* 105 t . This case was also investigated by [9]  
and the solution is superimposed. The two solutions agree well with each other. The dimensionless 

deposition flux (defined as )/(*
oDDD Ckqq   where Dq  is the amount of deposit formed over a 

unit area of the wall) along the channel at different time is shown in Fig. 5c. Generally, *
Dq  is much 

higher near the inlet as a result of a higher particle concentration. The deposit layer near the inlet 
grows faster and is therefore thickest. The concentration of the particle decreases downstream as 
particles are deposited along the flow. The thickness of the deposit layer then decreases along the 
channel.  
  
 

 
(a) 
 

 
(b)  
 

 deposit *
ou  

fluid   1 

 3 

*x  

*y  
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(c) 
Figure 5: Deposition on the walls of a two-dimensional channel with flowing fluid, (a) domain of 
interest, (b) evolution of the depositing front and (c) dimensionless deposition flux for 1Re , 

1.0* oC  15Pe  and 10DDa . 

 
5.2 Case Studies 
 
5.2.1 Cross-Flow Deposition on a Single-Tube Array 
 

 
Figure 6: Cross-flow deposition on a single-tube array. 
 
Figure 6 shows a cross-flow through a single-tube array. The flowing fluid carries a suspension of 
particles. These particles gradually deposit onto the surface of the tubes. Deposit layers form on the 
surface of the tubes. Given the symmetries of the problem, only the region within the dotted box 
needs to be modeled. This portion of the figure is enlarged. The tube located at  5.0,75.0  has a 
radius of 2.0R . The following initial and boundary conditions apply.  
Initial conditions: 

0 *  u , 0* C  for 5.10 *  x  and 5.00 *  y  (28a) 
Boundary conditions: 

At the inlet ( 0* x ) 

1 * u , 0 * v , **
oCC   (28b) 

At the outlet ( 5.1* x ) 

0
*

* 

x

u
, 0 * v , 0

*

* 


x

C
 (28c) 

At the lower and upper symmetric boundaries ( 5.0,0* y ) 

 deposit 

 

fluid  

 0.5 

*x  

*y  
 1.5 

tubes 

tube 
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0
*

* 

y

u
, 0 * v , 0

*

* 


y

C
 (28d) 

 

The evolution of the depositing front for the case of 1Re , 1.0* oC , 15Pe  and 10DDa  is 

shown in Fig. 7. Shown in the first plot of Fig. 7 is the depositing front at 0* t , 2, 4, 6 and 8 

obtained from two different meshes, i.e. a mesh of 40120 CVs with 10.0* t  and a mesh of 

80240 CVs with 05.0* t . Examination of Fig. 7 clearly indicates that grid independent 

solution can be obtained on a mesh of 40120 CVs with 10.0* t . The evolution of both the 
depositing front and the corresponding flow field is sequentially shown in the remaining plots of 
Fig. 7. To avoid overcrowding the figure, not every velocity vector is plotted. Only one vector in 
every five in the x -direction and one in every two in the y -direction are plotted. The flowing fluid 
carries particles towards the frontal surface of the tube (inlet-facing). Given the rich particle 
concentration and a high reaction rate ( 10DDa ), most of these particles deposit onto the frontal 
surface of the tube. Some of the remaining particles of course are carried by flow downstream along 
the surface of the tube and deposit onto the rear surface of the tube (outlet-facing). With this, it is 
expected that a much thinner deposit layer formed at the rear surface of the tube. The deposit layer 

almost blocks the entire domain at 8* t . 
 
The evolution of the depositing front for a case of lower DDa  is shown in Fig. 8. For this particular 

case of 1DDa , although the particle concentration at the frontal surface of the tube is high, most 
of these particles do not deposit because of the low reaction rate. Instead, these particles will remain 
there or be carried by the flowing fluid downstream. In fact, the reaction rate is so slow that 
deposition is not much affected by the particle concentration. The deposition rate at the frontal and 
rear surfaces of the tube is almost identical. As a result, a deposit layer of almost uniform thickness 
formed around the tube.    
 
