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Abstract: This research proposes an improved finite control set direct power model predictive control
method (FCS-DPMPC) for grid-tie distributed generation (DG). FCS-DPMPC predicts the system
outcomes using the system model. During the next sampling time, a voltage vector is defined using
the cost function to minimize the power ripple, consequently allowing flexibility for power regulation.
Furthermore, the impact of implementing a one-step delay is studied and compensated through
a model forecast pattern. In addition, a new two-step horizon technique has been developed to
minimize switching frequency and computation burden. Simulation results for single DG and parallel
operated DGs in a grid-tie manner confirm the effectiveness of the suggested control strategy, which
signifies that this is an appropriate approach for distributed generation in microgrids.

Keywords: distributed generation (DG); power regulation (PR); renewable energy sources (RES);
model predictive control (MPC); switching frequency reduction (SFR)

1. Introduction

At present, environment-friendly distributed generation (DG) units (wave, photo-
voltaic, wind, and others) are rapidly developing as a result of the expanding need for
power and the need to restrict the emission of ozone-depleting substances from conven-
tional petroleum-based power plants [1–3].To acquire additional capability and control
flexibility that prompts power quality and system reliability, DGs are coordinated with a
common dc or ac bus via a storage system to develop a microgrid [4,5].

Due to the increase in the use of DG, bidirectional power flow was raised as an
imperative issue for power system control and management. Microgrids (MGs) are an
efficient implementation to improve power system reliability and quality [6]. Generally,
Microgrids are characterized as ‘an interconnected system of energy which consists of
distributed generators and many loads as a single, independent of connected either in
“Grid-Tie” or “Islanded” mode from the utility grid’ [7]. A microgrid can be denoted by
small power sources and electrical loads as shown in Figure 1. The micro sources, network
parameters, loads, and control typologies in different microgrids are different. Small-signal
stability, transient stability, and voltage stability are the three types of stability problems in
a microgrid. The causes of every stability problem are shown in Figure 2.

Power system stability is a provoking job because of different load demands. In
this scenario, microgrids ought to utilize and control to give active and reactive powers
remuneration for stabilization of the main energy system in terms of system voltage and
frequency [8]. In this manner, the power converter of the DG unit is needed to perform
more appropriately and efficiently to keep dynamic stability and high-power quality.
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For grid-connected inverters, various control methods are used today. One of the most
well-known is direct power control (DPC). Traditional switching-based DPC (SDPC) has
been generally utilized because of its benefits such as straightforwardness, robustness, and
magnificent performance [9]. Afterward, many further improved DPC techniques were
created to perform better [10–12].

Model predictive control (MPC) is a viable option for power converter operation
because it provides a flexible control pattern that permits the system nonlinearities and
constraint inclusion. The present states and control action are employed in this control to
forecast the behavior of the system using a system model and to choose the best switching
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states, a cost function is utilized as a principle [13]. MPC control goals might change
significantly depending on the application. For rectifiers, the control goals are active power
and reactive power [14]; for inverters, the control goals are reducing the large current ripples
and common-mode voltage (CMV) magnitude [15]; for permanent magnet synchronous
motors, the control goal is torque control [16]; and in electrical networks even when the
system voltage is not ideal, the control goal is dynamic convergence of dc bus voltage to
the nominal reference voltage [17], improving frequency regulation for microgrid [18], and
the voltage or current control in inverters [19–22].

The MPC schemes can be distributed in three categories: (1) DBC—deadbeat con-
trol [23,24]; (2) CCS-MPC—continuous-control-set model predictive control [25,26]; and
(3) FCS-MPC—finite-control-set model predictive control [27–30].

In the DBC scheme, the discrete-time framework model is used to trace down the
reference voltage (RV), which is required to calculate the reference current/power during
the next sample period. After that, the power converter utilizes a modulator to apply
reference voltage (RV). DBC is uncomplicated, and its implementation is straightforward.
Though DBC is designed with the framework model in consideration, it is sensitive to
numerous mode parameters. CCS-MPC forecasts the future response of the controlled
object based on its discrete model over the forecast horizon. Accordingly, an optimization
function is utilized to acquire the best voltage vector to employ with the modulator. The
limitations/nonlinearities of the object under control are easy to incorporate in CCS-MPC.

