155 research outputs found

    A Generalization of the Hopf-Cole Transformation

    Full text link
    A generalization of the Hopf-Cole transformation and its relation to the Burgers equation of integer order and the diffusion equation with quadratic nonlinearity are discussed. The explicit form of a particular analytical solution is presented. The existence of the travelling wave solution and the interaction of nonlocal perturbation are considered. The nonlocal generalizations of the one-dimensional diffusion equation with quadratic nonlinearity and of the Burgers equation are analyzed

    On the localized wave patterns supported by convection-reaction-diffusion equation

    Full text link
    A set of traveling wave solution to convection-reaction-diffusion equation is studied by means of methods of local nonlinear analysis and numerical simulation. It is shown the existence of compactly supported solutions as well as solitary waves within this family for wide range of parameter values

    Microscopic structure of travelling wave solutions in a class of stochastic interacting particle systems

    Get PDF
    We obtain exact travelling wave solutions for three families of stochastic one-dimensional nonequilibrium lattice models with open boundaries. These solutions describe the diffusive motion and microscopic structure of (i) of shocks in the partially asymmetric exclusion process with open boundaries, (ii) of a lattice Fisher wave in a reaction-diffusion system, and (iii) of a domain wall in non-equilibrium Glauber-Kawasaki dynamics with magnetization current. For each of these systems we define a microscopic shock position and calculate the exact hopping rates of the travelling wave in terms of the transition rates of the microscopic model. In the steady state a reversal of the bias of the travelling wave marks a first-order non-equilibrium phase transition, analogous to the Zel'dovich theory of kinetics of first-order transitions. The stationary distributions of the exclusion process with nn shocks can be described in terms of nn-dimensional representations of matrix product states.Comment: 27 page

    Notes on Lie symmetry group methods for differential equations

    Full text link
    Fundamentals on Lie group methods and applications to differential equations are surveyed. Many examples are included to elucidate their extensive applicability for analytically solving both ordinary and partial differential equations.Comment: 85 Pages. expanded and misprints correcte

    Group analysis and conservation laws of an integrable Kadomtsev–Petviashvili equation

    Get PDF
    In this paper, an integrable KP equation is studied using symmetry and conservation laws. First, on the basis of various cases of coefficients, we construct the infinitesimal generators. For the special case, we get the corresponding geometry vector fields, and then from known soliton solutions we derive new soliton solutions. In addition, the explicit power series solutions are derived. Lastly, nonlinear self-adjointness and conservation laws are constructed with symmetries
    corecore