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We consider the algebra Mk(C) of k-by-k matrices over the
complex numbers and view it as a crossed product with a group
G of order k by imbedding G in the symmetric group Sk via the
regular representation and imbedding Sk in Mk(C) in the usual
way. This induces a natural G-grading on Mk(C) which we call a
crossed-product grading. This grading is the so-called elementary
grading defined by any k-tuple (g1, g2, . . . , gk) of distinct elements
gi ∈ G . We study the graded polynomial identities for Mk(C)

equipped with a crossed-product grading. To each multilinear
monomial in the free graded algebra we associate a directed
labeled graph. This approach allows us to give new proofs of
known results of Bahturin and Drensky on the generators of the
T -ideal of identities and the Amitsur–Levitsky theorem.
Our most substantial new result is the determination of the
asymptotic formula for the G-graded codimension of Mk(C).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let G be an arbitrary group. If (g1, g2, . . . , gk) is any k-tuple of elements of G we can form an
associated G-grading on Mk(C) = ⊕

g∈G V g as follows: V g = 0 if g is not of the form g−1
i g j for

some i and j and if g = g−1
i g j for some i and j, then V g is the span of the matrix units er,s such

that g = g−1
r gs . Such gradings are called elementary and have been studied by several authors, see

e.g. [4]. One is particularly interested in the graded polynomial identities for this grading, polynomials
f (xi1,h1 , . . . , xin,hn ) in variables indexed by elements of the group that become zero under all homo-
geneous substitutions, that is whenever each xi j ,g j is replaced by an element of the component V g j .
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For example in the case where the gi are all distinct, Bahturin and Drensky [4] have found an explicit
set of generators for the T -ideal of all such identities.

In this paper we are interested in the case in which G is a finite group, k = |G| and the gi are
distinct, so that the tuple (g1, g2, . . . , gk) is simply an ordering of the group elements. It is shown in
Aljadeff and Karasik [3] that any two k-tuples of this type give G-isomorphic gradings and that the
grading comes from a crossed-product decomposition of Mk(C). We first recall the basic concepts.

Let F be a field and K a finite Galois extension of F with Galois group G . Given a two-cocycle
f : G × G → K × we can associate the crossed-product algebra K f G = ⊕

g∈G K xg , where the product
is determined by the conditions xgk = g(k)xg for all g ∈ G and k ∈ K and xg xh = f (g,h)xgh for all
g,h ∈ G . The algebra K f G is F -central simple of degree k = |G| and every central simple F -algebra
is Brauer equivalent to such a crossed-product algebra for some choice of G , K and f . We will refer
to such an algebra as a G-crossed-product algebra. Although F is a field, K need not be, and in fact
we are particularly interested in the case where F = C, the field of complex numbers. The only C-
central simple algebra of degree k is Mk(C) and the only Galois extension of degree k is Ck . Any
finite group G of order k may be viewed as a Galois group of Ck over C, where G acts via the regular
representation and the only cocycle is the trivial one, that is, f (g,h) = 1 for all g,h ∈ G . We can
view this construction more concretely as follows: Order the group elements as e = g1, g2, . . . , gk

and label the matrix unit ei,i by egi . For each diagonal matrix E = ∑k
i=1 aiegi , let E g = ∑k

i=1 aieggi .
There is a homomorphism φ from the group G into Pk , the group of permutation matrices in Mk(C),
that takes g ∈ G to the permutation matrix P g = φ(g) that satisfies P g E P−1

g = E g , for all diagonal
matrices E . We then have a decomposition Mk(C) = ⊕

i Dk P gi where Dk denotes the set of diagonal
matrices. The extension Dk/C is our Galois extension and because P g Ph = P gh for all g,h ∈ G , we
have the desired crossed-product structure (with trivial cocycle) on Mk(C). So Mk(C) may be viewed
as a G-crossed product for every group G of order k. Moreover Aljadeff and Karasik show in [3] that
the matrix units ei, j are homogeneous and in fact ei, j ∈ Dk P g if and only if g = g−1

i g j . So this is
precisely the grading determined by the tuple (g1, g2, . . . , gk).

We now return to graded identities. We start with the free algebra Q〈X G〉, where X G = {xi,g : 1 � i,
g ∈ G}. Each element f in this algebra is a polynomial in the noncommuting variables xi,g with
rational coefficients. We evaluate such a polynomial on the G-crossed product Mk(C), but allow only
homogeneous evaluations. In other words we can substitute for the variable xi,g elements from the
component Dk P g only. In particular we call a polynomial f a graded identity for Mk(C) if f vanishes
on every homogeneous substitution. The set of these identities is an ideal in the free algebra and is
an example of a T -ideal, which means that the ideal is stable under every graded endomorphism of
the free algebra.

The main object of study in this paper are the strongly multilinear polynomials in the free algebra.
Each such polynomial is a sum, with rational coefficients of monomials of the form xi1,g1 xi2,g2 · · · xin,gn ,
where the subscripts i1, i2, . . . , in are distinct. We will refer to these as strongly multilinear mono-
mials. The adjective “strongly” is to indicate that these monomials are not just multilinear in the
variables xi,gi but also in the numerical subscripts, that is, we do not allow xi,g and xi,h to appear
in the same monomial. Using the process of linearization, it is easy to see that the T -ideal of graded
identities is generated by the strongly multilinear graded identities it contains. Our main tool is a
finite directed graph that we associate to each strongly multilinear monomial. This graph has several
interesting properties. For example two strongly multilinear monomials have the same graph if and
only if their difference is a graded identity. These differences, which we call binomial identities, are
basic to the theory of G-graded identities. In particular they generate the T -ideal of identities. We
present new proofs of some known results to show the usefulness of the graph in Section 2.