Finite-control-set MPC, also called direct MPC (DMPC), solves the optimization prob-
lem by utilizing the converter discrete-time model and a minimal set of switching vec-
tors [27–30]. Hence, its computation burden is remarkably lesser than the CCS-MPC. In
this approach, the entire DMPC algorithm is typically carried out online. Moreover, it is
uncomplicated to include the nonlinearities and constraints/limitations of the framework
controlled in the FCS-MPC design.

The current/power waveforms had more ripples even with a small sampling pe-
riod as compared to the VOC approach with a modulation, despite having one voltage
vector (VV) for each control duration. This issue may be addressed by increasing sam-
ple frequency or decreasing sampling duration, which will reduce ripples and improve
FCS-MPC performance during the steady-state. This technique is increasing the cost of
hardware. However, this technique enhances the FCS-MPC steady-state performance
without decreasing sampling time which is essential. An overview of MPC schemes is
detailed in Table 1.

Table 1. Overview of control schemes.

Dead-Beat CCS-MPC FCS-MPC

Theoretical
background Moderate Strong Strong

Stability analysis
tools Strong Initial Results Initial Results

Computational
complexity Average High High

Intuitive design Average High High
Handling
system constraints No Yes Yes

Handling
non-linearities Yes Yes Yes

Parameter sensitivity Average Tunable Tunable
Fault tolerance
capability No Yes Yes

Modulator Required Required Not Required
Switching Frequency Fixed Fixed Variable
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To improve the response of FCS-MPC in grid-tied power converters, in each sampling
interval null and active vectors are implemented. However, current ripples continue to
be greater compared to the linear controllers [31]. To resolve this issue, [32,33] introduced
a multiple vector-based MPC with two active voltage vectors and a zero voltage vector.
However, the proposed algorithms have a high computational burden. Moreover, the
FCS-MPC concept is lost in these techniques [32,33] as an infinite number of VVs are used
in the converter. Furthermore, the methods proposed in [32,33] are sensitive to mismatches
or uncertainties in the parameters of the system model.

The FCS-MPC method does not use any kind of modulator, it uses the power con-
verter’s discrete nature. The conventional FCS-MPC forecasts all possible future perfor-
mances by using a finite number of switching and choosing the most appropriate switching
state to reach the control objectives using an already defined cost function [34,35]. Although
in [36,37], there are significant ripple components in current waveforms, to improve the
output current quality of conventional FCS-MPC, quite large passive filters are used. Fur-
thermore, in a multi-level system with an increase in output voltage level, the number of
possible switching states rises as well, resulting in the burden of extensive computation
and long calculation time. Hence, a relatively higher switching frequency will cause more
significant power loss. Therefore, the focus is to decrease the switching frequency in the
power controller [38].

The following are the paper’s primary contributions and salient features:

1. This work presents an improved finite control set direct power model predictive
control (FCS-DPMPC) approach for grid-tied inverters based on the flexibility of
the MPC method. A cost function is utilized to first lower the ripples in active and
reactive powers.

2. In the digital implementation of the grid-tie system, a model predictive technique
is formulated to compensate for a step delay. In addition, the switching frequency
is reduced by developing two-step predictions (N = 2) so the losses of the inverter
are minimized.

3. The simulation results show that the proposed control approach is proven to be competent.

The following is how this paper is structured: Section 2 describes the System Modeling.
The proposed FCS-DPMPC controller in which flexible power regulation, compensation of
implementation one-step delay, computational burden, reduction of switching frequency,
and stability and performance is explained in Section 3. The simulation results for single
DG in grid tie mode, parallel operation of DGs in grid-tie, reduction of switching frequency,
stability and performance, and comparison between different techniques are described in
Section 4. Finally, the paper’s conclusion is presented in Section 5.

