698 research outputs found

    Model predictive control of six-phase induction motor drives using virtual voltage vectors

    Get PDF
    The most serious and recent competitor to the standard field oriented control for induction motors (IM) is the finite control set model predictive control (FCS-MPC). Nevertheless, the extension to multiphase drives faces the impossibility to simultaneously regulate the flux/torque and the secondary current components (typically termed x − y in the literature). The application of a single switching state during the whole sampling period inevitably implies the appearance of x − y voltage/currents that increase the system losses and deteriorate the power quality. These circulating currents become intolerably high as per the unit x − y impedance and the switching frequency diminish. Aiming to overcome this limitation, this work suggests the integration of virtual voltage vectors (VVs) into the FCS-MPC structure. The VVs ensure null x − y voltages on average during the sampling period and the MPC approach selects the most suitable VV to fulfill the flux/torque requirements. The experimental results for a six-phase case study compare the standard FCS-MPC with the suggested method, confirming that the VV-based MPC maintains the flux/torque regulation and successfully improves the power quality and efficiency

    On the advantages of symmetrical over asymmetrical multiphase AC drives with even phase number using direct controllers

    Get PDF
    Multiphase electric drives offer attractive advantages over conventional three-phase systems. Some of the benefits are shared by all multiphase configurations, but the performance can be highly affected by the specific location of the stator windings. While the asymmetrical configuration has been traditionally a popular choice, the symmetrical disposition in even-phase machines has a main advantage: it is possible to generate α – β voltages without any contribution in different x – y subspaces. This article explains and demonstrates this feature for the general case of distributed-winding symmetrical n -phase machines, with n being an even number. Fortunately, direct controllers can benefit from this characteristic by exclusively selecting voltage states with only α – β voltage production. To illustrate this capability, a finite-control-set model predictive control (FCS-MPC) using these special voltage states is also suggested in this work for symmetrical six-phase electric drives. This approach provides a greater simplicity and much less current distortion than in standard FCS-MPC for the asymmetrical configuration. Comparative experimental results confirm the minimal x – y injection of symmetrical configurations thanks to the proposed control actions (i.e., voltage states)Agencia Estatal de Investigación | Ref. RTI2018-096151-B-I00Xunta de Galicia | Ref. ED431F 2020/07Agencia Estatal de Investigación | Ref. RYC2018-024407-IAgencia Estatal de Investigación | Ref. PID2019-105612RB-I0

    Finite control set model predictive control-a powerful control algorithm for grid-connected power converters

    Full text link
    © 2016 IEEE. This paper presents a detailed description of Finite Control Set Model Predictive Control applied to power converters. Some key features related to this methodology are presented and compared with model predictive control based space vector modulation methods. The basic models, principles, control diagrams, and simulation results are presented to provide a comparison between them. The analysis is performed on a three-phase/ two-level voltage source inverter, which is one of the most common converter topologies used in industry. Among the conclusions are the feasibility and great potential of Finite Control Set Model Predictive Control due to the advanced signal-processing capability, particularly for power systems with a reduced number of switching states and more complicated principles

    Improved Model Predictive Direct Power Control for Parallel Distributed Generation in Grid-Tied Microgrids

    Get PDF
    This research proposes an improved finite control set direct power model predictive control method (FCS-DPMPC) for grid-tie distributed generation (DG). FCS-DPMPC predicts the system outcomes using the system model. During the next sampling time, a voltage vector is defined using the cost function to minimize the power ripple, consequently allowing flexibility for power regulation. Furthermore, the impact of implementing a one-step delay is studied and compensated through a model forecast pattern. In addition, a new two-step horizon technique has been developed to minimize switching frequency and computation burden. Simulation results for single DG and parallel operated DGs in a grid-tie manner confirm the effectiveness of the suggested control strategy, which signifies that this is an appropriate approach for distributed generation in microgrids.© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Harmonics Mitigation and Non-Ideal Voltage Compensation Utilizing Active Power Filter Based On Predictive Current Control

