2,288 research outputs found

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades

    Stability Results for Switched Linear Systems with Constant Discrete Delays

    Get PDF
    Es reproducción del documento publicado en http://dx.doi.org/10.1155/2008/543145This paper investigates the stability properties of switched systems possessing several parameterizations (or configurations) while being subject to internal constant point delays. Some of the stability results are formulated based on Gronwall's lemma for global exponential stability, and they are either dependent on or independent of the delay size but they depend on the switching law through the requirement of a minimum residence time. Another set of results concerned with the weaker property of global asymptotic stability is also obtained as being independent of the switching law, but still either dependent on or independent of the delay size, since they are based on the existence of a common Krasovsky-Lyapunov functional for all the above-mentioned configurations. Extensions to a class of polytopic systems and to a class of regular time-varying systems are also discussed.Ministerio de Educación DPI2006-00714 y GIC07143-IT-269-07 ; Gobierno Vasco SAIOTEK SPED06UN10 y SPE07UN0

    Nondeterministic hybrid dynamical systems

    Get PDF
    This thesis is concerned with the analysis, control and identification of hybrid dynamical systems. The main focus is on a particular class of hybrid systems consisting of linear subsystems. The discrete dynamic, i.e., the change between subsystems, is unknown or nondeterministic and cannot be influenced, i.e. controlled, directly. However changes in the discrete dynamic can be detected immediately, such that the current dynamic (subsystem) is known. In order to motivate the study of hybrid systems and show the merits of hybrid control theory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) are naturally modelled by such a class of linear hybrids systems. It is shown that purely continuous feedback is not suitable since it cannot achieve maximum braking performance. A hybrid control strategy, which overcomes this problem, is presented. For this class of linear hybrid system with unknown discrete dynamic, a framework for robust control is established. The analysis methodology developed gives a robustness radius such that the stability under parameter variations can be analysed. The controller synthesis procedure is illustrated in a practical example where the control for an active suspension of a car is designed. Optimal control for this class of hybrid system is introduced. It is shows how a control law is obtained which minimises a quadratic performance index. The synthesis procedure is stated in terms of a convex optimisation problem using linear matrix inequalities (LMI). The solution of the LMI not only returns the controller but also the performance bound. Since the proposed controller structures require knowledge of the continuous state, an observer design is proposed. It is shown that the estimation error converges quadratically while minimising the covariance of the estimation error. This is similar to the Kalman filter for discrete or continuous time systems. Further, we show that the synthesis of the observer can be cast into an LMI, which conveniently solves the synthesis problem

    Stability of gain scheduling control for aircraft with highly nonlinear behavior

    Get PDF
    "The main goal of this work is to study the stability properties of an aircraft with nonlinear behavior, controlled using a gain scheduled approach. An output feedback is proposed which is able to guarantee asymptotical stability of the task-coordinates origin and safety of the operation in the entire flight envelope. The results are derived using theory of hybrid and singular perturbed systems. It is demonstrated that both body velocity and orientation asymptotic tracking can be obtained in spite of nonlinearities and uncertainty. The results are illustrated using numerical simulations in F16 jet.

    Decentralized and Fault-Tolerant Control of Power Systems with High Levels of Renewables

    Get PDF
    Inter-area oscillations have been identified as a major problem faced by most power systems and stability of these oscillations are of vital concern due to the potential for equipment damage and resulting restrictions on available transmission capacity. In recent years, wide-area measurement systems (WAMSs) have been deployed that allow inter-area modes to be observed and identified.Power grids consist of interconnections of many subsystems which may interact with their neighbors and include several sensors and actuator arrays. Modern grids are spatially distributed and centralized strategies are computationally expensive and might be impractical in terms of hardware limitations such as communication speed. Hence, decentralized control strategies are more desirable.Recently, the use of HVDC links, FACTS devices and renewable sources for damping of inter-area oscillations have been discussed in the literature. However, very few such systems have been deployed in practice partly due to the high level of robustness and reliability requirements for any closed loop power system controls. For instance, weather dependent sources such as distributed winds have the ability to provide services only within a narrow range and might not always be available due to weather, maintenance or communication failures.Given this background, the motivation of this work is to ensure power grid resiliency and improve overall grid reliability. The first consideration is the design of optimal decentralized controllers where decisions are based on a subset of total information. The second consideration is to design controllers that incorporate actuator limitations to guarantee the stability and performance of the system. The third consideration is to build robust controllers to ensure resiliency to different actuator failures and availabilities. The fourth consideration is to design distributed, fault-tolerant and cooperative controllers to address above issues at the same time. Finally, stability problem of these controllers with intermittent information transmission is investigated.To validate the feasibility and demonstrate the design principles, a set of comprehensive case studies are conducted based on different power system models including 39-bus New England system and modified Western Electricity Coordinating Council (WECC) system with different operating points, renewable penetration and failures

    Stability of Hybrid Singularly Perturbed Systems with Time Delay

    Get PDF
    Hybrid singularly perturbed systems (SPSs) with time delay are considered and exponential stability of these systems is investigated. This work mainly covers switched and impulsive switched delay SPSs . Multiple Lyapunov functions technique as a tool is applied to these systems. Dwell and average dwell time approaches are used to organize the switching between subsystems (modes) so that the hybrid system is stable. Systems with all stable modes are first discussed and, after developing lemmas to ensure existence of growth rates of unstable modes, these systems are then extended to include, in addition, unstable modes. Sufficient conditions showing that impulses contribute to yield stability properties of impulsive switched systems that consist of all unstable subsystems are also established. A number of illustrative examples are presented to help motivate the study of these systems

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    • …
    corecore