2. System Modelling

Figure 1 shows the GC-DG feeding the load. In this paper, focus is on the inverter.
Inverters can switch between the following switching states:

Si = 1(Upper side o f bridge o f phase i is “on” and lower side is “o f f ”)
Si = 0 (Upper side o f bridge o f phase i is “o f f ” and lower side is “on”)

The inverter has eight switching states: (0 0 0), (0 0 1), (0 1 0), (0 1 1), (1 0 0), (1 0 1), (1 1 0),
and (1 1 1). The voltage of a three-phase two-level inverter is expressed as:

vi =
2
3

vdcej(i−1)π/3 (i = 1 . . . 6) (1)

vi = 0 (i = 0, 7) (2)

According to Kirchhoff’s law, the state equations are represented as:

il = i0 − ig (3)
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ic = i f − i0 (4)

vt = vpc + v f + i f R f (5)

il , ic, i f , and ig are load current, capacitor current, filter current, and grid current. In
Equation (5) vt, vpc, and v f are the output voltage of VSI, capacitor voltage at the point of
common coupling (PCC), and filter voltage, respectively. To compute the CTSS model of
the system, assuming that the system is balanced and has a sinusoidal wave of Voltage at
PCC (vpc), it should be written as:

vpc = vpc,α + ivpc,β ≈
∣∣vpc

∣∣e−iωt (6)

Taking the explicit derivative of the above equation with respect to time, it becomes:

dvpc,α

dt
= ωvpc,β (7)

dvpc,β

dt
= −ωvpc,α (8)

ω = 2π f and f is system frequency and can be determined by using PLL block in
MATLAB simulation. The filter current equations are as:

di f ,α

dt
=

1
L f

(
vtα − vpc,α − i f ,α R f

)
(9)

di f ,αβ

dt
=

1
L f

(
vtβ
− vpc,β − i f ,β R f

)
(10)

3. Proposed FCS-DPMPC Controller

By using the FCS-DPMPC controller, DGs can regulate their power more flexibly, with
a reduced inverter’s switching frequency.

3.1. Flexible Power Regulation

Active and reactive power are used as the state variables by the system to gain power
regulation flexibility by DG. These should be gained from the design of the FCS-DPMPC
controller for DG. A major challenge of this research is the development of an active
power model.

GC-DG’s active and reactive power are represented by the following state equations:

P =
3
2

(
vpc,α i f ,α + vpc,β i f ,β

)
(11)

Q =
3
2

(
vpc,β i f ,α − vpc,α i f ,β

)
(12)

By differentiating the equations of P and Q with respect to time, the following equa-
tions are obtained:

dP
dt

=
3
2

(
dvpc,α

dt
i f ,α + vpc,α

di f ,α

dt
+

dvpc,β

dt
i f ,β +

di f ,β

dt
vpc,β

)
(13)

dQ
dt

=
3
2

(
dvpc,β

dt
i f ,α + vpc,β

di f ,α

dt
−

dvpc,α

dt
i f ,β − vpc,α

di f ,β

dt

)
(14)
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Now, the equations for dvpc,α
dt ,

di f ,α
dt ,

dvpc,β
dt , and

di f ,β
dt are calculated from the computed

CTSS model of the system by using Equations (9)–(12) and generalization.

dx
dt

= Agx +
3

2L f
B1gvt −

3
2L f

B2gvpc (15)

where,

x =

[
P
Q

]
(16)

Ag =

−R f
L f

−ω

ω
−R f
L f

 (17)

B1g =

[
vpc,α vpc,β
vpc,β −vpc,α

]
(18)

B2g =

[
vpc,α vpc,β

0 0

]
(19)

Discrete-time state space model (DT-SSM) is used for prediction by converting the
CTSS model to DT-SSM, for this, the Euler forward approximation method is used which is
described as:

dx
dt

=
x(tk + 1)′ − x(tk)

Ts
(20)

so,
x(tk + 1)′ = Ag1 x(tk) + Bg1Vt(tk) + Bg2i0(tk) (21)

where,
Ag1 = eAgTs (22)

Bg1 =
∫ Ts

0
eAgτ B1gdτ (23)

Bg2 =
∫ Ts

0
eAgτ B2gdτ (24)

If the sampling time is very small, then the exponential matrix is approximated as:

eAgTs ≈ 1 + AgTs (25)

Based on above equations, P(tk + 1)′ and Q(tk + 1)′ are find through the following
equations:

P(tk + 1)′ = P(tk) + Ts

[
−R f

L f
P(tk)−ωQ(tk) +

3
2L f

(
vpc,α (tk)vtα (tk)+vpc,β (tk)vtβ (tk)

