5,959 research outputs found

    Autonomous Capabilities for Small Unmanned Aerial Systems Conducting Radiological Response: Findings from a High-fidelity Discovery Experiment

    Get PDF
    This article presents a preliminary work domain theory and identifies autonomous vehicle, navigational, and mission capabilities and challenges for small unmanned aerial systems (SUASs) responding to a radiological disaster. Radiological events are representative of applications that involve flying at low altitudes and close proximities to structures. To more formally understand the guidance and control demands, the environment in which the SUAS has to function, and the expected missions, tasks, and strategies to respond to an incident, a discovery experiment was performed in 2013. The experiment placed a radiological source emitting at 10 times background radiation in the simulated collapse of a multistory hospital. Two SUASs, an AirRobot 100B and a Leptron Avenger, were inserted with subject matter experts into the response, providing high operational fidelity. The SUASs were expected by the responders to fly at altitudes between 0.3 and 30 m, and hover at 1.5 m from urban structures. The proximity to a building introduced a decrease in GPS satellite coverage, challenging existing vehicle autonomy. Five new navigational capabilities were identified: scan, obstacle avoidance, contour following, environment-aware return to home, andreturn to highest reading. Furthermore, the data-to-decision process could be improved with autonomous data digestion and visualization capabilities. This article is expected to contribute to a better understanding of autonomy in a SUAS, serve as a requirement document for advanced autonomy, and illustrate how discovery experimentation serves as a design tool for autonomous vehicles

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Modeling and Mathematical Analysis of Swarms of Microscopic Robots

    Full text link
    The biologically-inspired swarm paradigm is being used to design self-organizing systems of locally interacting artificial agents. A major difficulty in designing swarms with desired characteristics is understanding the causal relation between individual agent and collective behaviors. Mathematical analysis of swarm dynamics can address this difficulty to gain insight into system design. This paper proposes a framework for mathematical modeling of swarms of microscopic robots that may one day be useful in medical applications. While such devices do not yet exist, the modeling approach can be helpful in identifying various design trade-offs for the robots and be a useful guide for their eventual fabrication. Specifically, we examine microscopic robots that reside in a fluid, for example, a bloodstream, and are able to detect and respond to different chemicals. We present the general mathematical model of a scenario in which robots locate a chemical source. We solve the scenario in one-dimension and show how results can be used to evaluate certain design decisions.Comment: 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA June 200

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Robot swarming applications

    Get PDF
    This paper discusses the different modes of operation of a swarm of robots: (i) non-communicative swarming, (ii) communicative swarming, (iii) networking, (iv) olfactory-based navigation and (v) assistive swarming. I briefly present the state of the art in swarming and outline the major techniques applied for each mode of operation and discuss the related problems and expected results
    • …
    corecore