In Section 3 we use the graphs to determine the asymptotic formula for the codimension of graded
identities for Mk(C). To put this in perspective, we first recall some results on the codimension
growth in the ungraded case. Let A be an algebra over a field F of characteristic zero. Let F 〈X〉
be a free algebra on the set of countably many noncommuting variables X = {x1, x2, . . . , }, and let
Id(A) denote the T -ideal of polynomial identities for A in F 〈X〉. It is well known, that because F is
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of characteristic zero, Id(A) is completely determined by the multilinear identities. For each positive
integer n let Pn be the vector space of multilinear polynomials of degree n:

Pn = span{xσ (1)xσ (2) · · · xσ (n) | σ ∈ Sn},
where Sn is the symmetric group on the set {1,2, . . . ,n}. The n-codimension cn(A) of the algebra A
is the dimension of Pn modulo the identities:

cn(A) = dim
Pn

Pn ∩ Id(A)
.

The codimension of a PI-algebra (i.e. an algebra satisfying a polynomial identity) was introduced by
Regev in [10] where he proved that for any PI-algebra A the codimension cn(A) is exponentially
bounded. Regev conjectured in [12] that for any PI-algebra A the asymptotic behavior of the codi-
mension sequence cn(A) is given by

cn(A) ∼ a · nt · �n, (1.1)

where a, t and � are some constants. Furthermore, in all cases computed so far, � ∈ Z, t ∈ 1
2Z, and

a ∈ Q[√2π,
√

b] for some 0 < b ∈ Z. In [8] and [9] Giambruno and Zaicev proved that for any PI-
algebra A, the exponent of A, exp(A) = limn→∞ n

√
cn(A) exists and is a nonnegative integer. In [6]

Berele and Regev proved that if A is an algebra with 1 satisfying a Capelli identity (e.g. A is finitely
generated), then the conjecture (1.1) holds. In [5] Berele proves the conjecture for algebras with 1
without the hypothesis that A is finitely generated. In many cases an asymptotic formula for the
codimension is known. In particular, Regev showed [11] that the codimension of Mk(C) is given by

cn
(
Mk(C)

) ∼ a · n− k2−1
2 · k2n, (1.2)

where a = ( 1√
2π

)k−1( 1
2 )

1
2 (k2−1) · 1!2! · · · (k − 1)!k 1

2 (k2+4).

Now let A be an algebra graded by a group G . For each positive integer n let P G
n be the vector

space of strongly multilinear polynomials of degree n:

P G
n = span{xσ (1),gσ (1)

xσ (2),gσ (2)
· · · xσ (n),gσ (n)

| σ ∈ Sn, g1, g2, . . . , gn ∈ G}.

The G-graded n-codimension cG
n (A) of the algebra A is the dimension of P G

n modulo the graded
identities:

cG
n (A) = dim

P G
n

P G
n ∩ IdG(A)

.

Much less is known about the graded codimensions. In [2] Aljadeff, Giambruno and La Mattina
proved that for a finite dimensional PI-algebra A graded by an abelian group G the graded exponent
expG(A) = limn→∞ n

√
cG

n (A) exists and is an integer. If G is not abelian, then the exponent is not
known in general. Aljadeff and Belov proved in [1] that if A is an algebra with a fine G-grading
(that is, A is isomorphic to a twisted group algebra F c G), then the asymptotic behavior of G-graded
codimensions of A is given by cG

n (A) ∼ |G ′| · |G|n , where G ′ is the commutator subgroup of G . In
particular, if the algebra Mk(C) is fine graded by a group G of order k2, then its G-graded codimension
is

cG
n

(
Mk(C)

) ∼ a · k2n, (1.3)

where a = |G ′|.
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Now let Mk(C) be equipped with a crossed-product grading by a group G of order k. We have the
following asymptotic result:

cG
n

(
Mk(C)

) ∼ a · n− k−1
2 · k2n, (1.4)

where a = ( 1√
2π

)k−1( 1
2 )

1
2 (k−1)k

k
2 +1.

One interesting thing about this formula is that, unlike the fine graded case, it depends only on
the order of the group, that is, any two groups of the same order give the same asymptotics. In fact,
we prove even more, namely, that the G-graded codimension itself does not depend on the group G .
In other words it depends only on the algebra Mk(C).

Another observation that arises from comparing the asymptotic formulas (1.2), (1.3) and (1.4) is
that there is a certain pattern in the exponent of n. Notice that the exponent of n in these formulas is
a function of the dimension of the e-component of Mk(C). Namely, we can regard the ungraded alge-
bra as trivially graded by a degenerate group of order 1. In this case the homogeneous e-component is
the whole algebra Mk(C) of dimension k2. In the fine graded case the e-component is of dimension 1,
and in a crossed-product grading the e-component is of dimension k. Thus, the exponent of n is of
the form − dim Mk(C)e−1

2 . It is natural to ask whether this is mere coincidence.
Our last results are two explicit formulas for the graded codimension for M2(C) derived using the

graph count. One of these formulas (formula (3.9)) was essentially established by Di Vincenzo in [7].
The other is a closed formula of the form:

cC2
n

(
M2(C)

) =
(

2n + 1

n

)
− 2n + 1.

2. Binomial identities and the graph of a strongly multilinear monomial

We begin this section with a determination of a very useful set of generators for the T -ideal of
G-graded identities for Mk(C). We first need a definition.

Definition 1. Let m = xi1,g1 xi2,g2 · · · xin,gn be a strongly multilinear monomial in Q{xi,g : 1 � i, g ∈ G}.
For each π ∈ Sn let π(m) = xπ(1),gπ(1)

xπ(2),gπ(2)
· · · xπ(n)gπ(n)

. We will call π an initial product preserving
permutation for m if

(1) g1 g2 · · · gn = gπ(1)gπ(2) · · · gπ(n) , and
(2) For every i, 1 � i � n, if π−1(i) = j, then g1 g2 · · · gi = gπ(1)gπ(2) · · · gπ( j) .

In fact we will soon see that condition two implies condition one. We will call two monomials m
and r in Q{xi,g : 1 � i, g ∈ G} equivalent if r = π(m) for some permutation π that is initial product
preserving for m. As in the introduction we let P G

n = span{xσ(1),gσ(1)
xσ(2),gσ(2)

· · · xσ(n),gσ(n)
| σ ∈ Sn ,

g1, g2, . . . , gn ∈ G}. Clearly the relation of equivalence is in fact an equivalence relation on the mono-
mials in P G

n .