The effect of Pe can be investigated via a comparison of Figs. 7 and 9. In Fig. 9, Pe is lowered to 

5 but with 1Re , 1.0* oC  and 10DDa  maintained. A lower Pe suggests a stronger diffusion 

transport of the particles. After particles are consumed at the depositing front, the region near the 
depositing front would have a lower particle concentration. A concentration gradient is then 
established. A stronger diffusion drives more particles towards the depositing front to replenish the 
consumed particles. Consequently, the particle concentration at the depositing front is higher 
leading to a faster deposition process.  
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Figure 7: Deposition on single-tube array for the case of 1Re , 1.0* oC , 15Pe  and 10DDa . 
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Figure 8: Deposition on single-tube array for the case of 1Re , 1.0* oC , 15Pe  and 1DDa . 
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Figure 9: Deposition on single-tube array for the case of 1Re , 1.0* oC , 5Pe  and 10DDa . 

 
5.2.2 Cross-Flow Deposition on a Multi-Tube Array 
 

 
Figure 10: Cross-flow deposition on a multi-tube array. 
 
A configuration similar to that of Fig. 6 but with a multi-tube array is considered. Depicted in Fig. 
10 is the new staggered tube arrangement. There are now three tubes in each row. The tubes are 
labeled sequentially from A (upstream) to F (downstream). Tubes A, B, C, D, E and F are located 
respectively at  5.0,5.0 ,  0,8.0 ,  5.0,1.1 ,  0,4.1 ,  5.0,7.1  and  0,0.2 . The radii of these tubes 
are identical, i.e. 2.0R . The initial and boundary conditions of Eq. (28) are enforced.  
 

 

fluid  
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*x  

*y  
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tube 

*x   B  D  F 

 A  C  E 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 
 

19 
 

The first plot of Fig. 11 shows the grid independent test conducted for the case of 1Re , 1.0* oC , 

15Pe  and 10DDa . Judging from this plot, a mesh of 40200 CVs with 10.0* t  is 
sufficient to fully resolve the features of the solution. The depositing front is depicted together with 
the corresponding flow field in the remaining plots of Fig. 11. Again, the velocity vectors are 
selectively plotted to avoid overcrowding the figure. For all tubes, a thicker deposit layer formed on 
the frontal surface is generally observed. Among these tubes, the thickest deposit layer forms on 
tube A. This is expected as tube A nearest to the inlet where the flowing fluid carries with it the 
highest possible particle concentration. As particles deposit on tubes located along the streamwise 
direction, the particle concentration generally decreases along the streamwise direction. When the 
flowing fluid reaches tube F, it has the lowest particle concentration. Therefore, the thinnest deposit 
layer forms on tube F.  
 
The Damkoler number DDa  is reduced to 1 for the case plotted in Fig. 12. For a smaller DDa , it is 
the reaction rate that control the deposition process. The particles do not deposit easily even if they 
are in contact with the depositing front. Most of these particles will remain there or be carried 
downstream. Therefore, the location of the tube becomes less important, although the thickness of 
the deposit layer formed on tubes upstream tended to be slightly thicker. On each tube, the thickness 
of the deposit is reasonably uniform. The case of a lower Pe of 5 is shown in Fig. 13. For reasons 
explained in the preceding section, a stronger diffusion results in a faster deposition process. With 
most of the particles consumed in the deposition on the tubes upstream, the thickness of particle 
layer formed on both tubes E and F is extremely thin. 
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Figure 11: Deposition on multi-tube array for the case of 1Re , 1.0* oC , 15Pe  and 10DDa . 
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Figure 12: Deposition on multi-tube array for the case of 1Re , 1.0* oC , 15Pe  and 1DDa . 
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Figure 13: Deposition on multi-tube array for the case of 1Re , 1.0* oC , 5Pe  and 10DDa . 

 
6 Conclusions 
 
The present article presents a level-set approach for modeling convective-diffusive particle 
deposition processes. Deposition occurring at the depositing front is modeled as a first order 
reaction. The particle consumed during the deposition process is incorporated as a volumetric sink 
term in the species conservation equation. Fluid flow is modeled using the incompressible Navier-
Stokes equations. The presented approach is implemented and validated against solutions of the 
total concentration approach. It was then used to investigate deposition on single- and multi-tube 
array in a cross-flow configuration.  
 
 
Acknowledgement 

This work was supported by The Petroleum Institute under Grant: RAGS-11008. 

 
References 
1. E.S. Boek, A.D. Wilson, J.T. Padding, T.F. Headen and J.P. Crawshaw, Multi-scale Simulation 

and Experimental Studies of Asphaltene Aggregation and Deposition in Capillary Flow, Energy 
& Fuels 24 (2010) 2361-2368. 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 
 

23 
 

2. D. Broseta, M. Robin, T. Savvidis, C. Fejean, M. Durandeau and H. Zhou, Detection of 
Asphaltene Deposition by Capillary Flow Measurements, SPE/DOE Improved Oil Recovery 
Symposium, Apr. 3-5, 2000, Tulsa, Oklahoma. 