)
− 3

2L f
(vpc,α

2(tk) + vpc,β
2(tk)

]
(26)

Q(tk + 1)′ = Q(tk) + Ts

[
−R f

L f
Q(tk) + ωP(tk) +

3
2L f

(
vpc,α(tk)vtα(tk) + vpc,β(tk)vtβ

(tk)
)]

(27)

In the proposed FCS-DPMPC controller, these equations are used as the predictive
model. The essential properties of the FCS-DPMPC strategy are clearly illustrated in
Figure 3. Using the DT-SSM of the system, all the possible system conversions x(tk + 1)′

can be forecasted for the control actions of N (N = 1, 2, 3, . . . , n), and for each control action,
the transition which is closer to reference x* is selected. In a desire to gain flexible power
regulation, the FCS-DPMPC control strategy for GC-DG is shown in Figure 4.
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A cost function is used to choose the best transition by comparing all the forecasted
powers. To minimize the power error, the following cost function is utilized.

gDPMPC = (P∗(tk + 1)′ − P(tk + 1)′)
2
+ (Q∗(tk + 1)′ −Q(tk + 1)′)

2
(28)



Energies 2023, 16, 1441 8 of 22

where P∗(tk + 1)′ is the reference active power and Q∗(tk + 1)′ is a reference to the reactive
power. To decrease the power error above, cost function is selected so that the GC-DG can
insert any quantity of active and reactive power within its extent.

3.2. Compensation for Implementational One-Step Delay

In real-world applications, digital signal processors (DSPs) have a one-step delay due
to the switching state calculated in the previous phase being implemented at the start of the
following control step [39,40]. For a detailed study of the one-step delay, Figure 5 describes
the control algorithm execution in the DSP in which control variable x(tk) is sampled at
t = t1, analog to digital converter (ADC) procedure is completed at t = t2, and computation
of voltage vector is completed at t = t3. However, we cannot implement it until the next
sampling period at t = t4. After determining the voltage vector Vi(tk) and using x(tk)
and x* at t = t3, it cannot be implemented until the instance of (tk + 1). Although, the
variables at (tk + 1) are changed to x(tk + 1)′ and are mainly diverse from x(tk) due to the
implementation of Vi(tk − 1). Therefore, the obtained vector implemented at (tk + 1) based
on x(tk) might not be the finest. Hence, x(tk + 1)′ should be implemented to determine
the voltage of interest Vi(tk) which will reduce the error at (tk + 2) with respect to the
reference x*.
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In this paper, for the compensation of a one-step delay, a two-step prediction scheme
is formed by using the MPC strategy. Firstly, P(tk + 1)′ and Q(tk + 1)′ are obtained using
Equations (26) and (27). Then, P(tk + 2)′ and Q(tk + 2)′ are predicted by using P(tk + 1)′,
Q(tk + 1)′, and Vi(tk) as the input. Accordingly, the cost function is revised to:

gDPMPC = (P∗(tk + 2)′ − P(tk + 2)′)
2
+ (Q∗(tk + 2)′ −Q(tk + 2)′)

2
(29)

Equation (29) expresses the implemented cost function with horizon N = 2, taking
the different vectors throughout the sampling duration, where P∗(tk + 2)′ is the reference
active power and Q∗(tk + 2)′ is the reference reactive power.
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3.3. Computational Burden

The prediction horizon N = 1 is shown in Figure 6A in which eight voltage vectors
are computed during a one-step horizon. By extending the horizon to N = 2 as shown in
Figure 6B, throughout the first sampling duration, one voltage vector is implemented, and
an additional vector is used for the second sampling period. In the case of N = 2, the total
possible sequence of two voltage vectors is 72. This means a total of 49 possible sequences
should be computed. This will result in an experimental implementation problem because
it needs a huge number of calculations.
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3.4. Reduction of Switching Frequency

In DG, to achieve small power losses, the switching frequency should be low, such
that a low computational burden and high efficiency can be obtained. Here, a simplified
two-step forecast is implemented to decrease the computational burden. The same voltage
vector is judged throughout the sampling time, resulting in only seven voltage vectors
estimated throughout the two-step forecast, as presented in Figure 6.