Proposition 2. Let f (x1,g1 x2,g2 · · · xn,gn ) = ∑
π∈Sn

aπ xπ(1),gπ(1)
xπ(2),gπ(2)

· · · xπ(n)gπ(n)
∈ P G

n be a strongly
multilinear polynomial. Let f = f1 + f2 + · · · + ft be the decomposition of f into the sums over equivalent
monomials. Then f is a G-graded identity for Mk(C) if and only if each fi is G-graded identity for Mk(C).
Moreover a given fi is an identity if and only if the sum of its coefficients is zero.

Proof. Let f (x1,g1 x2,g2 · · · xn,gn ) = ∑
π∈Sn

aπ xπ(1),gπ(1)
xπ(2),gπ(2)

· · · xπ(n)gπ(n)
. We evaluate f on Mk(C)

by substituting, for each xi,gi , the homogeneous element Ei P gi where Ei is a diagonal ma-
trix. We may choose the matrices Ei , i = 1,2, . . . ,n, with the property that the total set of
nk entries is algebraically independent over Q. Recall from the Introduction that if E is di-
agonal and g ∈ G , then P g E = E g P g . Upon substitution we obtain f (E1 P g1 , E2 P g2 . . . En P gn ) =
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Fig. 1. Let G = {e, σ ,σ 2} be the cyclic group of order 3, generated by σ . Given are (a) the graph of the monomial
x3,σ x2,σ 2 x5,σ 2 x4,e x1,σ . (b) The graph of the monomial x3,σ x2,σ 2 x4,e x1,σ .

∑
π∈Sn

aπ Eπ(1)E
gπ(1)

π(2)
E

gπ(1) gπ(2)

π(3)
· · · E

gπ(1) gπ(2)···gπ(n−1)

π(n)
. Because the entries of the Ei are all algebraically

independent the only way this sum can be zero is if the subsums over homogeneous elements with
exactly the same resulting product of diagonal matrices is zero. So the question is when two of these
products, say Eπ(1)E

gπ(1)

π(2) E
gπ(1) gπ(2)

π(3) · · · E
gπ(1) gπ(2)···gπ(n−1)

π(n) and Eρ(1)E
gρ(1)

ρ(2) E
gρ(1) gρ(2)

ρ(3) · · · E
gρ(1) gρ(2)···gρ(n−1)

ρ(n)

(with gπ(1)gπ(2) · · · gπ(n) = gρ(1)gρ(2) · · · gρ(n)) are equal. But the only way this can happen is if for
each diagonal matrix Ei , if Eσ

i appears in the first product and Eτ
i appears in the second product

then Eσ
i = Eτ

i . It then follows that σ must equal τ . This is exactly condition two of our definition of
equivalence (where what we called π there is now ρπ−1) and so we are done. �

In particular if m and π(m) are equivalent, then m − π(m) is a G-graded identity. We will call
such identities binomial identities.

Corollary 3. The space P G
n ∩ IdG(Mk(C)) is spanned by the binomial identities m − π(m) for strongly mul-

tilinear monomials m in P G
n . In particular the binomial identities generate the T -ideal of G-graded identities

for Mk(C).

Corollary 4. Let B = { f i | i ∈ Λ} be a set of representatives of the set of equivalence classes of strongly mul-
tilinear monomials in P G

n and let B̄ = { f̄ i | i ∈ Λ} denote their images in P G
n /P G

n ∩ IdG(Mk(C)). Then B̄ is a
basis for P G

n /P G
n ∩ IdG(Mk(C)).

We proceed to establish the connection of these identities to the theory of graphs. The kind of
graphs we consider will be finite directed graphs, with labels on the vertices and the edges. Every
edge has a direction. There may be several edges in both directions between two given vertices and
there may be edges with the same beginning vertex and ending vertex. So let G be a finite group. For
each strongly multilinear monomial xi1,g1 xi2,g2 · · · xin,gn in Q{xi,g : 1 � i, g ∈ G} we construct a graph
with vertices labeled by all of the elements of the group. There is an edge labeled i1 from the vertex
labeled e to the vertex g1 and, for j > 1, an edge labeled i j from the vertex labeled g1 g2 · · · g j−1
to the vertex g1 g2 · · · g j−1 g j . In other words the graph is really a directed path through the vertices
starting at e and passing successively through g1, g1 g2, g1 g2 g3, and so on, ending at g1 g2 · · · gn . We
refer to such a path from e to g1 g2 · · · gn as an Eulerian path. The path may not hit all of the vertices
and may hit the same vertex many times. We exhibit some examples in Fig. 1.

It should be observed that every edge in the graph has an associated “weight”, the group element
g such that the initial vertex of the edge multiplied by g gives the end vertex of that edge. Of course
many edges may have the same weight. Moreover the group value of a vertex is equal to the product
of the weights of the edges in any path from e to that vertex.
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Fig. 2. (a) The graph of the equivalent monomials x1,σ x2,σ x3,σ x4,σ 2 and x4,σ 2 x3,σ x1,σ x2,σ , where G is the cyclic group of
order 3. (b) The graph of four equivalent monomials x1,σ x2,e x3,σ x4,σ , x4,σ x2,e x3,σ x1,σ , x1,σ x3,σ x4,σ x2,e , and x4,σ x3,σ x1,σ x2,e ,
where G is the cyclic group of order 2.

From now on to simplify notation we will often write an “arbitrary” strongly multilinear monomial
as x1,g1 x2,g2 · · · xn,gn instead of xi1,g1 xi2,g2 · · · xin,gn .

Proposition 5. Let m be a strongly multilinear monomial of degree n and let π ∈ Sn. Then π(m) is equivalent
to m if and only if m and π(m) have the same graph.