3. Z. Zhu, K.W. Sand and P.J. Teevens, A numerical study of under-deposit pitting corrosion in 
sour petroleum pipelines, Northern Area Western Conference, Feb. 15-18, 2010, Calgary, 
Alberta. 

4. Z. Chen and S. Liu, Simulation of Copper Electroplating Fill Process of Through Silicon Via, 
Packaging Technology 3 (2010) 433-437. 

5. P. Rath, J.C. Chai, Y.C. Lam and V.M. Murukeshan, A total concentration fixed-grid method 
for two-dimensional wet chemical etching, J. Heat Transfer 129 (2007) 509-516. 

6. P. Rath and J.C. Chai, Modelling convection-driven diffusion-controlled wet chemical etching 
using a total-concentration fixed-grid method, Num. Heat Transfer B 53 (2008) 143-159. 

7. N. Shamsundar and E.M. Sparrow, Analysis of multidimensional conduction phase change via 
the enthalpy model, J. of Heat Transfer 97 (1975) 333-340. 

8. V.R. Voller, Numerical Methods for phase-change problem, Handbook of Numerical Heat 
Transfer 2nd ed., John Wiley & Sons Inc, Hoboken, New Jersey, 2006. 

9. Q. Ge., Y.F. Yap, F.M. Vargas, M. Zhang and J.C. Chai, A Total Concentration Method for 
Modeling of Deposition, Numer. Heat Transfer, Part B 61 (2012) 311-328. 

10. C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free 
boundaries, J. Comput. Phys. 39 (1981) 201-225. 

11. J.J. Helmsen, Volume of fluids methods applied to etching and deposition, American Physical 
Society, Gaseous Electronics Conference 1996, Oct. 21-24.  

12. J. Helmsen, E. Puckett, P. Colella, and M. Dorr, Two new methods for simulating 
photolithography development in 3D, Proc. SPIE 2726 (1996) 253-261. 

13. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms 
based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12. 

14. D. Adalsteinsson and J.A. Sethian, A level-set approach to a unified model for etching, 
deposition and lithography I: Algorithm and two-dimensional simulations, J. Comput. Phys. 120 
(1995) 128-144. 

15. D. Adalsteinsson and J.A. Sethian, A level-set approach to a unified model for etching, 
deposition and lithography II: Three-dimensional simulations, J. Comput. Phys. 122 (1995) 348-
366. 

16. J.A. Sethian and D. Adalsteinsson, An Overview of Level Set Methods for Etching, Deposition, 
and Lithography Development, IEEE Trans. Semiconductor Manufacturing 10-1 (1997) 167-
184. 

17. F.M. Vargas, J.L. Creek and W.G. Chapman, On the Development of an Asphaltene Deposition 
Simulator, Energy Fuels 2010 (24) 2294-2299. 

18. A.S. Kurup, F.M. Vargas, J. Wang, J. Buckley , J.L. Creek, Hariprasad, J. Subramani and W.G. 
Chapman, Development and Application of an Asphaltene Deposition Tool (ADEPT) for Well 
Bores, Energy & Fuels 25 (2011) 4506-4516. 

19. D. Wheeler, D. Josell and T.P. Moffat, Modeling Superconformal Electrodeposition Using The 
Level Set Method, J. Electrochem. Soc. 150 (2003) C302-C310. 

20. H.A. Al-Mohssen and N.G. Hadjiconstantinou, Arbitrary-pressure chemical vapor deposition 
modeling using direct simulation Monte Carlo with nonlinear surface chemistry, J. Comput. 
Phys. 198 (2004) 617-627.  

21. C. Heitzinger and S. Selberherr, On the Topography Simulation of Memory Cell Trenches for 
Semiconductor Manufacturing Deposition Processes Using the Level Set Method, Proc. of 16th 
European Simulation Multiconference: Modelling and Simulation 2002 (ESM 2002), Jun. 3-5, 
Darmstadt, Germany, 653-660. 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 
 

24 
 

22. C. Heitzinger, J. Fugger, O. Häberlen, and S. Selberherr, Simulation and Inverse Modeling of 
TEOS Deposition Processes Using a Fast Level Set Method, The 2002 Int. Conf. on Simulation 
of Semiconductor Processes and Devices, Sept. 4-6, Kobe, 191-194. 