This technique gives a similar result with less switching frequency rather than imple-
menting all voltage vectors [14]. The modified cost function is:

gDPMPC = [(P∗ − P(tk + 1)′)
2
+ (Q∗ −Q(tk + 1)′)

2
] + [(P∗ − P(tk + 2)′)

2
+
(

Q∗ −Q(tk + 2)′)2
]

(30)

Equation (30) summarizes the desired cost function of modified horizon N = 2, taking
similar vectors throughout the two sampling duration, where P∗ is the reference active
power and Q∗ is the reference reactive power. This approach of two-step prediction
decreases the switching frequency, so the power ripples. The algorithm for the proposed
modified FCS-DPMPC is shown in Figure 7.
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3.5. Stability and Performance

Every control algorithm application requires an assessment of the performance and
stability in a closed-loop operation. Output variables (i.e., voltages, currents, and power)
tend to diverge from the value of set-points in closed-loop control of power converters.
The MPC’s closed-loop stability is typically examined using the Lyapunov stability the-
ory. While the infinite-horizon MPC ensures stability, the closed-loop MPC is not always
stable with limited prediction horizons [41]. Due to the non-linear character of FCS-MPC
approaches, they cannot depend on the well-established classical methodologies used for
linear systems. A closed-loop stability study of FCS-MPC is challenging unless complicated
mathematics is applied [42]. Due to a lack of analytical tools for evaluating the perfor-
mance of MPC for power converters, lengthy simulations or experiments were used to test
the algorithm’s performance [43]. A new strategy is required in this area. However, the
performance of MPC in real-time scenarios is very good. Table 2 summarizes the stability
studies in the domain of MPC for power converters.
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Table 2. Literature review of state-of-the-art stability and performance validation of FCS-MPC.

Ref. Interest Technique Pros Cons Verified
Performance

Verified
Stability

[44] 4-leg VSC
Multiple sim.,
parameter
sweep

Quick, simple
cost
function design

Closed loop stability is not
well-defined, and is not a
certified approach

Yes No

[45] MMC
Multiple sim.,
parameter
sweep

Quick, simple
cost
function design

Closed loop stability is not
well-defined, and is not a
certified approach

Yes No

[46] 2L-VSC Multiple exp.,
benchmarking

Quick, simple
cost
function design

Closed loop stability is not
well-defined, and is not a
certified approach

Yes No

[47] 2L-VSC Lyapunov
stability theory Proved method

Only stability of the
neighborhood of system
reference is sure, complex
cost-function design

Yes No

[48] DC-DC Lyapunov
stability theory Proved method

Only stability of the
neighborhood of system
reference is sure, complex
cost-function design

Yes Yes

[49] MCC Lyapunov
stability theory Proved method

Only stability of the
neighborhood of system
reference is sure, complex
cost-function design

Yes Yes

[50] AFE Lyapunov
stability theory Proved method

Not a conventional
FCS, complex
cost-function design

No Yes

Statistical model checking is a well-known technique that helps in resolving problems
that are intractable by conventional formal techniques used in embedded vehicles, sensor
networks, and communication systems [51,52]. Numerous simulations, experiments, and
analytical analyses using the Lyapunov stability criterion are the three methods used to
assess stability and performance. The method of performance verification will be the focus
of our attention. Running many simulations appears to be the easiest way, but it is also
the most time demanding. Further on, the procedure’s reliability is absent. Since there
is no assurance that a finite set of tests will cover entire potential circumstances, errors
may go unnoticed. Looking at the physical system characteristics, we can see that certain
components have probabilistic behavior, such as reference values for active and reactive
power generation. Representing them as fixed components is not beneficial if we wish
to verify the execution of the control algorithm during transients. As a result, to assure a
system’s complete correctness, we must employ formal methods.

Formal methods employ mathematical techniques to verify system behavior in all pos-
sible contexts and Statistical Model Checking (SMC) is an extension of one such approach.
The system will be simulated for a finite number of times using this method. The simulated
samples are utilized for hypothesis testing, which involves determining if the samples give
statistical evidence that the set hypothesis is correct [53]. Two sorts of tests may be per-
formed: verifying if the probability of satisfying the condition is under a certain threshold
and estimating this probability. Hypothesis testing techniques are employed for the first
testing and Monte Carlo simulation procedures are utilized for the latter. The Monte Carlo
techniques have been improved to address the issues of predicting low probability and
unusual events.