Proof. Let m = x1,g1 x2,g2 · · · xn,gn . Then π(m) = xπ(1),gπ(1)
xπ(2),gπ(2)

· · · xπ(n)gπ(n)
. The statement that

m and π(m) have the same graph means that in the graph for m, the sequence of edges labeled
π(1),π(2), . . . ,π(n) is another path using each edge exactly once. But as we observed above the
group value of a vertex equals the product of the weights in any path in the graph from e to that
vertex. Hence if 1 � i � n and π−1(i) = j then when the new path determined by π reaches π( j) = i
(that is, starts from e and follows the edges π(1),π(2), . . . π( j)) we will have gπ(1)gπ(2) · · · gπ( j) =
g1 g2 · · · gi , as desired. This shows that if π(m) is equivalent to m then m and π(m) have the same
graph. It also shows that if m and π(m) have the same graph then condition two of the definition of
equivalence is satisfied. But the vertex g1 g2 · · · gn is the last vertex in the path determined by m and
gπ(1)gπ(2) · · · gπ(n) is the last vertex in the path determined by r = π(m). This last vertex is uniquely
determined by the property that it has one fewer edge leaving it than starting at it. Hence if m and
π(m) have the same graph both paths must end at the same point. So g1 g2 · · · gn = gπ(1)gπ(2) · · · gπ(n)

and m is equivalent to π(m). �
There are examples of graphs of equivalent monomials in Fig. 2.

Corollary 6. In the definition of initial product preserving permutation, condition two implies condition one.

We have the following obvious corollary:

Corollary 7. Let m = x1,g1 x2,g2 · · · xn,gn and r = π(m). The following conditions are equivalent:

(a) m and r are equivalent.
(b) m and r have the same graph.
(c) m − r is a G-graded identity of Mk(C).

We want to investigate when two monomials are equivalent. In other words we want to under-
stand the initial product preserving permutations for a given monomial. We first show that every
such permutation is a product of very simple ones. We will describe this simple kind of initial prod-
uct preserving permutation in terms of the graph. If in the graph of m there are two vertices g and h



D. Haile, M. Natapov / Journal of Algebra 365 (2012) 147–162 153
(not necessarily distinct) for which there are two different segments of the path going from g to h
then we can switch the order of these two segments. This will give a new path and so this permu-
tation will be initial product preserving. We will call this a basic permutation for m. In Fig. 2(a) we
can switch the path segment from e to σ 2 consisting of the edges 1 and 2 and the edge 4 to get the
monomial x4,σ 2 x3,σ x1,σ x2,σ equivalent to x1,σ x2,σ x3,σ x4,σ 2 . In Fig. 2(b) there are four (including the
trivial one) basic permutations for the monomial x1,σ x2,ex3,σ x4,σ .

Proposition 8. Let m be a monomial. Every initial product preserving permutation of m is a product of basic
permutations.

Proof. Let m = x1,g1 x2,g2 · · · xn,gn and let π be an initial product preserving permutation for m. So
π determines another path (call it the π -path) through the graph of m. We will show that we can
find a basic permutation σ such that the permutation σπ satisfies σπ(1) = 1. The result will follow
by induction on the degree of m. We may assume π(1) �= 1. The edge labeled 1 is one of edges in
the π -path π(1),π(2), . . . ,π(n). First assume the edge labeled 2 comes before edge 1 in this path.
Because edge 2 begins at the endpoint of edge 1 this means that in this π -path, before we reach
edge 1, there is a segment from e to the endpoint of edge 1. But when we do reach edge 1 in the
π -path there is another segment from e to the endpoint of edge 1, namely edge 1 itself. We let σ
be the basic permutation that switches these two segments. The composition σπ then puts edge 1
back in the first position and finishes this case. So we may assume that edge 2 comes after edge 1 in
the π -path. Because edge 1 is not the first edge in the π -path there must then be an edge r, r � 3,
such that edge r comes before edge 1, but edge r − 1 comes after edge 1. So there is a segment from
e to the initial point of edge r (which is the same as the endpoint of edge r − 1) and this segment
comes before you reach edge 1. Because edge r − 1 comes after edge 1, there is then another segment
from the initial point of edge 1, that is the vertex e, to the endpoint of edge r − 1. So we have two
path segments from e to the endpoint of edge r − 1 and we can let σ be the basic permutation that
switches these two segments. The composition σπ then puts edge 1 back in the first position and
we are done. �
Corollary 9 (Bahturin and Drensky). The T -ideal of G-graded identities of Mk(C) is generated by the following
set of identities:

(1) x1,ex2,e − x2,ex1,e ,
(2) For each g ∈ G, x1,g x2,g−1 x3,g − x3,g x2,g−1 x1,g .

Remark. For G a finite cyclic group this was first proved by Vasilovsky [16].

Proof. It suffices to show that if m is a strongly multilinear monomial and π is an initial product
preserving permutation of m then m − π(m) is in the T -ideal generated by elements of type (1)
and (2). By the proposition we may assume π is a basic permutation. So there are vertices g and h
such that there are two path segments from g to h and π is the permutation that switches these two
segments. Assume first that g = h. In that case the two path segments are loops beginning and ending
at g . The product of the weights of the edges (in order) around each loop equals e. Therefore on the
monomial m, switching the two loops has the effect of switching two successive partial products both
of which equal e. Hence it is a consequence of an identity of type (1). If g �= h, then we have a path
segment from g to h followed by a path segment from h to g followed by another path segment from
g to h. The product of the weights of the edges (in order) from g to h is g−1h while the product of
the weights of the edges from h to g is h−1 g . Hence in m we have three successive partial products
g−1h, h−1 g , g−1h and the effect of π is to switch the first and third of these three segments. But this
is a consequence of an identity of type (2). �

Bahturin and Drensky actually prove a more general result. We digress briefly to explain how
our methods can be used to prove their more general statement. They consider an arbitrary (not



154 D. Haile, M. Natapov / Journal of Algebra 365 (2012) 147–162
necessarily finite) group G and the elementary grading on A = Mk(C) that comes from a k-tuple
(g1, g2, . . . , gk) of distinct elements of G . One really deals only with the subgroup of G generated
by the gi ’s and so we may assume G is finite or countable. We consider first the finite case, say
|G| = m. In that case we can extend the k-tuple to an m-tuple (g1, g2, . . . , gm) including all of the
elements of G . We then form the crossed-product grading determined by this m-tuple. If we decom-
pose Mm(C) = ⊕m

i=1 Dm P gi as described in Section 1, then we may identify A with eMm(C)e where
e = e11 + e22 + · · · + ekk . In other words A = ⊕m

i=1 eDm P gi e = ⊕m
i=1 eegi Dm P gi . Notice that in this

sum the nonzero terms are those of the form eeg Dm P g , where g = g−1
i g j for some i, j, 1 � i, j � k.

