1,811 research outputs found

    Connectivity of confined 3D Networks with Anisotropically Radiating Nodes

    Get PDF
    Nodes in ad hoc networks with randomly oriented directional antenna patterns typically have fewer short links and more long links which can bridge together otherwise isolated subnetworks. This network feature is known to improve overall connectivity in 2D random networks operating at low channel path loss. To this end, we advance recently established results to obtain analytic expressions for the mean degree of 3D networks for simple but practical anisotropic gain profiles, including those of patch, dipole and end-fire array antennas. Our analysis reveals that for homogeneous systems (i.e. neglecting boundary effects) directional radiation patterns are superior to the isotropic case only when the path loss exponent is less than the spatial dimension. Moreover, we establish that ad hoc networks utilizing directional transmit and isotropic receive antennas (or vice versa) are always sub-optimally connected regardless of the environment path loss. We extend our analysis to investigate boundary effects in inhomogeneous systems, and study the geometrical reasons why directional radiating nodes are at a disadvantage to isotropic ones. Finally, we discuss multi-directional gain patterns consisting of many equally spaced lobes which could be used to mitigate boundary effects and improve overall network connectivity.Comment: 12 pages, 10 figure

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Enhancing coverage and reducing power consumption in peer-to-peer networks through airborne relaying

    Get PDF

    Lower bounds on data collection time in sensory networks

    Get PDF
    Data collection, i.e., the aggregation at the user location of information gathered by sensor nodes, is a fundamental function of sensory networks. Indeed, most sensor network applications rely on data collection capabilities, and consequently, an inefficient data collection process may adversely affect the performance of the network. In this paper, we study via simple discrete mathematical models, the time performance of the data collection and data distribution tasks in sensory networks. Specifically, we derive the minimum delay in collecting sensor data for networks of various topologies such as line, multiline, and tree and give corresponding optimal scheduling strategies. Furthermore, we bound the data collection time on general graph networks. Our analyses apply to networks equipped with directional or omnidirectional antennas and simple comparative results of the two systems are presented

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    Improving Ad Hoc Networks Capacity and Connectivity Using Dynamic Blind Beamforming

    No full text
    We propose a dynamic blind beamforming scheme which allows to benefit from antenna directivity in large mobile ad hoc networks while avoiding heavy feedback to track mobile nodes localization. By orienting its directional antenna successively in all directions, a source surely but blindly hits its destination without knowing its exact position. Performance is analyzed in terms of total network throughput and connectivity and the optimal number of rotations allowing to maximize performance is shown to result from a trade-off between delay and improvements in terms of interference. In large ad hoc networks, known to be interference limited, we show that dynamic blind beamforming can outperform omnidirectional transmissions both in terms of capacity and connectivit
    • …
    corecore