45 research outputs found

    Swap Bribery

    Full text link
    In voting theory, bribery is a form of manipulative behavior in which an external actor (the briber) offers to pay the voters to change their votes in order to get her preferred candidate elected. We investigate a model of bribery where the price of each vote depends on the amount of change that the voter is asked to implement. Specifically, in our model the briber can change a voter's preference list by paying for a sequence of swaps of consecutive candidates. Each swap may have a different price; the price of a bribery is the sum of the prices of all swaps that it involves. We prove complexity results for this model, which we call swap bribery, for a broad class of election systems, including variants of approval and k-approval, Borda, Copeland, and maximin.Comment: 17 page

    Multivariate Analyis of Swap Bribery

    Full text link
    We consider the computational complexity of a problem modeling bribery in the context of voting systems. In the scenario of Swap Bribery, each voter assigns a certain price for swapping the positions of two consecutive candidates in his preference ranking. The question is whether it is possible, without exceeding a given budget, to bribe the voters in a way that the preferred candidate wins in the election. We initiate a parameterized and multivariate complexity analysis of Swap Bribery, focusing on the case of k-approval. We investigate how different cost functions affect the computational complexity of the problem. We identify a special case of k-approval for which the problem can be solved in polynomial time, whereas we prove NP-hardness for a slightly more general scenario. We obtain fixed-parameter tractability as well as W[1]-hardness results for certain natural parameters.Comment: 20 pages. Conference version published at IPEC 201

    Complexity of Manipulation, Bribery, and Campaign Management in Bucklin and Fallback Voting

    Get PDF
    A central theme in computational social choice is to study the extent to which voting systems computationally resist manipulative attacks seeking to influence the outcome of elections, such as manipulation (i.e., strategic voting), control, and bribery. Bucklin and fallback voting are among the voting systems with the broadest resistance (i.e., NP-hardness) to control attacks. However, only little is known about their behavior regarding manipulation and bribery attacks. We comprehensively investigate the computational resistance of Bucklin and fallback voting for many of the common manipulation and bribery scenarios; we also complement our discussion by considering several campaign management problems for Bucklin and fallback.Comment: 28 page

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    On the Hardness of Bribery Variants in Voting with CP-Nets

    Full text link
    We continue previous work by Mattei et al. (Mattei, N., Pini, M., Rossi, F., Venable, K.: Bribery in voting with CP-nets. Ann. of Math. and Artif. Intell. pp. 1--26 (2013)) in which they study the computational complexity of bribery schemes when voters have conditional preferences that are modeled by CP-nets. For most of the cases they considered, they could show that the bribery problem is solvable in polynomial time. Some cases remained open---we solve two of them and extend the previous results to the case that voters are weighted. Moreover, we consider negative (weighted) bribery in CP-nets, when the briber is not allowed to pay voters to vote for his preferred candidate.Comment: improved readability; identified Cheapest Subsets to be the enumeration variant of K.th Largest Subset, so we renamed it to K-Smallest Subsets and point to the literatur; some more typos fixe

    Voting and Bribing in Single-Exponential Time

    Get PDF
    We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery problem, the goal is to bribe a set of voters at minimum cost such that a desired candidate wins the manipulated election under the voting rule R. Voters assign prices for withdrawing their vote, for swapping the positions of two consecutive candidates in their preference order, and for perturbing their approval count for a candidate. As our main result, we show that R-Multi-Bribery is fixed-parameter tractable parameterized by the number of candidates for many natural voting rules R, including Kemeny rule, all scoring protocols, maximin rule, Bucklin rule, fallback rule, SP-AV, and any C1 rule. In particular, our result resolves the parameterized of R-Swap Bribery for all those voting rules, thereby solving a long-standing open problem and "Challenge #2" of the 9 Challenges in computational social choice by Bredereck et al. Further, our algorithm runs in single-exponential time for arbitrary cost; it thus improves the earlier double-exponential time algorithm by Dorn and Schlotter that is restricted to the unit-cost case for all scoring protocols, the maximin rule, and Bucklin rule
    corecore