Energies 2023, 16, 1441 12 of 22

4. Numerical Simulation

To validate the performance of the proposed FCS-DPMPC, different cases are designed
to analyze their response under different conditions by using MATLAB/Simulink, and
system parameters are described in Table 3.

Table 3. System Parameters.

Parameters Symbol Values
DC-link voltage Vdc 1000 V
Filter Inductor L f 2 mH
Filter resistor R f 0.04 Ω
Damping resistor Rc 0.94 Ω
Frequency f 60 Hz
Load P, Q 18 kW, 7 kVar
Grid parameters Rg, Lg 0.0023 Ω, 12 µH
Grid Voltage Vg 380 V

The voltage and frequency of the system are stable in the grid-connected mode and
follow the main grid references. So, there is no need to use the voltage and frequency
controller. In GC mode, the PQ controller is used for accurate power sharing because in
this case DG is used as a grid-feeding inverter and current is injected into the grid to fulfill
the load requirements.

4.1. Single DG in Grid Tie Mode

A single DG is connected to the grid through a common bus. In this case, FCS-DPMPC
delivers flexible power between DG and gird. The FCS-DPMPC technique is tested for both
two-step horizon prediction with cost function Equation (29) and the modified two−step
horizon prediction with cost function Equation (30). The output voltage, current, and
power injection performance are shown in Figure 8.
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Figure 8. Representation simulation validation of the proposed control strategy with Linear Load.
(A) Voltage waveform fundamental voltage amplitude: 318 V, (B) load current waveform, (C) active
power provided by VSC in “W”, and (D) reactive power provided by VSC in (Var).

Figure 8A,B presents the output voltage and current waveforms, and Figure 8C,D
presents the DG’s active and reactive power injections. The current injected by grid-
connected DG into the common bus is seen to be very sinusoidal, with a total harmonic
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distortion (THD) of only 0.96 percent for two-step horizon prediction and 1.01 percent for
modified two-step horizon prediction. Figures 9 and 10 represent the %THD of current for
the two-step horizon prediction and modified two-step horizon prediction. Waveforms are
stable, showing the proposed controller’s robustness under linear load.
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Step Change in P and Q Reference Values for Single DG

In this case, the VSC is in grid feeding mode and at the instant t = 0.1 the reference
value of P is changed from 18 kW to 28 kW, and Q is changed from 7KVAR to 10KVAR.
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Figure 11 shows the increase in current, active power, and reactive power to fulfill the new
demand and it can be seen that the time taken by the power to stabilize at the new reference
is less than 0.02 s.
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Figure 11. Simulation validation of proposed control strategy with the change of reference (A) Voltage
waveform fundamental voltage amplitude: 318 V (B) load current waveform (C) Active power
provided by VSC in “W”. (D) Reactive power provided by VSC in “VAR”.

4.2. Parallel Operation of DGs in Grid Tie Mode

In this case, the FCS-DPMPC controller is designed for parallel grid-connected DGs.
Figures 12–16 show the obtained results for the parallel-connected DGs in the grid tie to
fulfill the demand. Figure 12A,B shows the obtained results for the output voltage and
current of DG1 in the parallel-connected mode of operation, and Figure 12A,B shows the
output voltage and current of DG2 in the parallel-connected mode of operation. Clearly, it
can be seen that both the voltage and current for both DGs are sinusoidal and balanced
in phase.
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Figure 14. The waveform of the reactive power of DGs for parallel operation in GC mode.

Figure 13 shows the obtained results for the active power of individual DG and
Figure 14 shows the reactive power of individual DG in the parallel-connected mode
of operation.

