1,246 research outputs found

    Predictability: a way to characterize Complexity

    Full text link
    Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kind of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered.Comment: 142 Latex pgs. 41 included eps figures, submitted to Physics Reports. Related information at this http://axtnt2.phys.uniroma1.i

    A Basic Framework for the Cryptanalysis of Digital Chaos-Based Cryptography

    Full text link
    Chaotic cryptography is based on the properties of chaos as source of entropy. Many different schemes have been proposed to take advantage of those properties and to design new strategies to encrypt information. However, the right and efficient use of chaos in the context of cryptography requires a thorough knowledge about the dynamics of the selected chaotic system. Indeed, if the final encryption system reveals enough information about the underlying chaotic system it could be possible for a cryptanalyst to get the key, part of the key or some information somehow equivalent to the key just analyzing those dynamical properties leaked by the cryptosystem. This paper shows what those dynamical properties are and how a cryptanalyst can use them to prove the inadequacy of an encryption system for the secure exchange of information. This study is performed through the introduction of a series of mathematical tools which should be the basic framework of cryptanalysis in the context of digital chaos-based cryptography.Comment: 6 pages, 5 figure

    Mean-Field Coupled Systems and Self-Consistent Transfer Operators: A Review

    Full text link
    In this review we survey the literature on mean-field coupled maps. We start with the early works from the physics literature, arriving to some recent results from ergodic theory studying the thermodynamic limit of globally coupled maps and the associated self-consistent transfer operators. We also give few pointers to related research fields dealing with mean-field coupled systems in continuous time, and applications

    Probabilistic and thermodynamic aspects of dynamical systems

    Full text link
    The probabilistic approach to dynamical systems giving rise to irreversible behavior at the macroscopic, mesoscopic, and microscopic levels of description is outlined. Signatures of the complexity of the underlying dynamics on the spectral properties of the Liouville, Frobenius-Perron, and Fokker-Planck operators are identified. Entropy and entropy production-like quantities are introduced and the connection between their properties in nonequilibrium steady states and the characteristics of the dynamics in phase space are explored.info:eu-repo/semantics/publishe

    Online Abstractions for Interconnected Multi-Agent Control Systems

    Full text link
    In this report, we aim at the development of an online abstraction framework for multi-agent systems under coupled constraints. The motion capabilities of each agent are abstracted through a finite state transition system in order to capture reachability properties of the coupled multi-agent system over a finite time horizon in a decentralized manner. In the first part of this work, we define online abstractions by discretizing an overapproximation of the agents' reachable sets over the horizon. Then, sufficient conditions relating the discretization and the agent's dynamics properties are provided, in order to quantify the transition possibilities of each agent.Comment: 22 pages. arXiv admin note: text overlap with arXiv:1603.0478

    Information geometric methods for complexity

    Full text link
    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.Comment: review article, 60 pages, no figure

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin
    corecore