We are interested in the G-graded identities on A. As before the T -ideal of graded identities is gener-
ated by the strongly multilinear identities. The new phenomenon here is that we may have monomial
identities. For example xr,g is an identity if g is not of the form g−1

i g j for some i, j, 1 � i, j � k. If
we have a strongly multilinear identity f in which no monomial is an identity then the analysis we
used before Proposition 5 shows that f is a linear combination of differences r − π(r) where r is a
strongly multilinear monomial and π is an initial product preserving permutation of r. In particular
these identities are generated by the basic identities of Corollary 9. Notice that such an identity is
also a G-graded identity for the crossed-product grading on Mm(C). So we are left with considering
monomial identities. Because our result seems to be more precise than that of Bahturin and Drensky,
we will state it more formally:

Proposition 10. Let r be a strongly multilinear monomial that is an identity for A = Mk(C). Then r is of the
form r = st where t is an arbitrary monomial and s is obtained by the T -operation from a monomial identity
of degree at most k.

Proof. Let r = x1,h1 x2,h2 · · · xu,hu be a strongly multilinear monomial. Then r is an identity for
A if and only if 0 = eDm Ph1 Dm Ph2 · · · Dm Phu e = eeh1 eh1h2 · · · eh1h2···hu Dm Ph1h2···hu . Hence r is an
identity if and only if eeh1 eh1h2 · · · eh1h2···hu = 0. Now let E = {g1, g2, . . . , gk}. If g ∈ G let Eg =
{σ g | σ ∈ E}. The condition that eeh1 eh1h2 · · · eh1h2···hu = 0 is equivalent to the condition that
E ∩ Eh1 ∩ Eh1h2 ∩ · · · ∩ Eh1h2 · · ·hu = ∅. If for some j, E ∩ Eh1 ∩ Eh1h2 ∩ · · · ∩ Eh1h2 · · ·h j−1 =
E ∩ Eh1 ∩ Eh1h2 ∩ · · · ∩ Eh1h2 · · ·h j−1 ∩ Eh1h2 · · ·h j , then we may remove the term Eh1h2 · · ·h j and
still have an empty intersection. Continuing in this way we obtain E ∩ Eh1h2 · · ·h j1 ∩ Eh1h2 · · ·h j2 ∩
· · · ∩ Eh1h2 · · ·h jn = ∅, with n � |E| = k. Hence if we let yi = h1h2 · · ·h ji for 1 � i � n, the monomial
x1,y1 x2,y2 · · · xn,yn is an identity of degree at most k. Moreover the monomial s = x1,h1 x2,h2 · · · xn,hn

is obtained from x1,y1 x2,y2 · · · xn,yn by the T -operation (and so is an identity) and r = st where
t = xn+1,hn+11xn+2,hn+2 · · · xu,hu , so we are done. �

The case where G is (countably) infinite can be treated in the same way by using G to produce a
crossed-product grading on M∞(C), the algebra of column-finite matrices. The rest of the discussion
applies with only cosmetic changes. So we obtain the full Bahturin–Drensky result [4, Theorem 4.5]:
The T ideal of identities of A is generated by the identities of Corollary 9, where g ∈ G is chosen with
nonzero component Ag , and by the (finitely many) monomial identities of degree at most k.

Not every monomial has a non-identity initial product preserving permutation. For example in the
cyclic group of order 3 generated by σ the monomial x1,σ x2,ex3,σ x4,ex5,σ has no such permutation,
as is easily checked. However if the degree of the monomial m is at least 2k where k is the order
of the group, then we can prove there is always a nontrivial initial product preserving permutation
for m. We include a proof because it is easy and shows the usefulness of the graph. But in fact we
will see soon that considerably more is true.

Proposition 11. If G has order k and m is a strongly multilinear monomial of degree at least 2k then there is a
nontrivial initial product preserving permutation for m.

Proof. Because the graph of m has at least 2k edges, either every vertex is the endpoint of at least
two edges or some vertex is the endpoint of at least three edges. In the first case the identity e is
reached twice. Because the path begins at e it follows that there will be two loops at e and there
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is a basic permutation switching these two loops. If some vertex is the endpoint of at least three
edges, then there will be two loops that both begin and end at that vertex and so there is a basic
permutation switching these two loops. �

Here is the real theorem.

Theorem 12. If G has order k and m is a strongly multilinear monomial of degree at least 2k then there are an
even number of initial product preserving permutation for m, half of them odd and half of them even.

Proof. In [14,15] Swan proved that in any finite directed graph with k vertices, if you are given a
path of length n, n � 2k, from vertex a to vertex b and you label the successive edges in that path by
1,2, . . . ,n then the number of permutations π ∈ Sn such that π(1),π(2), . . . ,π(n) is another path
from a to b is even and half of the permutations are odd and half of them are even. If we apply this
to the graph of the monomial m we immediately obtain the result. �

We return to the theory of identities. Let f be a (nongraded) homogeneous multilinear polynomial
over Q of degree k. Such a polynomial is of the form f (x1, x2, . . . , xn) = ∑

π∈Sk
a(π)xπ(1)xπ(2) · · · xπ(n) ,

where the coefficients a(π) are rational numbers. Because f is multilinear, if we want to check
whether it is an identity for Mk(C) it suffices to check it on a basis of Mk(C). In particular if G is a
group of order k and we look at the crossed-product decomposition Mk(C) = ⊕

Dk P g then in order
to show f is an identity it suffices to evaluate it on homogeneous elements. That is it suffices to show
f (t1 P g1 , t2 P g2 , . . . , tn P gn ) = 0 where the ti ’s are arbitrary elements in Dk and the gi ’s are arbitrary
elements of G . But this is the same as saying that for every choice of gi ’s, f (x1,g1 , x2,g2 , . . . , xn,gn ) is a
G-graded identity for Mk(C). By Proposition 2, if we partition the monomials in this expression using
the equivalence relation we see that to be an identity we must have that the sum of the aπ ’s in each
class equals zero.