    Get PDF
    It is well-known that the presence of non-linear loads in the distribution system can impair the power quality. The problem becomes worse in microgrids and power electronic-based power systems as the increasing penetration of single-phase distributed generation may result in a more unbalanced grid voltage. Shunt active power filters (SAPFs) are used for improving the power quality and compensating for the unbalance grid voltage. This study presents a modification of the classical control structure based on the finite control set model predictive control (FCS-MPC). The proposed control structure can retain all the advantages of FCS-MPC, while improving the input current quality. Furthermore, a computationally efficient cost function based on only a single objective is introduced, and its effect on reducing the current ripple is demonstrated. The presented solution provides a fast response to the transients as well as compensates for the unbalanced grid voltage conditions. A straightforward single loop controller is compared to the conventional way of realising the active power filters, which is based on space vector pulse width modulation. The simulation results have been obtained from MATLAB/SIMULINK environment, while the obtained experimental results, utilising a 15 kVA power converter, highlight the effective performance of the proposed control scheme and verifies the introduced MPC-based method as a viable control solution for SAPFs

    Predictive current control in electrical drives: an illustrated review with case examples using a five-phase induction motor drive with distributed windings

    Get PDF
    The industrial application of electric machines in variable-speed drives has grown in the last decades thanks to the development of microprocessors and power converters. Although three-phase machines constitute the most common case, the interest of the research community has been recently focused on machines with more than three phases, known as multiphase machines. The principal reason lies in the exploitation of their advantages like reliability, better current distribution among phases or lower current harmonic production in the power converter than conventional three-phase ones, to name a few. Nevertheless, multiphase drives applications require the development of complex controllers to regulate the torque (or speed) and flux of the machine. In this regard, predictive current controllers have recently appeared as a viable alternative due to an easy formulation and a high flexibility to incorporate different control objectives. It is found however that these controllers face some peculiarities and limitations in their use that require attention. This work attempts to tackle the predictive current control technique as a viable alternative for the regulation of multiphase drives, paying special attention to the development of the control technique and the discussion of the benefits and limitations. Case examples with experimental results in a symmetrical five-phase induction machine with distributed windings in motoring mode of operation are used to this end

    Finite-Control-Set Model Predictive Control for Low-Voltage-Ride-Through Enhancement of PMSG Based Wind Energy Grid Connection Systems

    Get PDF
    Grid faults are found to be one of the major issues in renewable energy systems, particularly in wind energy conversion systems (WECS) connected to the grid via back-to-back (BTB) converters. Under such faulty grid conditions, the system requires an effective regulation of the active (P) and reactive (Q) power to accomplish low voltage ride through (LVRT) operation in accordance with the grid codes. In this paper, an improved finite-control-set model predictive control (FCS-MPC) scheme is proposed for a PMSG based WECS to achieve LVRT ability under symmetrical and asymmetrical grid faults, including mitigation of DC-link voltage fluctuation. With proposed predictive control, optimized switching states for cost function minimization with weighing factor (WF) selection guidelines are established for robust BTB converter control and reduced cross-coupling amid P and Q during transient conditions. Besides, grid voltage support is provided by grid side inverter control to inject reactive power during voltage dips. The effectiveness of the FCS-MPC method is compared with the conventional proportional-integral (PI) controller in case of symmetrical and asymmetrical grid faults. The simulation and experimental results endorse the superiority of the developed FCS-MPC scheme to diminish the fault effect quickly with lower overshoot and better damping performance than the traditional controller

    Model Predictive Control for shunt active filters with fixed switching frequency

    Get PDF
    This paper presents a modification to the classical Model Predictive Control algorithm, named Modulated Model Predictive Control, and its application to active power filters. The proposed control is able to retain all the advantages of a Finite Control Set Model Predictive Control whilst improving the generated waveforms harmonic spectrum. In fact a modulation algorithm, based on the cost function ratio for different output vectors, is inherently included in the MPC. The cost function-based modulator is introduced and its effectiveness on reducing the current ripple is demonstrated. The presented solution provides an effective and straightforward single loop controller, maintaining an excellent dynamic performance despite the modulated output and it is self-synchronizing with the grid. This promising method is applied to the control of a Shunt Active Filter for harmonic content reduction through a reactive power compensation methodology. Significant results obtained by experimental testing are reported and commented, showing that MPC is a viable control solution for active filtering systems
    • …
    corecore