23. J.A. Sethian and Y. Shan, Solving partial differential equations on irregular domains with 
moving interfaces, with applications to superconformal electrodeposition in semiconductor 
manufacturing, J. Comput. Phys. 227 (2008) 6411-6447. 

24. M. Hughes, N. Strussevitch, C. Bailey, K. McManus, J. Kaufmann, D. Flynn and M.P.Y. 
Desmulliez, Numerical algorithms for modelling electrodeposition: Tracking the deposition 
front under forced convection from megasonic agitation, Int. J. Numer. Methods Fluids 64 
(2010) 237-268. 

25. D. Eskin, J. Ratulowski, K. Akbarzadeh and S. Pan, Modelling asphaltene deposition in 
turbulent pipeline flows, The Canadian J. Chem. Eng. 89 (2011) 421-441. 

26. A. Guha, Transport and Deposition of Particles in Turbulent and Laminar Flow, Annu. Rev. 
Fluid Mech. 40 (2008) 311-341. 

27. D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, 
New Jersey, 1998. 

28. H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles Technology and 
Applications, 2nd ed., Noyes Publications, New Jersey, 1999. 

29. M. Abdolzadeh, M.A. Mehrabian and A.S. Goharrizi, Numerical study to predict the particle 
deposition under the influence of operating forces on a tilted surface in the turbulent flow, Adv. 
Powder Tech. 22 (2011) 405-415. 

30. K.A. Lawal, V. Vesovic and E.S. Boek, Modeling Permeability Impairment in Porous Media 
due to Asphaltene Deposition under Dynamic Conditions, Energy & Fuels 25 (2011) 5647-5659. 

31. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan 
problems, J. Comput. Phys. 135 (1995) 8. 

32. M. Sussman, P. Smereka, S. Osher, A level set approach for computing solution to 
incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146-159. 

33. D. Peng, B. Merriman, S. Osher, H. Zhao and M. Kang, A PDE-based fast local level-set 
method, J. Comput. Phys. 155 (1999) 410-438. 

34. Y.F. Yap, J.C. Chai, T.N. Wong, N.T. Nguyen, K.C. Toh and H.Y. Zhang, Particle transport in 
microchannels, Numer. Heat Transfer, Part B 51 (2007) 141-157. 

35. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publisher, New York, 
1980. 

36. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The 
Finite Volume Method, 2nd ed., Prentice Education Limited, England, 2007. 

37. G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. 
Comput. 21 (2000) 2126-2143.  

38. C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock 
Capturing Schemes, J. Comput. Phys. 77 (1988) 439-471. 

 



Applied Mathematical Modelling, 2013, 37 (7), pp. 5245–5259. ISSN 0307904X. 
 

25 
 

Nomenclature 
C  particle concentration 

*C  dimensionless particle concentration 
*
oC  dimensionless initial particle concentration 

trappedC  amount of trapped particles in the deposit region 

d  normal distance from the interface 
dS elemental surface area 
dV  elemental volume 
D  diffusion coefficient 

DDa  Damkoler number 
h  thickness of the CV in Fig. 2 
H  modified Heaviside function 

Dk  reaction rate for deposition 
L  characteristic length 
n̂  unit normal vector 

in̂  unit normal vector at the depositing front  

p  pressure 
Pe Peclet number  
q


 deposition flux 

Dq  deposition flux per unit wall area 

ou  characteristic velocity 

u  velocity component in the x -direction 
*u  dimensionless velocity component in the *x -direction 

u


 fluid velocity 

iu


 velocity of the depositing front 

extiu ,


 velocity extended from iu


  

x


 position vector 
R  radius of tube 
Re Reynolds number  sign  Sign function  
S  signum function 

CS  rate of particle consumed during deposition 

t  time 
t  pseudo-time 
*t  dimensionless time 
*x , *y  dimensionless Cartesian coordinate 

x , y  Cartesian coordinate 
v  velocity component in y -direction 

*v  dimensionless velocity component in *y -direction 
V  control volume 

   modified Dirac delta function  
*  dimensionless deposit thickness  , level-set function 
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  component of extiu ,


 

  viscosity of fluid 
  density of fluid  

D  density of the deposit 
  depositing front   domain of interest 

   fluid region 

  deposit region 
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