For example take f to be the standard polynomial sn = ∑
π∈Sk

sgn(π)xπ(1)xπ(2) · · · xπ(n). The anal-
ysis above shows that sn is an identity for Mk(C) if and only if sn(x1,g1 , x2,g2 , . . . , xn,gn ) is a G-graded
identity for every choice of gi ’s in G and this is true if and only if each monomial appearing in
sn(x1,g1 , x2,g2 , . . . , xn,gn ) has an even number of initial product preserving permutations, half of them
odd and half of them even. But if n � 2k then this statement is true by Theorem 12. Hence if n � 2k,
then sn is an identity for Mk(C). This is the Amitsur–Levitsky theorem. However our proof is only
partly new. The main ingredient is Swan’s theorem, which Swan proved precisely to give a new proof
of Amitsur–Levitsky. His use of his graph theorem however did not involve graded identities.

It should be pointed out that there is a purely group theoretic formulation of the previous the-
orem: Let G be a group of order k and let g1 g2 · · · gn be a word in elements of G . We define an
initial product preserving permutation for the word as above. That is, a permutation π ∈ Sn is an
initial product preserving permutation for the word g1 g2 · · · gn if for every i, 1 � i � n, if π−1(i) = j,
then g1 g2 · · · gi = gπ(1)gπ(2) · · · gπ( j) . Then the statement is that if n is at least 2k then there will
be an even number of initial product preserving permutations for g1 g2 · · · gn , half odd and half even.
Moreover, this statement is equivalent to the Amitsur–Levitsky theorem.

3. The graded codimensions

In this section we analyze the asymptotic behavior of the codimension growth of the graded iden-
tities of Mk(C).

Let G be a group of order k. Let g = g(k,n) denote a directed graph on k vertices labeled by
the elements of the group G = {e = g1, g2, . . . , gk} and with n edges labeled by the positive integers
{1,2, . . . ,n}.

Recall that an Eulerian path from the vertex gi to the vertex g j is the enumeration i1, i2, . . . , in of
all the edges of g(k,n) such that the first edge i1 starts at gi , the last edge in ends at g j , and for
all 1 � l � n − 1 the initial point (vertex) of the edge il+1 is the endpoint of the edge il . We refer to
such a path as a cycle if gi = g j . Note that we do not require an Eulerian path or cycle to hit all the
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vertices of the graph g. We denote Mk(n) the set of all graphs g(k,n) which have an Eulerian path
from the vertex e to the vertex gi , for some 1 � i � k, and denote |Mk(n)| = mk(n).

Consider the G-crossed-product grading on A = Mk(C). Recall that the G-graded n-codimension
cG

n (A) of the algebra A is the dimension of the space P G
n /(P G

n ∩ IdG(A)). Here P G
n is the Q-vector space

spanned by the monomials xi1,g1 xi2,g2 . . . xin,gn , where {i1, i2, . . . , in} = {1,2, . . . ,n} and g1, g2, . . . , gn

are arbitrary elements of G , and IdG(A) is the T -ideal of graded polynomial identities for A.
We first establish one-to-one correspondence between the equivalence classes of monomials in

P G
n /(P G

n ∩ IdG(A)) and the directed labeled graphs g(k,n) ∈ Mk(n). This will prove the following the-
orem:

Theorem 13. Let G be a group of order k � 2. Then the graded n-codimension cG
n (A) = mk(n). In particular,

cG
n (A) does not depend on the group G.

Proof. We have seen in Section 2 that a strongly multilinear monomial xi1,g1 xi2,g2 · · · xin,gn in Q〈X G〉
gives rise to a graph g(k,n) on k vertices labeled by the elements of the group G and with n edges
labeled by the integers {1,2, . . . ,n}. Moreover the edges i1, i2, . . . , in constitute an Eulerian path start-
ing at e in this graph. Clearly, the converse is also true, namely, any graph g(k,n) with an Eulerian
path from the vertex e to the vertex gi , for some 1 � i � k, corresponds to a strongly multilinear
monomial in Q〈X G 〉. Moreover, we have seen in Proposition 5 that two strongly multilinear mono-
mials are equivalent modulo the T -ideal IdG(A) if and only if they represent two Eulerian paths
from the vertex e (to the same vertex gi) in the same graph g(k,n). In other words, the G-graded
n-codimension cG

n (A) of A is equal to the number of different graphs g(k,n) with an Eulerian path
starting at e. �

Because of this theorem we denote the G-graded n-codimension cG
n (A) by ck(n).

In order to compute the n-codimension ck(n) we need to count the number of graphs in the
set Mk(n). In practice, we can give an exact formula for m2(n), that is, in case k = 2 only. In the
general case our strategy is to count the number of graphs of a more general kind and to show that
the number of these graphs has the same asymptotic behavior as mk(n).

We now describes the more general kind of graphs we need. Given a graph g(k,n) as above, we
say that the degree in of the vertex gi , degin(gi), is the number of edges with the terminal point gi ,
and the degree out of gi , degout(gi), is the number of edges with the initial point gi . It is well known
that a graph g has an Eulerian path from gi to g j if and only if

1. g is either connected, or the union of a connected subgraph and isolated points gl of degin(gl) =
degout(gl) = 0, where l �= i, j,

2. for all l �= i, j, degin(gl) = degout(gl),
3. if i = j, then degin(gi) = degout(gi), and
4. if i �= j, then degin(gi) = degout(gi) − 1 and degin(g j) = degout(g j) + 1.
We say that a graph is weakly connected if it satisfies condition 1, and that a graph is strongly

disconnected if it is not weakly connected. We say that a graph g has an Eulerian pseudo-path from gi
to g j if it satisfies conditions 2–4, but is not necessarily weakly connected. We say that a graph g is
balanced if it has an Eulerian pseudo-cycle, that is degin(gi) = degout(gi) for all 1 � i � k, but is not
necessarily weakly connected. See Fig. 3 for an illustration of these notions.

