1,408 research outputs found

    A graph theoretic approach to graded identities for matrices

    Get PDF
    We consider the algebra M_k(C) of k-by-k matrices over the complex numbers and view it as a crossed product with a group G of order k by embedding G in the symmetric group S_k via the regular representation and embedding S_k in M_k(C) in the usual way. This induces a natural G-grading on M_k(C) which we call a crossed product grading. This grading is the so called elementary grading defined by any k-tuple (g_1,g_2,..., g_k) of distinct elements g_i in G. We study the graded polynomial identities for M_k(C) equipped with a crossed product grading. To each multilinear monomial in the free graded algebra we associate a directed labeled graph. This approach allows us to give new proofs of known results of Bahturin and Drensky on the generators of the T-ideal of identities and the Amitsur-Levitsky Theorem. Our most substantial new result is the determination of the asymptotic formula for the G-graded codimension of M_k(C).Comment: 21 pages, 3 figure

    The mixing time of the switch Markov chains: a unified approach

    Get PDF
    Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any PP-stable family of unconstrained/bipartite/directed degree sequences the switch Markov chain is rapidly mixing. This is a common generalization of every known result that shows the rapid mixing nature of the switch Markov chain on a region of degree sequences. Two applications of this general result will be presented. One is an almost uniform sampler for power-law degree sequences with exponent γ>1+3\gamma>1+\sqrt{3}. The other one shows that the switch Markov chain on the degree sequence of an Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) is asymptotically almost surely rapidly mixing if pp is bounded away from 0 and 1 by at least 5lognn1\frac{5\log n}{n-1}.Comment: Clarification

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure

    On the number of unlabeled vertices in edge-friendly labelings of graphs

    Full text link
    Let GG be a graph with vertex set V(G)V(G) and edge set E(G)E(G), and ff be a 0-1 labeling of E(G)E(G) so that the absolute difference in the number of edges labeled 1 and 0 is no more than one. Call such a labeling ff \emph{edge-friendly}. We say an edge-friendly labeling induces a \emph{partial vertex labeling} if vertices which are incident to more edges labeled 1 than 0, are labeled 1, and vertices which are incident to more edges labeled 0 than 1, are labeled 0. Vertices that are incident to an equal number of edges of both labels we call \emph{unlabeled}. Call a procedure on a labeled graph a \emph{label switching algorithm} if it consists of pairwise switches of labels. Given an edge-friendly labeling of KnK_n, we show a label switching algorithm producing an edge-friendly relabeling of KnK_n such that all the vertices are labeled. We call such a labeling \textit{opinionated}.Comment: 7 pages, accepted to Discrete Mathematics, special issue dedicated to Combinatorics 201

    Hyperoctahedral Eulerian Idempotents, Hodge Decompositions, and Signed Graph Coloring Complexes

    Full text link
    Phil Hanlon proved that the coefficients of the chromatic polynomial of a graph G are equal (up to sign) to the dimensions of the summands in a Hodge-type decomposition of the top homology of the coloring complex for G. We prove a type B analogue of this result for chromatic polynomials of signed graphs using hyperoctahedral Eulerian idempotents
    corecore