Moreover, Figure 15 shows the obtained results of total harmonic distortion (THD) for
two-step horizon prediction which is 1.01 percent. Figure 16 shows the obtained results
of total harmonic distortion (THD) for modified two-step horizon prediction for parallel-
connected DGs in the grid tie to fulfill the demand which is 1.06 percent and slightly higher
than the THD of two-step horizon prediction.
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4.3. Switching Frequency Reduction

The approach of the modified two-step prediction technique reduces the switching
frequency. Figure 17 represents the comparison of six switching signals for a two-level
three-phase inverter, achieved for horizon N = 2 and modified horizon N = 2. Figure 17A
illustrates switching pules given to the inverter in the case of the horizon N = 2, as also
discussed in Figure 6. Moreover, Figure 17B shows the switching pulses for the modified
horizon N = 2, which is conceptually represented in Figure 6C. This indicates that switching
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frequency is reduced, in the case of the proposed control approach. The reduced switching
frequency means low switching power loss. Hence, the proposed control approach has less
switching frequency than classical MPC schemes.
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The main concern about MPC is its variable switching frequency, which causes high
switching losses. Usually, a higher switching frequency leads to a higher switching power
loss as well as a higher computational burden. The average switching power loss Psw can
be calculated as

Psw = fsw ∗
(

Esw,on + Esw,o f f

)
(31)

and computational burden CB can be represented as

CB ∝ fsw (32)

According to [54], the optimal switching time Tsw for the k + 1 horizon is represented as

Tsw = ta(k+1) (33)

so, the optimal switching time Tsw for the two-step horizon prediction is

Tsw = ta(k+2) = ta(k+1)
2 (34)

and the optimal switching time Tsw for the modified two-step horizon prediction is

Tsw = ta(k+2) = ta(k+1) (35)

where fsw is the switching frequency, Esw,on is the switching energy loss during the turn-on
transition time, and Esw,o f f is the switching energy loss during the turn-off transition time.
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Equation (31) shows that the average switching loss Psw is directly proportional to the
switching frequency fsw. In the case of modified horizon N = 2, the switching frequency
is reduced to seven times. As described in Figure 17B, the average switching losses will
also reduce, respectively, as well as the computational burden which results in a high
computational speed.

The probability of failure-free performance of a necessary function in a specific en-
vironment during a certain period is defined as reliability. The converter’s performance
relies on the converter’s burden due to switching frequency. Reducing switching frequency
results in lesser losses, better performance, and thus a reliable system.

4.4. Stability and Performance

In MATLAB/Simulink, a discrete benchmark model of the previously stated system
was developed utilizing the Monte Carlo technique. The results of the simulation validate
the model’s quality. Figure 18 shows the results of the Monte Carlo stability analysis.
Reference values of active and reactive power are linearized with the injected current and
injected active and reactive powers. Figure 19 shows the statistical analysis, which explains
the correlation, partial correlation, and standardized regression between active and reactive
power reference values with the injected current and injected active and reactive powers.
The results of the Monte Carlo stability analysis authenticate the stability and performance
of the proposed technique.
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4.5. Comparison between Different Techniques

Table 4 compares the proposed finite set direct power model predictive control (FCS-
DPMPC) with other techniques that authenticate the proposed control method’s efficiency.
Table 4 shows the comparison of %THD for the balanced linear load.

Table 4. Comparison Table.

Ref. Controller Modulation APPLICATION %THD

[55] Classic SWM DG 3.6

[56] Classic SPWM DG 2.92

[57] Fuzzy PWM PV 4.71

[58] Classic PWM DG 4.78

[59] Hysteresis PWM General 3.62

[60] MPC SVPWM Inverter 2.3

Proposed Improved FCS-MPC - MG, DG 1.06

Improvements and innovations that can be made in this field in the future are a
reduction of %THD and the implementation of a double cost function to operate in both
islanded and grid-connected modes. Other similar parametric uncertainty tests are out of
the scope of this study.
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5. Conclusions

This paper studies an improved finite control set direct power model predictive control
(FCS-DPMPC) approach with excellent steady-state and transient responses. With this
approach, a grid-tied DG system can gain power regulation flexibility, reduce switching
frequency, and lower the computational burden compared to classic MPC schemes. This
controller is simple in implementation and effective in performance. To predict the system
outcomes and minimize power error, a cost function is used. Accordingly, there is no
need for any proportional-integral regulator, switching table, or any kind of modulator.
Simulation outcomes for both single DG in grid-tie mode and parallel operation of DGs
in grid-tie mode are given to authenticate the efficiency of the proposed control method.
Statistical model checking is used for checking the stability and performance in which
results from Monte Carlo algorithms and statistics analysis authenticate the stability and
performance of the proposed model.
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