We introduce the following notation. Let Γk(n) be the set of all graphs g(k,n) which have an Eu-
lerian pseudo-path from the vertex e to the vertex gi , for some 1 � i � k, and denote |Γk(n)| = γk(n).
Let Pk(n) be the set of all balanced graphs g(k,n), and denote |Pk(n)| = pk(n).

We first establish the following connection between the number of graphs in the sets Γk(n)

and Pk(n):

Lemma 14.

γk(n) = 1

k
pk(n + 1).
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Fig. 3. (a) Weakly connected graph with an Eulerian path from e to σ 2. It is the graph of the monomial x1,σ 2 x2,σ x3,e x4,σ 3 ∈
Q〈X G 〉, where G is the cyclic group of order 4. (b) Strongly disconnected graph with an Eulerian pseudo-path from e to σ 2. It
does not correspond to any monomial in Q〈X G 〉.

Proof. Let P̃k(n + 1) be the set of all balanced graphs g(k,n + 1) such that the endpoint of the edge
labeled by n+1 is e. Since in a balanced graph with n+1 edges the edge n+1 may have any terminal
point gi , 1 � i � k, with equal probability, we have

∣∣ P̃k(n + 1)
∣∣ = 1

k

∣∣Pk(n + 1)
∣∣.

We build a 1–1 correspondence between the sets P̃k(n + 1) and Γk(n). Given a graph g(k,n + 1)

in P̃k(n + 1) we just erase the edge n + 1. Then we get a graph g(k,n) in Γk(n). This correspondence
is 1–1 since any graph g(k,n) having an Eulerian pseudo-path from the vertex e to the vertex gi , for
some 1 � i � k, can be completed in a unique way to a balanced graph g(k,n + 1) ∈ P̃k(n + 1) by
adding the edge n + 1 from gi to e. Thus we have

∣∣Γk(n)
∣∣ = ∣∣ P̃k(n + 1)

∣∣ = 1

k

∣∣Pk(n + 1)
∣∣,

and the lemma follows. �
Next we count the balanced graphs on k vertices with n edges in two different ways:

Lemma 15. The number of balanced labeled graphs g(k,n) is given by

pk(n) =
n∑

n1=0

(
n

n1

)2 n−n1∑
n2=0

(
n − n1

n2

)2

· · ·
n−n1−···−nk−2∑

nk−1=0

(
n − n1 − · · · − nk−2

nk−1

)2

(3.5)

=
∑

n1+n2+···+nk=n

(
n

n1 n2 · · · nk

)2

. (3.6)

Proof. Given a set of n edges labeled by the numbers {1,2, . . . ,n} one defines a unique balanced
graph by the following sequence of choices:

1. Choose n1 edges having the initial point g1, and, independently, choose n1 edges having the
terminal point g1 to ensure degout(g1) = degin(g1). This can be done in

( n
n

)2
ways.
1
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2. Out of the n − n1 edges that do not start at g1 choose n2 edges having the initial point g2.
Independently, out of the n − n1 edges that do not end at g1 choose n2 edges having the terminal
point g2.

3. Act similarly for g3, . . . , gk−1.
4. Note that the edges having gk as the initial or the terminal point are uniquely defined by the

previous steps.
This proves Eq. (3.5).
Alternatively, for any partition n1 + n2 + · · · + nk = n one can choose n1,n2, . . . ,nk edges having

the initial point g1, g2, . . . , gk , respectively, and, independently, choose n1,n2, . . . ,nk edges having the
terminal point g1, g2, . . . , gk , respectively. This will give Eq. (3.6). �

Note that the expression (3.5) can be written as

pk(n) =
n∑

i=0

(
n

i

)2

pk−1(i). (3.7)

More generally, in [13] Richmond and Shallit show that pk1+k2 (n) can be written in terms of pk1

and pk2 :

pk1+k2(n) =
n∑

i=0

(
n

i

)2

pk1(i)pk2(n − i). (3.8)

In addition, Richmond and Shallit analyze the expression (3.6) and obtain the asymptotic behavior
of pk(n):

Theorem 16. (See [13, Theorem 4].) Let k be an integer � 2. Then, as n → ∞, we have

pk(n) =
∑

n1+n2+···+nk=n

(
n

n1 n2 . . . nk

)2

∼ k2n+ k
2 (4πn)

1−k
2 .

We now show that the numbers mk(n) and γk(n) have the same asymptotics:

Proposition 17.

mk(n)

γk(n)
→ 1, as n → ∞.

Proof. To prove the proposition we show that the number of the strongly disconnected graphs in
Γk(n) becomes negligible as n → ∞. Namely, let sdk(n) denote the number of strongly disconnected
graphs on k vertices with n edges with an Eulerian pseudo-path starting at the vertex e, and let sck(n)

denote the number of connected graphs on k vertices with n edges with an Eulerian path starting at e.
We claim that

sdk(n)

γk(n)
→ 0, as n → ∞.

It will follow then

mk(n)

γ (n)
= γk(n) − sdk(n)

γ (n)
→ 1.
k k
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We first find sdk(n). Let j, 1 � j � k − 1, be the number of vertices in the connected component
of the vertex e. There are

(k−1
j−1

)
ways to choose the non-e vertices of the e-component. One needs at

least j − 1 edges to ensure that a graph on j vertices is connected. Moreover, the number of edges in
the e-component cannot be n, since otherwise the graph is weakly connected. Let i, j − 1 � i � n − 1,
be the number of edges in the connected e-component, and choose i edges out of the n possible. Then
the number of different configurations of the e-component is sc j(i). The remaining part of a graph
with a connected e-component as above is a balanced graph on k − j vertices with n − i edges. Thus

sdk(n) =
k−1∑
j=1

(
k − 1

j − 1

) n−1∑
i= j−1

(
n

i

)
sc j(i)pk− j(n − i).

We now fix a subset {e = g1, gi2 , . . . , gi j } of the group G . Let sd j
k(n) be the number of strongly

disconnected graphs with a connected e-component on the vertices {e = g1, gi2 , . . . , gi j }. Then

sd j
k(n) =

n−1∑
i= j−1

(
n

i

)
sc j(i)pk− j(n − i).

Since sc j(i) � γ j(i) we have:

sd j
k(n) �

n−1∑
i=0

(
n

i

)
γ j(i)pk− j(n − i).

By Lemma 14, we have

sd j
k(n) �

n−1∑
i=0

(
n

i

)
1

j
p j(i + 1)pk− j(n − i) =

n−1∑
i=0

i + 1

n + 1

(
n + 1

i + 1

)
1

j
p j(i + 1)pk− j(n − i).

We rewrite the last expression using l = i + 1:

sd j
k(n) �

n∑
l=1

l

n + 1

(
n + 1

l

)
1

j
p j(l)pk− j(n + 1 − l).

Since l
j(n+1)

� 1 for all 1 � l � n + 1, we have

sd j
k(n) �

n∑
l=1

(
n + 1

l

)
p j(l)pk− j(n + 1 − l).

Now, since
(n+1

l

)
� n + 1 for all 1 � l � n, we may write

sd j
k(n) �

n∑
l=1

1

n + 1

(
n + 1

l

)2

p j(l)pk− j(n + 1 − l)

� 1

n + 1
pk− j(n + 1) +

n∑
l=1

1

n + 1

(
n + 1

l

)2

p j(l)pk− j(n + 1 − l) + 1

n + 1
p j(n + 1)

= 1

n + 1

n+1∑(
n + 1

l

)2

p j(l)pk− j(n + 1 − l).

l=0
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Thus, by Eq. (3.8) we have

sd j
k(n) � 1

n + 1
pk(n + 1).

It follows that

sd j
k(n)

γk(n)
�

1
n+1 pk(n + 1)

1
k pk(n + 1)

= k

n + 1
→ 0,

as n → ∞. Hence we have

sdk(n)

γk(n)
=

k−1∑
j=1

(
k − 1

j − 1

)
sd j

k(n)

γk(n)
→ 0.

This completes the proof of the proposition. �
We are now ready to prove the main theorem of this section:

Theorem 18. Let G be a group of order k � 2. Then, as n → ∞, the G-graded n-codimension of Mk(C)

equipped with the G-crossed-product grading is

ck(n) ∼ k
k
2 +1

(4π)
k−1

2

n− k−1
2 k2n.

Proof. As we have mentioned above ck(n) = mk(n). Hence, by Proposition 17, ck(n) ∼ γk(n). By
Lemma 14, ck(n) ∼ 1

k pk(n + 1). By Theorem 16,

ck(n) ∼ 1

k

(
k2(n+1)+ k

2
(
4π(n + 1)

) 1−k
2

) = k
k
2 +1

(4π)
k−1

2

(n + 1)−
k−1

2 k2n,

and the theorem follows. �
In case k = 2 we are able to give an explicit value of the n-codimension:

Theorem 19. Let C2 be a cyclic group of order 2. Then the C2-graded n-codimension of M2(C) equipped with
the C2-crossed-product grading is

c2(n) =
(

2n + 1

n

)
− 2n + 1.

In particular, as n → ∞, we have

c2(n) ∼ 1√
π

n− 1
2 22n+1.

Proof. Let C2 = 〈e, σ 〉 be a cyclic group of order 2. The number of balanced graphs on the vertices
e and σ with n labeled edges is

∑n
i=0

(n
i

)2 (for each possible 0 � degout(e) � n, choose i = degout(e)
edges starting at e, and, independently, choose i = degin(e) = degout(e) edges ending at e). Among
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these graphs, exactly 2n are disconnected. Among the disconnected graphs one (that having all the
edges starting and ending at e) is weakly connected. The number of graphs on the vertices e and σ
with n labeled edges with an Eulerian path from e to σ is

∑n
i=1

(n
i

)( n
i−1

)
(for each possible 1 � i � n,

choose i = degout(e) edges starting at e, and, independently, choose i − 1 = degin(e) = degout(e) − 1
edges ending at e). Thus we have

c2(n) =
n∑

i=0

(
n

i

)2

+
n∑

i=1

(
n

i

)(
n

i − 1

)
− 2n + 1.

Direct computation shows that

n∑
i=0

(
n

i

)2

+
n∑

i=1

(
n

i

)(
n

i − 1

)
=

n∑
i=0

(
n

i

)(
n + 1

i + 1

)
=

n∑
i=0

(
n

i

)(
n + 1

n − i

)
.

A standard argument shows that the last sum

n∑
i=0

(
n

i

)(
n + 1

n − i

)
=

(
2n + 1

n

)
,

and the first statement of the theorem follows.
Now, since

(2n+1
n

) = 1
2

(2n+2
n+1

)
, using Stirling’s formula n! ∼ √

2πn(n
e )n , as n → ∞, one easily gets

the second statement of the theorem. �
An additional expression for c2(n) arises from a different approach to counting the number of

graphs. Namely, we first assign the weights e and σ to the edges and then distribute the edges
between the vertices e and σ according to their weights. Given n edges, we choose m edges to have
the weight σ and the remaining m − n edges to have the weight e. For each 0 � m � n there are

(n
m

)
possible assignments of weights. Now, for each assignment, if m �= 0, we choose exactly m

2 , if m is
even, or �m

2 � + 1, if m is odd, edges of weight σ to go from the vertex e to the vertex σ to ensure
the existence of an Eulerian path starting at e. In both cases the remaining �m

2 � edges of weight σ go
from σ to e, and so there are

( m
� m

2 �
)

possible choices. Independently, we distribute the n − m loops of

weight e between the two vertices. There are 2n−m ways to do so. We get

2n−m
(

m

�m
2 �

)
(3.9)

different graphs. It should be mentioned that the number (3.9) of non-equivalent monomials in vari-
ables y1, . . . , yn−m of weight e and variables z1, . . . , zm of weight σ was obtained by Di Vincenzo in
[7, Lemma 2]. If m = 0, that is, if all the edges have weight e, there is exactly one (that having all the
edges starting and ending at e) graph having an Eulerian path starting at e. Thus we have

c2(n) = 1 +
n∑

m=1

2n−m
(

n

m

)(
m

�m
2 �

)
.
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